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Abstract: Automotive industries are trying to use new light materials for structural parts 
of vehicles. However, the steels are being the best manufacturing material option in the 
automotive industry. One of the advanced steels commonly used due to the high mechanical 
properties is the Dual Phase Steel (Ferritic-Martensitic). Therefore, the welding process is 
still very important and a matter of improvement. The present work shows the design of 
an experimental matrix using the Taguchi method with the optimal parameters to apply 
in the spot welding process (RSW) of a DP-290 steel; the metallographic characterization, 
the microhardness and the Peel tests were also carried out in each specimen. The results 
determined that the lower intensity of current and a medium pressure for a longer time the 
better resistance to tearing, due to the microstructural changes in the specimens.

Key-words: Dual phase steel; RSW; Ferritic-martensitic microstructure; Mechanical resistance 
improvement.

Optimización de los Parámetros: Fuerza (F), Tiempo (t) e Intensidad de 
Corriente (I), en el Proceso de Soldadura RSW de Chapas de Acero DP-290 
Empleando el Método de Taguchi
Resumen: Las industrias automotrices están tratando de emplear nuevos materiales 
ligeros para elementos estructurales de los vehículos. Sin embargo, los aceros continúan 
siendo la mejor opción para la manufactura en la industria automotriz. Uno de los aceros 
avanzados comúnmente usado por sus buenas propiedades mecánicas es el acero Doble Fase 
(Ferrita-Martensita). Por tal motivo, el proceso de soldadura empleado es muy importante 
y sigue siendo motivo de mejora continua. El presente trabajo muestra el diseño de una 
matriz experimental empleando el método de Taguchi con los parámetros óptimos para ser 
aplicados en el proceso de soldadura de puntos por Resistencia (RSW) de un acero DP-290; 
en cada probeta se realizó la caracterización metalográfica, la microdureza y los ensayos de 
desgarre. Los resultados obtenidos determinaron que una menor intensidad de corriente y 
una presión moderada junto con mayores tiempos de soldeo producen una mejor resistencia 
al desgarre, debido a los cambios microestructurales de las probetas.

Palabras clave: Acero doble fase; RSW; Microestructura ferrítica-martensítica; Mejora de 
la resistencia mecánica.

1. Introduction

The assembling of metallic pieces to the manufacturing of automotive vehicles 
requires the resistance spot welding process (RSW) to join them. These assembles are part 
of the chassis and some other important structural elements of the vehicle. The advanced 
high strength steels (AHSS) are used as part of the vehicle, which combine strength and 
ductility through the phase transformation induced by deformation and solid solution 
hardening, resulting in a good strength-weight relationship. The Dual Phase (DP) steel 
is one of the most common AHSS used in the industry due to its good formability with 
relatively high strength, continuous performance followed by a rapid hardening, low yield 
ratio in tensile strain and non-aged behavior at room temperature [1].
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During the joining in RSW process, metal coalescence occurs on the contact surface due to the heat generated 
at the joint produced by the resistance to the flow of an electric current (I). The contact between the surfaces occurs 
when a force (F) is applied during and after the flow of the current, which in turn produces the forging of the weld 
metal. The process is completed within a specific time cycle (t) [2]. These parameters involved in the RSW process 
affect the final quality of the welded joint, as demonstrated in the work carried out by Zhang et al. [3] where spot 
welding of AHSS steels is greatly influenced by the strength of the electrode; therefore, the optimization of the 
welding process by resistance points for a DP-290 steel was carried out by predicting the welding parameters as 
accurately as possible, without consuming long periods of time, materials and effort in an excessive way through 
the implementation of the Taguchi’s methodology.

The Taguchi’s method has been widely used in recent decades to optimize the quality and reliability of the 
manufacture of materials or finished products through the optimization of input parameters to the process [4]. 
The technique uses a design of orthogonal matrices to identify the optimal configuration of the parameters, which 
is insensitive to the variation and the effects caused by noise in the process [4]. The method reduces significantly the 
number of experiments required with parameters involved and identifying with certainty the statistical importance 
of those parameters on the quality of the resulting weld [5]. In the analysis, the Signal/Noise ratio (S/N) is used 
to judge quality in three different ways: lower is better, higher is better and nominal is better depending on the 
need for response to be seek. In the research work of Esme Ugur [6] optimization of the parameters of the RSW 
process for SAE 1010 steel was studied using the Taguchi method. The results showed that the increase in the 
welding current and the applied force are fundamental factors controlling the mechanical resistance in the joint, 
concluding that the Taguchi method is effective in the optimization of the welding parameters.

Eisazadeh et al. [7] determined that the quality of welding is controlled by the nugget of welding, and 
similarly, Thakur et al [2] states that the best way to judge the RSW quality is by the size of the nugget, the Heat 
Affected Zone and the strength of the joint; additionally, the destructive Peel test was used with a variant that is 
not commonly implemented in this test.

In the common Peel test (Figure 1) the objective is to destroy the specimen in such way that the quality of the 
joint could be verified qualitatively. The criteria are to identify where the tear occurs and to deduce whether the 
base metal was affected by the welding process, or if it occurs in the nugget (joint of low quality). As a variant of 
the Peel test, a universal machine was used to apply and quantify the tensile force (F) required to tear the nugget. 
The quantified force (F) was used as a response to the Taguchi method and measure the quality of the welded joint.

Figure 1. Steps to carry out the Peel test: (1) Hold of the specimen; (2) Bend of the specimen; and (3) Tear of the 
specimen.

2. Materials and Methods

2.1. The RSW welding equipment

The invariability and repeatability of the RSW experiments, has an important role in this study. The standardization 
of the welding parameters such as force (F), time (t) and current intensity (I) was necessary. The RSW machine 
was semi-automated and a graphical interface was integrated to program several cycles of force, time and current 
intensity, Figure 2. The conditioning of the welding machine allowed to control the four basic phases in the RSW 
process: i) Squeeze Time; ii) Weld time; iii) Hold time; and iv) Off time. In addition, test data were acquired in real 
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time for further analysis. The used caps were dome-shaped tip, offering a closer approach to the flat work surface. 
The nominal chemical composition is Cr-0.8%wt. and Cu, with excellent mechanical properties, used to weld low 
carbon steels, even cold and hot rolled.

2.2. Base material as supplied-condition
The steel plates used in the study were of DP-290 steel and three clusters of 10 mm x 10 mm x 1.3 mm were 

enabled. These samples were prepared to be characterized by Optical Microscopy (MO) and Electronic Scanning 
Microscopy (SEM) in as supplied condition. An optical microscope OPTIKA model M-789 was used and the specimens 
were etched with Nital-4 by immersion for ten seconds based on the ASTM E407 standard [8]. To complement the 
DP-290 steel analysis as supplied conditions, a JEOL model JSM-6400 scanning electron microscope was also used. 
The SEM uses an electron beam instead of light as a conventional microscope does. The technique involves the 
projection of electrons accelerated through the vacuum and condensed by an electric field, the beam is deflected 
on a point by electromagnetic coils, so they perform a sweep in the area to be studied, when the beam hits the 
sample, secondary electrons, X-rays and elastic electrons are generated.

The hardness values were obtained by using the Rockwell A scale with a load of 60 kg in a Wolpert equipment 
model D-6700 Ludwigshafen/Rhein. Then, 15 indentations were made in the sample to obtain an average value 
of the Rockwell-A hardness.

2.3. The Taguchi’s methodology
To optimize the number of possible combinations between the variation of the current intensity (I), force (F) 

and time (t) parameters in the RSW process, an orthogonal L25 design was used following the steps of the Taguchi 
method, which allows to use a synthesized quantity of experiments taken from the original matrix (number of 
possible combinations). Taguchi method ensures that the results obtained by the tests or experiments are concise 
without rejecting their variability [9]. Therefore, the method provides a robust design by analyzing the set of 
conditions and their interactions of the parameters of the known process.

In addition, the method establishes the design factors that can be controlled, looking the best level to 
operate the parameters in the experimentation with the samples for the RSW through the analysis of the S/N ratio. 
The optimal factors are shown in Table 1 with their respective levels. Most of the research works normally use 
a maximum of four factors and choose five levels. It is possible to use a greater number of factors and levels for 
better accuracy, but it increases and complex the data analysis.

Figure 2. General diagram of the experimental set up and graphical interface.

Table 1. Factors and variations in the generation of the experimental matrix performed.

Level Pressure
(MPa) Current Intensity (A) Time (ms)

1 0.69 3,500 1,600
2 0.72 4,000 1,650
3 0.76 4,500 1,700
4 0.79 5,000 1,750
5 0.83 5,500 1,800
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The orthogonal array or design matrix L25 was defined (as shown in Table 2) for the RSW process performed. 
The quantitative factors of the orthogonal arrangement are treated as qualitative by coding the levels.

Table 2. Orthogonal design L25 used in the experiment.

Specimen Pressure (MPa) Current Intensity(A) Time (ms)

1 0.69 3,500 1,600
2 0.69 4,000 1,650
3 0.69 4,500 1,700
4 0.69 5,000 1,750
5 0.69 5,500 1,800
6 0.72 3,500 1,650
7 0.72 4,000 1,700
8 0.72 4,500 1,750
9 0.72 5,000 1,800

10 0.72 5,500 1,600
11 0.76 3,500 1,700
12 0.76 4,000 1,750
13 0.76 4,500 1,800
14 0.76 5,000 1,600
15 0.76 5,500 1,650
16 0.79 3,500 1,750
17 0.79 4,000 1,800
18 0.79 4,500 1,600
19 0.79 5,000 1,650
20 0.79 5,500 1,700
21 0.83 3,500 1,800
22 0.83 4,000 1,600
23 0.83 4,500 1,650
24 0.83 5,000 1,700
25 0.83 5,500 1,750

The results of the maximum resistance to tearing of each specimen are used as a response variable for the 
optimization of the process parameters, using the case larger is better of the Taguchi method. For the larger is 
better, Equation 1 [10] is used:

log 2
n
i y

1 110 1
N

η ∑= − = 	 (1)

The use of the logarithm makes the response as linear as possible, while the negative sign is to maximize the 
S/N ratio. It is multiplied by 10 to get the product in decibels. This will result in the combination of the welding 
parameters (F, I, t), and the highest strength in the welded joint will be achieved. To complement the Taguchi’s 
methodology it is necessary to use the Analysis of Variance (ANOVA) technique, which allows to identify the 
parameters with significant effect on the quality of the weld nugget.

2.4. RSW welding process and the Peel test of the welded nugget

For the morphological analysis of the microstructure present in different areas of the nugget, the analysis via 
optical microscopy was used to take the corresponding images. On the other hand, the Peel test and its required 
tear force (F) was measured by an INSTRON universal model 1195R machine. Figure 3 shows the preparation of 
the specimens for the Peel test, so that the force (F) can be quantified before the nugget is separated by tearing. 
The ASTM D1876 [11] standard was implemented at a speed of 15 mm/min by using a 10 t load cell.

The microhardness of the welded DP-290 steels were obtained with a micro durometer MITUTOYO 
model MVK-HVL, using the Vickers scale with a load of 500 g (HV), then 36 indentations were made transversely 
in the different zones presented in the nugget, as shown in Figure 4.
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3. Results and Discussion

Figure 5 shows that the base material has fine and elongated grains due to the remnant heat rolling effect, 
characteristic on DP steels. The clear areas are composed by the ferritic matrix and islands of martensite are 
distinguished (dark areas) in the grain boundaries. To have a better certainty about the morphology of the present 
phases in DP steels, some micrographs were obtained with the SEM at 4000x.

In the micrograph of Figure 6, the ferritic phase can be identified as the gray color zone with flat and continuous 
morphology; and the martensite can be seen in the ferritic grain boundaries with a different morphology. The image 
also shows small and bright particles, which can be some kind of carbide.

The hardness scan of the DP-290 steels as supplied condition was carried out on the HRA scale. The results 
are shown in Figure 7, where a homogenous hardness distribution with an average value of 54 HRA is observed.

The RWS process was carried out using the variation of the parameters established in the orthogonal 
arrangement considered adequate by the Taguchi’s methodology. Subsequently, the Peel test was performed on 

Figure 3. Placement of the specimens to perform the Peel test.

Figure 4. Transversal microhardness profile on the welding nugget [12].
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Figure 5. DP-290 steel micrograph of the: (a) transversal area; and (b) longitudinal area.

Figure 6. Grain morphology of DP-290 steel obtained by SEM at 4000x.

Figure 7. Average results of the hardness test in DP-290 steel in as supplied condition.

the 25 specimens, Figure 8a shows the maximum load value of each specimen before tearing of the nugget by the 
graph and in Figures 8b and 8c it is observed how the peel test was carried out. From the 25 specimens tested, 
four of them showed high tensile resistance and appropriate microstructural and metallurgical conditions in the 
weld nuggets.
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The results of samples 3 and 11 showed the highest load values of tear resistance. The results of sample 12 was 
discarded despite to have high resistance due to some visible defects in the weld nugget. Figure 9a shows the 
tear that occurred in specimen 3, which supported a maximum load (F) of 1,647 N. For this specimen, the joint 
was carried out with a current intensity (I) of 4.5 kA, a pressure of 0.69 MPa and a time (t) of 1,700 ms. The tear 
was located in the grain coarsened area of the heat affected zone (HAZ), which represents a normal behavior due 
to lower hardness due to the decrease of percentage of martensite. In Figure 10, the area between the sections 
(c) and (e) it is distinguished a tight heat affected zone (HAZ), but it showed impoverished mechanical properties 
compared to the fusion zone.

Figure 8. Results of the Peel test: (a) Maximum load measured; (b) Start of the Peel test; and (c) Tear of the weld joint.

Figure 9. Experimental results of the specimen 3: (a) Tested sample by peel method with tear in the welded nugget; 
and (b) Graph Load(N) vs. Elongation (mm), of the test specimen.

Figure 10. Macrostructure at 20X and microstructures at 500x of diverse zones of the weld nugget corresponding 
to the specimen 3: (a) FZ; (b) CG-HAZ; (c) FG-HAZ; (d) IZ-HAZ; (e) SCZ-HAZ; and (f) BM.
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The specimen 11 stand a maximum load of 1,665 N, this is the maximum resistance to tearing effect obtained 
in the present research project, as shown in Figure 11b. The specimen was welded with a current intensity (I) of 
3.5 kA, a pressure of 0.76 MPa and a time (t) of 1,700 ms. The fracture shown in Figure 11a, is located in the HAZ, 
even when it has a smaller HAZ length than the HAZ length of specimen 3.

Figure 11. Experimental results of the specimen 11: (a) Tested sample by peel method with tear in the welded 
nugget; and (b) Graph Load(N) vs. Elongation (mm), of the test specimen.

The specimen 3 hold out a lower load than the specimen 11. This was due to the the specimen 3 had a larger 
HAZ length (2.79 mm) than the HAZ of the specimen 11 (2.55 mm). The difference in the HAZ length can be seen 
in Figures 13 and 10, particularly between the zones (c) and (e). The difference was produced by the intensity of 
current (I) applied to the specimens, with the greater one implemented in specimen 3 causing a greater contribution 
of heat input (HI) to the process. Figure 12 shows the region affected by the contribution of heat around the nugget, 
highlighting more HAZ in the nugget of the specimen 3. On the other hand, when graphs of Figures 9b and 11b 
are compared, it is distinguished that the HAZ elongation occurred in the specimen 11 related to having a lower 
HAZ length and apparent uniform HAZ temperature distribution of welded nugget.

Figure 12. Weld nuggets and their Heat Affected Zones of specimen 3 and specimen 11.

Figures 10 and 13 show the microstructural changes occurred in the nuggets of specimens 3 and 11, divided 
into several areas of importance. Each literal marks a weld zone based on the following classification: a) Fusion 
zone (FZ); b) Coarsed-grain zone (CG-HAZ); c) Fine-grain zone (FG-HAZ); d) Intercritical zone (IZ-HAZ); e) Subcritical 
zone (SZ-HAZ); and e) Base metal (BM). Columnar grains oriented to the extraction of heat produced by the cooled 
copper electrodes are presented in both specimens 3 and 11, Figures 10a and 13a. The cap-plate surface contact 
produces a fast cooling which results in the formation of martensite, acicular ferrite and Widmanstatten ferrite.

Figure 10c shows finer grains with good mechanical properties, but the effect of overheating with a partial 
melt generates changes in the morphology of the grains having presence of acicular dispersed ferrite, therefore, 
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this area has a lower hardness to the of the ZF. Passing from zone (c) to zone (d) it is noted that the martensite is 
finest because less heat was generated in that part during the welding process.

Analyzing the area (b) of both Figures 10 and 13 can be observed a grain growth due to the high temperature 
level reached in the FZ. However, the Figure 13 shows a better defined metallographic structure of weld nugget, while 
Figure 10c shows a little disproportionate weld nugget area, because it was applied a higher current intensity (I).

In Figure 13d a microstructure with ferritic and martensitic phases is shown with the difference that the 
grains are finer than of those of Figure 10d.

The stack of data of the maximum load (F) resisted for each specimen were recorded, the optimization of the 
parameters of the process was carried out using the Taguchi method by computational software that indicated an 
optimal configuration according to the Equation 1 for S/N ratio. It is shown in Figure 14 that the optimal conditions 
are given by level 3 of variable 1, level 1 of variable 2 and level 5 of variable 3, these are the parameters of the 
welding process that are statistically significant. Analyzing the orthogonal arrangement is observed that the optimal 
conditions are: 0.75 MPa of pressure, 3.5 kA of current and 1,800 ms of welding time, these values are close to 
the parameters used for the specimen 11, which effectively gave the highest value of resistance to tearing without 
showing some defect.

Figure 13. Macrostructure at 20X and microstructures at 500x of diverse zones of the weld nugget corresponding 
to the specimen 11: (a) FZ; (b) CG-HAZ; (c) FG-HAZ; (d) IZ-HAZ; (e) SCZ-HAZ; and (f) BM.

Figure 14. Graphical estimation to select the optimal RSW welding parameters (for a maximum peel resistance).

Several authors agree with the fact that welding current intensity is the main factor affecting the tensile 
strength, while welding time is the second factor [13]; however, in some other works it has turned out that the 
most significant parameters within the RSW welding were: first, the current intensity (I) and second, the applied 
force (F) by the caps [6]. Table 3 shows the results of the analysis of variance applied to the present research work. 
The final observation indicates that using the same base material DP-290 steel, the main factor is the current 
intensity (I) and the second factor of importance is the applied force (F) to the base material. The factor with 
the highest contribution percentage having a small variation will have a great influence on the output response.
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The microhardness profiles (Vickers) performed to the specimens 3 and 11 in as-welded conditions are 
presented in Figure 15, following the scheme presented in Figure 4 which shows a measure diagonally through 
the weld nugget.

Table 3. Analysis of variance (ANOVA) applied to the welding parameters.

Factor Degrees of 
freedom Level Sum of 

squares Square medium F Contribution (%)

Force (F) 4 5 SSA 3.90 SCA 398523.63 0.0003531 33.82
Intensity (I) 4 5 SSB 5.39 SCB 398528.09 0.0004872 46.67

Time (t) 4 5 SSC 2.25 SCC 398518.66 0.0002036 19.50
SST 11.55

Figure 15. Vickers microhardness profiles of specimen 3 (dashed line) and to the specimen 11 (solid line).

The highest hardness value is found into the FZ of the specimens analyzed, obtaining an average value of 
395 HV for the specimen 11. This is due to the high content of alloying elements present in DP steel, and the 
high cooling speed provided by the cooled caps. The FZ presents a hardness with an approximate value of twice 
the hardness presented in the BM, the hardness value is achieved by the concentration of martensite. The HAZ 
presents a decrease in hardness because the percentage of ferrite increases with a grain refinement in that area, 
suggesting that the hardness would be higher; however, the segregation of the alloying elements towards the 
center of the nugget leaves the HAZ impoverished, therefore its hardness is lower. Near the base metal is the 
subcritical zone, which is a tempering zone where the original martensite presented in the DP steels undergoes a 
partial decomposition due to the effect of temperature, producing a decrease of hardness value, recovering to the 
base metal without tempering. The graph of Figure 15 shows asymmetry in the microhardness record of the HAZ 
for both samples analyzed; in Figures 10 and 13 can be found that the HAZ does not have the same extension or 
the same structural changes in the left zone of the nuggets compared with the right zone. A finer grain is found 
on the left side of both specimens and on the right side of the image there is no evident transition marked as in 
the microstructure on the left side. Other reason why the anomaly may occur is due to the type of electrode used 
in the experimentation or the clamping of the specimens.

4. Conclusions

1.	The proper control of the RSW parameters result in different microstructures, which are related to mechanical 
properties presented in the RSW nugget;

2.	At higher current intensity, the heat input increases and generates a HAZ of greater extension and lower 
hardness;
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3.	The lower the pressure applied to the plates when the current passes through them, the greater the heat 
generated, since the contact resistance will increase;

4.	The optimal parameter obtained by using the Taguchi method, agrees with the specimen that withstood the 
highest load and had the best microstructural conditions;

5.	A lower current intensity and medium pressure for a longer time generates a better tear resistance, therefore, 
a martensitic-ferritic microstructure is generated due to the rapid heat extraction in the RSW process.
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