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Resumo

O presente artigo apresenta uma solução possível às limitações de soluções modernas de tentativa e erro no desenvolvimento de 
procedimentos de soldagem. As dificuldades de encontrar soluções generalizadas para a equação de Rosenthal são discutidas e a 
abordagem de Calibração e Representação Mínima é apresentada como um procedimento promissor para o desenvolvimento destas 
soluções. Fatores dominantes são identificados, com os efeitos de fenômenos secundários sendo contabilizados por fatores de correção. 
Os fatores de correção são calibrados e mostrados em uma forma que podem ser facilmente calculados e utilizados pela indústria. A 
abordagem é, então, demonstrada determinando-se a largura da isoterma através da solução da equação de Rosenthal para uma placa 
plana. Comparações das equações escalonadas calibradas com a solução exata da equação de Rosenthal mostraram um erro máximo 
de menos do que 0,8% para qualquer isoterma.

Palavras-chave: Escalonamento, Equação de Rosenthal, Largura da Isoterma, Soldagem, Desenvolvimento de procedimentos.

Abstract: The present paper introduces a possible solution to the limitations of modern trial and error solutions to welding procedure 
development. The difficulties of finding generalized solutions to Rosenthal’s equation are discussed and the Minimal Representation 
and Calibration approach is introduced as a promising procedure for developing these solutions. Dominant factors are identified, 
with effects from secondary phenomena being taken into account by correction factors. These correction factors are then calibrated 
and presented in a form that can be easily computed, and therefore be amendable to industry. The approach is then demonstrated by 
determining the isotherm width from Rosenthal’s thick plate solution. Comparison of the calibrated scaling equations to Rosenthal’s 
exact solution showed a maximum error of less than 0.8% for any isotherm.

Keywords: Scaling, Rosenthal Equation, Isotherm Width, Welding, Procedure Development.
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1. Introduction

Recent advances in technology have made it possible to 
consider welding a scientific endeavour rather than an art form 
[1]. These advancements mean that welders can now make 
use of plasma arcs, lasers, electron beams, explosives, and 
mechanical devices to join metals at the atomic level [2]. Despite 
the enormous progress in the last 30 years, there is a distinct 
lack of insightful, quantitative, physically relevant guidelines 
for welding problems [2]. For the most part, an empirical trial 
and error approach has been used in industry to solve complex 
welding problems. This approach has only been capable of 
providing answers in a limited range of real life scenarios, 
and as a result these answers have not enhanced intuition, 

creativity, or engineering judgement. At the academic level, 
numerical simulations have been developed to make meaningful 
predictions about welding processes. However, due to their 
complexity and lack of wide scale applicability, they have seen 
limited acceptance and use by practitioners of industry [3].

The absence of general solutions to welding problems is 
a result of the complex, multicoupled physics of the process. 
Typically welding involves many of the issues of thermofluids 
in addition to electromagnetic body forces, chemical reactions, 
phase transformations, and complex free surface conditions 
[3]. The large number of coupled phenomena leads to 
welding technologies being notoriously difficult to study, be 
it experimentally of through numerical simulation. This paper 
presents a promising approach to address the limitations of 
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empirical experiments and numerical simulations of the past. 
Complex problems in welding can be tackled using asymptotic 
expressions and appropriate correction factors. In essence, a 
complex welding problem can be reduced and solved by inputting 
parameters into inexpensive and common spreadsheet software. 
This approach provides an alternative to existing procedure 
development techniques, which bridges the gap between the 
complexity of numerical simulations and the exhaustive nature 
of trial and error qualifications. 

The proposed methodology for this asymptotic analysis 
is a six step procedure called the Minimal Representation and 
Calibration (MRC) approach. The results of the MRC approach 
can be calibrated against experiments, numerical models, 
or exact solutions. In this study, the MRC methodology is 
introduced and applied to Rosenthal’s thick plate equation for 
isotherm temperature for point heat sources [4]. The relationship 
between weld parameters and substrate temperature has also been 
explored by [5-9]. The maximum width of a given temperature 
isotherm is determined using asymptotic equations (also known 
as scaling laws), which capture the change in maximum width 
in a generalized way. Correction factors are then derived to 
match the exact solution of Rosenthal’s equation to the derived 
expressions. An example has also been included to demonstrate 
the application of the results of the MRC procedure to a real 
world welding scenario. 

 2. Engineering Design Rules: Minimal Representation and 
Calibration Approach

For a wide range of engineering disciplines, design rules are 
an essential part of practice. They almost always have the form 
shown in Equation (1) [3]. 

                  (Simple Formula)  × (Correction Factor)               (1)

The success and generality of Equation (1) can be extended 
to a variety of engineering problems outside of welding 
[3]. Examples of such an approach can be found in stress 
concentration analysis in solid mechanics [10], fluid dynamic 
drag [11], bearing life calculation [12], and stress in gear teeth 
[13]. 

The MRC approach is based on the most idealized conception 
that is still able to capture the dominant phenomena. Correction 
factors are the applied to the formula to take into account the 
most important departures from the ideal case, which can then 
be calibrated to minimize the deviation between the scaled and 
exact solutions. Some special features of the MRC approach, 
which are described in [3], are:
•	 Predictions made by the MRC approach are made only for 

characteristic values (such as maximum value of a field), 
not for whole fields. The dependence that is being studied 
is not based on the independent variables, but rather on 
the problem parameters. In a typical welding problem, 
a characteristic value could be the width of an isotherm, 
which is demonstrated in subsequent sections, and not the 
exact magnitude of temperature at any position in space. 
Characteristic values are studied in further detail in [14].

•	 Once the correction factors are obtained, they are easy to 
calculate based on information that is known beforehand. 
The formula proposed in this paper has the form of a power 
law, with the correction factors that can be well tabulated. 
For example, in a welding problem, process efficiency, 
thermal diffusivity, travel velocity, nominal heat input, 
thermal conductivity and preheat are known quantities prior 
to welding. Parameters should not include magnitudes such 
as molten metal velocity, which can only be determined after 
simulation or experimentation. 

•	 The correction factors take into account secondary 
phenomena which are originally discarded during the initial 
stages of the MRC approach. As such, the correction factors 
have a physical, real world meaning and applicability. 

•	 The correction factors can be used to determine a limit to the 
validity of the idealized cases. 

•	 Minimal expressions that are properly calibrated generally 
reproduce existing experimental data with accuracy 
comparable to experiments.

•	 As real world problems approach the idealized case, the 
correction factors tend to 1 or a constant value of magnitude 
of 1. Thus the model and reality correspond to a consistent 
value of the order of 1 to one another in the asymptotic limit. 

3. Applying the Minimal Representation and Calibration 
Approach to a Welding Problem

The MRC approach is able to capture the multicoupled, 
multiphysics nature of welding. It has the ability to account for 
a range of phenomena, rather than the case by case experimental 
expressions often used in industry. This ability ensures generality 
is achieved. MRC consists of the following steps, which were 
first proposed in [3]:

1. List all physics considered relevant
2. Identify dominant factors
3. Solve approximate problem considering only dominant 

factors
4. Check for self-consistency
5. Compare predictions to “reality”
6. Calibrate predictions

To illustrate these steps, the width of an isotherm in a thick 
substrate using Rosenthal’s solution for point heat sources is 
considered., which is shown in Equations (2) and (3) [4]. Thick 
plate substrate in this case is defined as a semi-infinite plate 
where the heat flow is three dimensional. 

(2)

(3)

A graphical representation of this solution is shown in 
(Figure 1). The x-axis is fixed to the centerline of the moving 
heat source, and positive x is denoted to be the direction of 



215Soldag. Insp. São Paulo, Vol. 19, Nº. 03, p.212-220, Jul/Set 2014

Calibrated expressions for welding and their application to isotherm width in a thick plate

motion with the frame of reference attached to the heat source. 

Figure 1. Isotherms and temperature profiles for a point heat 
source in a thick plate

The independent variables ({X}), dependent variables 
({U}), and parameters ({P}) for Rosenthal’s thick plate 
solution are shown in Equations (4)-(6). 

The dimensionless groups in Equations (9)-(11) reduce the 
problem from a total of seven variables down to three variable 
groups. Note the Equation (8) is not truly independent and is a 
function of Equations (9) and (10). 

The MRC approach is now applied to illustrate how very 
general power laws can be combined with correction factors to 
produce the original solution with high accuracy.

3.1 List all physics considered relevant

This list must include dominant phenomena, and may 
include various secondary phenomena. The following is a list 
of phenomena that is considered especially relevant in welding 
problems:
•	 Conduction: Heat transported by molecular mechanisms in 

the solid substrate
•	 Advection: Heat transported due to the relative motion of 

torch and plate
•	 Radiation: Heat lost by the hot surface of the substrate
•	 Convection: Heat transported in the weld pool due to the 

motion of molten metal
•	 Phase transformations: Absorption or release of heat due to 

the transformations from solid to liquid or between different 
solid-state phases

•	 Electromagnetic effects: Flow of current in electric welding 
creates body forces affecting the motion of molten metal

3.2 Identify all dominant factors

The minimal representation of a system is based only on 
the dominant factors, with the secondary factors being accounted 
for by the correction factors. Identification of dominant factors 
is critical and can be formal, intuitive or a combination of both 
[3]. 

An inspection of the normalized Rosenthal solution 
shows that there are two dimensionless independent variables, 
one dimensionless dependent variable, and no dimensionless 
parameters. Rosenthal intuitively determined that the following 
approximations had only secondary effects:
•	 No fluid flow in the molten pool
•	 Constant material properties with temperature
•	 Infinite plate size
•	 Point heat source 
•	 No convective or radiative heat loss occurs from the surface
•	 No phase transformations

Rosenthal analysis considers only two mechanisms of 
heat transfer, i.e. conduction and advection, establishing two 
asymptotic regimes depending on which mechanism dominates. 
These two regimes are consistent with the solution of Equation 
(7), where, for a characteristic value such as isotherm width, 
there is a relationship between two dimensionless groups only. 
The two regimes in Rosenthal’s solution can be captured by the 
value of T*.  For high values of T* (T* >> 1) conduction is 
dominant, while for low values of T* (T* << 1) advection is 
dominant. These two regimes also correspond to what are often 
called “slow” and “fast” moving heat sources respectively.  

                                       {X}={x,y}                                         (4)  
    

 
                                          {U}={T}                                       (5)
 

                                     {P}={Q,k,U,α}                          (6)

Equation (2) can be normalized as follows:

(7)

 
(8)

Where: 

(9)

(10)
 

(11)
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3.3 Solve approximate problems using dominant factors 

The problem is simplifi ed when only dominant factors 
are considered, and the solutions can be numerical, exact, or 
approximate. For the example considered here, there are two 
regimes each characterized by a different dominant phenomena. 
At  T* >> 1 conduction governs isotherm size, while at T* << 1 
advection is dominant. A good estimate for the maximum isotherm 
width has the following general form applicable to both regimes:

(12)

where  is an asymptotic solution to the problem, and  is 
a correction factor that would result in the exact value.

The estimate  is derived separately for the low and 
high T* regimes. The key difference for the estimates is the 
characteristic shape of the isotherm in the asymptotes of the T* 
domain. For low T* values the isotherms become increasingly 
elongated due to the dominant effect of advection, and at high T* 
values the isotherms become circular as conduction dominates 
and the heat is dissipated equally in the (xy)* plane.  

Low T* Regime

Equation (12) can be rewritten using the following notation for 
low T* values:

(13)

where  is the estimate for the asymptotic regime when T* 
approaches 0 (advection dominant) and  is the correction 
factor that results in an exact solution for T* ≤ 1. 

For the fast moving heat source, the elongated isotherms 
have a much larger length to width ratio and satisfy the condition 
y*/x* << 1. Equation (3) can be rearranged in terms of y*/x* 
by factoring (x*)2 from underneath the square root. Only the 
negative solution of  /x* /is considered for this analysis because 
the maximum width will always occur at a negative x* position. 
For x* < 0 Equation (3) becomes:

(14)

Using the fi rst two terms of an expansion of the square 
root around1, Equation (14) can be transformed to the following 
form:

(15)

By multiplying the equation by -1 and subtracting x*  from 
both sides, the left side of the equation represents the argument 
of the exponential of Equation (7). 

(16)

Multiplying the x* term through and simplifying the 
results, we arrive at the following form of the approximation: 

(17)

Substituting Equation (17) into Equation (7) yields an 
expression for low T* values in terms of both x* and  y*:

(18)

Differentiation of Equation (18) with respect to x*, leads to 
the resulting expression:

(19)

By setting ∂T*⁄∂x* = 0, the location of the dimensionless 
estimate of maximum y* at low T* values, denoted as , 
can be determined, which after simplifi cation leads to a direct 
relationship between  in terms of the dimensionless x 
coordinate at the maximum . 

(20)

By substituting Equation (20) into Equation (18), a 
relationship of  as a function of only T* can be established. 
The signifi cance of this relationship is that isotherm width 
can now be expressed exclusively by a single dimensionless 
parameter. 

(21)

By inputting the parameters of T* from Equation (11) 
into Equation (21), the following expression is obtained, which 
equates the estimate of dimensionless isotherm width exclusively 
in terms of welding parameters. 
 

(22)

By substituting Equation (10) into Equation (22), we can 
develop an expression for the dimensional estimate  for low 
T* values. 

(23)

Inserting the above result into Equation (13) gives us an 
expression for the exact solution  in terms of the derived 
approximation multiplied by a correction factor for low T* values. 

(24)

High T* Regime

Similar to low T*, the general formula for  can be expressed 
using notation for high T* values:
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(25)

where  is the estimate for the asymptotic regime when  T* 
approaches infi nity (conduction dominant)  and  is the 
correction factor that result in an exact solution for T* > 1. 

At high T* values, Rosenthal’s solution predicts that the 
isotherm takes the shape of a circle centred at the heat source. 
Equation (7) therefore reduces to the approximate form below:

(26)

At the maximum point of the isotherm for high T*  values, 
x* = * = 0, leaving only the y* component of r*, which is 
denoted . This leads to the following expression for in 
terms of only T*. 

(27)

Substituting the values from Equation (11) into Equation 
(27), an expression for is obtained in terms of welding 
process variables for a given temperature. 

(28)

The above equation can be rearranged to dimensional form 
by substituting Equation (10) as follows:

(29)

Inserting the results of Equation (29) into the general 
expression for ym for high T* values, we obtain an expression for 
the exact solution of  as a function of the derived estimate 
multiplied by the correction factor for high T* values. 

(30)

3.4 Check for self consistency

In this simple uncoupled example, self-consistency is not 
a problem. The consideration of only two relevant phenomena 
guarantees that when one phenomenon is neglected the other 
will govern system behaviour. For more complex scenarios 
involving three of more coupled phenomena, it is necessary to 
confi rm that the secondary factors are of secondary importance 
and magnitude. By computing the value of terms in the 
governing equation using the estimate of the characteristic value, 
the signifi cance of neglected phenomena can be evaluated. 
The simple case applies to maximum isotherm width using 
Rosenthal’s equation, where advection and conduction are the 
only two relevant phenomena under consideration. 

3.5 Compare predictions to reality

It is important that scaling laws are validated through 
comparison with reality. Reality for this example is considered 
to be Rosenthal’s exact solution. The exact correction factors 
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for high and low T* regimes can be derived from the ratio of the 
exact to estimate solutions for maximum isotherm width, which 
is described in detail in this section. 

Low T* Regime

The exact correction factor for T* <1, , can be 
mathematically described by the ratio of the exact solution to 
the estimate solution. Taking advantage of this defi nition, the 
exact correction factor can also be represented by the ratio of the 
dimensionless exact solution and dimensionless estimate as both 
multiplied by the same normalizing factor. 

(31)

Substituting the relationship established in Equation (21) 
into Equation (31), we arrive at the following expression for 

, which depends only on T*:

(32)

High T* Regime

Similar to the low T* regime, the exact correction factor 
for high T* values,  is defi ned as the following ratio of the 
dimensionless exact solution to dimensionless estimate:

(33)

Inserting the relationship from Equation (27) into Equation 
(33), the following expression for  as a function of only 
T* is established:

(34)

As  approaches T* << 1 and  approaches 
T* >> 1, the exact correction factors tend to 1, which indicates 
the estimates are good in the asymptotes of each regime. This 
behaviour is shown in (Figure 2).

Figure 2. Exact correction factors for ym as a function of T*. 
 is the correction factor for the low T* regime and  

is for the high T* regime
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3.6 Calibrate predictions

The exact correction factors can be approximated with an 
appropriate function resulting in a high quality estimate based 
only on parameters known beforehand, which has the following 
general form:

(35)

where  is the approximate correction factor, and is the 
corrected asymptotic estimate. 

The exact correction factors,  and , both depend 
only on T* and can be approximated using the expression shown 
in Equations (36) and (37) respectively. This approach has also 
been used by Churchill et al. for developing general asymptotic 
solutions for phenomena that vary between limiting cases [15]. 

(36)

(37)

The calibrated form of the isotherm width equation can be 
expressed for                       as follows:

(38)

(39)

The graphical solution of the calibrated correction factors 
compared to the exact correction factors is shown in (Figure 3). 
Both calibrated factors who excellent agreement for all T* 
values, which extends beyond their region of intended use. 

Figure 3. Comparison of the exact correction factors to the 
calibrated correction factors. The maximum error is below 

0.8%

The form of the calibrated correction factors is such that 
it matches the behaviour of the exact correction factors in the 
asymptotes with only slight deviations in the intermediate region 
around T* = 1. The calibrated correction factor  tends to 1 
at low T* values T* << 1 where the T* term is negligible and 
approaches (C1T*)C2 at high T*  values where the T*  term 
dominates. For  the calibrated approximation tends to 1 as 

T* becomes large and approaches           at low T*  values. 

The calibrated correction factors include three constants to 
match the behaviour of the exact correction factors. The values 
of C1 and C2 come directly from the derivation shown in step 5, 
but the constant C3 has been included to provide an additional 
degree of manipulation in the intermediate region near T* = 1. 
This manipulation has been accomplished while preserving the 
behaviour of the correction factors in the asymptotes of both 
regimes for both correction factors. 

The error between the exact and calibrated factors has been 
calculated using a ratio of logs to better represent the difference 
across large orders of magnitude. The formula for error for  
and  are shown in Equations (40) and (41). 

(40)

(41)

Using the definition of Equations (40) and (41), plots such 
as the one in (Figure 4) can be generated for a wide range of  C3 
values. It is noted that the maximum and minimum observed in 
(Figure 4) are symmetric about the T* axis. 

Figure 4. Error as a function of T* for  and C3 = 0.865

The absolute maximum error for a large range of C3 
values was then plotted to determine a C3 that minimizes the 
maximum error. A minimum was identified at C3 = 0.865 correct 
to three significant digits for  and . The graph for error 
minimization of  is shown in (Figure 5). 

Figure 5. Identification of C3 to minimize the absolute error of 
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(36)

Combining the estimate and the correction factor  
(T*) using Equation (38), we fi nd that the calibrated estimate for 
maximum width of the 800°C isotherm from the origin is 4.517 mm.

(38)

The application of the MRC approach to isotherm width 
has been demonstrated using the series of equations shown in 
this sample calculation and information that is known prior to 
welding. The general nature of the developed expressions allows 
this approach to be extended to any number of welding processes, 
materials, and parameter combinations as an excellent starting 
point approximation of isotherm width prior to experimental 
trials.

5. Discussion

The MRC approach provides for the fi rst time a framework 
for systematically determining reliable estimates for 
characteristic values of welding systems that match the exact 
solution. The rigorous systematic aspect of this work relies on 
representing system behaviour in the asymptotic cases using 
scaling estimates, and applying correction factors to account for 
deviations from the asymptotic limit. 

Based on the analysis of maximum isotherm width presented 
here, there is error associated with neglecting the secondary terms 
in the scaling expressions. For this simple uncoupled example, 
the exclusion of either advection or conduction was shown to 
have a negligible impact in the asymptotic cases where the 
scaling estimates match the exact solution. The implementation 
of calibrated correction factors compensated for the intermediate 
regime where advection and conduction are of comparable 
magnitude and resulted in a maximum error of 0.8% between 
the estimate and exact solution for any isotherm. Unexpectedly, 
the correction factors  and  had excellent agreement 
across all T* values, which implies they could be successfully 
used outside of their intended dominant regime. 

6. Conclusions

A 6 step Minimal Representation and Calibration approach 
was presented as a promising alternative to current welding 
procedure development techniques. The six steps are:

1. List all physics considered relevant
2. Identify dominant factors
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This approach to calibrating the correction factors has been 
highly successful, as shown by the excellent fi t of the exact and 
calibrated values in (Figure 3). The maximum absolute error for 
both correction curves is less than 0.8% corresponding to an 
accuracy of at least 99.2% for any isotherm. Table 1 summarizes 
the values of C1, C2  and optimized C3 for both correction factors. 

Table 1. Values of optimized calibration constants for   and 

4. Sample Calculation

To demonstrate the procedure for applying correction 
factors, a sample welding scenario is presented to calculate 
the width of the 800°C isotherm during welding of AISI 1010 
carbon steel with no preheat. Recommended welding parameters 
for GMAW of carbon and low alloy steels using 100% CO2 
shielding gas from the Lincoln GMAW welding catalogue have 
been selected for this example [16]. Parameters for 3 mm plate 
and 0.9 mm diameter electrode are: 21 V DC+, 0.5 m/min travel 
speed, and approximately 160 A. The arc effi ciency for this 
process has been cited as 85% [17]. Relevant material data for 
AISI 1010 at 300 K include  a = 18.8*10-6 m2/s and k = 63.9 
W/mK [18]. 

The fi rst step using this approach is to determine the  value 
for the particular problem, which is done using Equation (11).  
The value of   was calculated to be 0.492. 

(11)

Since this value is lower than one, advection is the 
dominating phenomenon. Equation (23) is used to calculate 
the estimate of isotherm width , which is 5.520 mm for this 
example. 

(23)

The correction factor for low T* values,  (T*), is found 
using Equation (36) and the calibrated constants in Table (1). 

 (T*) is shown to be 0.818 for a T* value of 0.492.
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3. Solve approximate problem considering only dominant 
factors

4. Check for self-consistency
5. Compare predictions to “reality”
6. Calibrate predictions

The MRC approach was applied to determine the maximum 
isotherm width from Rosenthal’s thick plate solution for a point 
heat source (Equation (2)). Through a series of non –dimensional 
transformations, a set of two independent dimensionless groups 
were identified that completely characterized the maximum 
width of any isotherm (x*, y*). Two regimes for the dimensionless 
dependent group T* were present based on the dominant physics 
governing system behaviour in the regime. At low values of T* 
(T* << 1), advection was dominant, and at high T* (T* >> 1)  
conduction controlled maximum isotherm width. Considering 
the isotherm shape difference in the respective T* regimes, two 
scaling laws, one for each regime, were derived, which captured 
the exact isotherm width as a function of  T*. The results of 
these derivations are shown in Equations (24) and (30) for low 
and high T* respectively. The developed asymptotic expressions 
were based only on process variables that are typically known 
prior to welding allowing them to be used for predictive purposes 
prior to experimental trials. 

As part of the MRC methodology, correction factors were 
derived to ensure an exact match of the asymptotic expressions 
to the exact solution for isotherm width for both  regimes. 
The derived factors were also estimated as power laws, which 
depended only on  and 3 scaling constants. The values of the 
constants were chosen to minimize the maximum error between 
the exact and estimate solutions for isotherm width. Theses 
calibrated correction factors yielded a maximum error of less 
than 0.8% demonstrating an excellent agreement between the 
asymptotic expressions and actual solution for any isotherm. 
An example problem using tabulated welding parameters for a 
GMAW bead on plate weld was performed to demonstrate the 
straight forward application of the developed expressions to a 
real world welding problem. 

Overall, the isotherm width problem shows that the MRC 
approach can be used to tackle complex welding problems in 
a formal way. It is reasonable to believe that this methodology 
can be successfully applied to more complex, multicoupled, 
multiphysics systems.
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