Junho, 2000 An. Soc. Entomol. Bragib(2) 189
FORUM

Examining Plant-Parasitoid Interactions in Tritrophic Systems

ConsueLo M. DeE Moraes, W. J. LEwis anD JaMES H. TUMLINSON
CMAVE-USDA/ARS, P.O. Bx 14565, GIiNesviLLE, FL 32604, USA

An. Soc. Entomol. Brasil 29(2): 189-203 (2000)
Examinando Interacdes Plantas - Parasitéides em Sistemas Tritr6ficos

RESUMO- A demonstragao de que os parasitdides séo atraidos pelos compostos
volateis liberados pelas plantas, em resposta ao ataque dos insetos herbivoros,
gerou consideravel interesse nos Ultimos dez anos. A liberacdo dos compostos
volateis pelas plantas ocorre nao somente em resposta aos danos causados aos
seus tecidos, mas ela é também, especificamente, iniciada pela exposigdo as
secrec¢Oes salivares dos herbivoros. Alguns compostos volateis sdo armazenados
nos tecidos vegetais e liberados no momento em que o dano ocorre, outros séo
induzidos pelo dano causado pelo herbivoro e séo, geralmente, liberados, ndo
apenas pelo tecido lesado, mas também pelas folhas ndo atacadas. Desse modo
o dano causado em somente algumas folhas, resulta numa resposta sistémica e
na liberacdo de compostos volateis por toda a planta. Novas evidéncias sugerem
que os compostos volateis induzidos pelos insetos herbivoros, além de facilmente
detectaveis e de serem indicadores seguros da presenca de herbivoros, podem
ainda, transmitir informacao especifica, que permite aos parasitdides
discriminarem a longa distancia, espécies de herbivoros muito préximas.
Daremos aqui uma visdo geral dos desenvolvimentos mais recentes na
investigagdo das interagfes plantas-parasitoides.

PALAVRAS CHAVE: Insecta, interacdes tritroficas, parasitéides, compostos
volateis.

ABSTRACT - The demonstration that parasitoids are attracted to volatile com-
pounds released by plants in response to herbivore feeding has generated a great
deal of interest over the past ten years. The release of volatile signals by plants
occurs not only in response to tissue damage but is also specifically initiated by
exposure to herbivore salivary secretions. Although some volatile compounds
are stored in plant tissues and immediately released when damage occurs, oth-
ers are induced by herbivore feeding and released not only from damaged tissue
but also from undamaged leaves. Thus, damage localized to only a few leaves
results in a systemic response and the release of volatiles from the entire plant.
New evidence suggests that, in addition to being highly detectable and reliable
indicators of herbivore presence, herbivore-induced plant volatiles may convey
herbivore-specific information that allows parasitoids to discriminate even
closely-related herbivore species at long range. Here we give an overview of
the recent developments in the investigation of plant-parasitoid interactions.

KEYWORDS: Insecta, tritrophic interactions, parasitoids, plant chemicals,
host location.
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In nature, trophic relationships among or{Godfray 1994). In this review | present an
ganisms within a community rarely, if ever,overview of the recent work on one impor-
consist only of simple food chains. Moretant aspect of the plant-herbivore-parasitoid
commonly, they comprise an extensive welsystems, the interactions between plants and
of interactions extending across severaparasitoids, and discuss the importance of
trophic levels. The trophic relationships beplant-produced cues for parasitoid foraging
tween plants, insect herbivores, and theiand host location.
parasitoids provide a good example of these
complexities. These tritrophic interactions Plant-Insect Tritrophic Systems
occur within a spatially diverse and dynamic
physical and chemical environment and in-  Until recently most of the theory and re-
clude all the various aggressive and defensivearch on plant-insect interactions was fo-
interactions among trophic levels (includingcused on plant-herbivore interactions or on
morphological, behavioral and physiologicalthe interactions between plants and
relationships) as well as the inter- and intrapollinators. But, as Priat al.(1980) pointed
specific interactions within each trophic level.out, any comprehensive discussion of plant-
Such interactions are often tightly interwoverinsect relationships must also address the third
and highly interdependent. trophic level.

One well-documented component of this  The response of plants to herbivory can
interdependence is the release of volatile contee quite complex and may involve traits that
pounds from plants attacked by insect herbivallow plants to escape, defend or tolerate her-
ores (Fig.1). These volatiles are used as cubs/ore attack (Rausher 1992). Plants employ
by natural enemies of the herbivores to locateumerous morphological and physiological
their host or prey (Dickeet al. 1990, defenses against herbivory. The majority of
Takabayashket al. 1994, Turlingset al. attention has been given to direct chemical
1990a,b, 1991a,b, De Moraesal, 1998). defenses including toxins, repellents,
Thus, potential competitive advantages exisantifeedants and digestibility reducers and to
for plants that produce more effective chemimorphological defenses such as trichomes,
cal signals, for parasitoids that employ suclsurface waxes, and tough foliage (see Smith
signals more efficiently, and for herbivores1989, for a historical review). In addition,
that minimize the plants’ response. Herbivplants rely on indirect defenses that facilitate
ores that defend themselves from parasitoitiop-down” control of herbivores mediated by
attack by sequestering toxic defense conparasitoids, predators, and pathogens that ex-
pounds produced by plants provide a simiploit the herbivores as hosts or prey (i.e., ex-
larly complicated example of ecological in-trinsic defenses in Price 1986).
terdependence (Barbosa and Saunders 1985, Plant protection by natural enemies is well
Malcolm and Zalucki 1996). documented and has been manipulated in the

Despite, and often because of, theidevelopment of biological control strategies
tritrophic complexities, plant-herbivore- in many crops (Dicke & Sabelis 1988,
parasitoid systems are of great interest to ré/hitman 1994, see DeBach & Rosen 1991
searchers in evolutionary biology, behaviorafor a historical review). Plants are well placed
and community ecology and the applied scito influence the efficiency of parasitism and
ence of biological control. Among other predation and they mediate humerous inter-
things these systems present an excellent ogetions between entomophagous arthropods
portunity to explore the role of alternativeand herbivores. Their structures and prod-
behavioral strategies in parasitoid reproducdcts often supply essential resources for
tive success because there appears to be a vparasitoids and predators. In addition chemi-
direct link between many aspects of parasitoidal and morphological plant attributes can
reproductive ecology and relative fithessaffect the efficacy of biological control agents
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Figure 1. Volatile compounds are released by plants in response to insect feeding trigged by an interaction of eliditersréom t
secretions of insect herbivores with damaged plant tissue. These volatiles are used by some parasitoid wasps to ¢tmtste their h'S
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by influencing their abundance, survival, devolatile allelochemicals emitted by plants as
velopment time, fecundity, and rate of attacklong range cues for parasitoids of insect her-
Plants also influence the quality ofbivores (e.g., Elzeat al. 1983, 1984, Vinson
parasitoids’ herbivorous hosts by determinet al. 1987, Navasero & Elzen 1989, Martin
ing the quality of the host's nutrient intakeet al. 1990, Turlingset al. 1991a,1991b,
(Vinson & Barbosa 1987). Several studiesl995, Udayagiri & Jones 1992, 1993, McCall
have shown that secondary compounds iret al. 1993, Ngi-Songet al. 1996). Some
gested by the host can negatively affecparasitoids use volatiles emitted by undam-
parasitoids (Vinson & lwantsch 1980, Duffeyaged plants to locate the habitat and possibly
et al. 1986, Rowell-Rahier & Pasteels 1990the microhabitat of their host (e.g., Elzen
Kester & Barbosa 1991). On the other handl. 1983, Maet al. 1992, Ngi-Songet al.
secondary compounds can be positive t€996). However, there are distinct advantages
parasitoids. Toxins and low nutritional qual-for parasitoids that can detect, differentiate,
ity may weaken the herbivore’s immune sysand respond to semiochemicals that distin-
tem, affecting its capacity to defend againsguish plants damaged by their host from the
parasitoid eggs (Salt 1964, van den Boschurrounding environment.
1964, Vinson & Barbosa 1987). For exam- Plant volatiles released in response to
ple, the ability ofPieris rapae(L.) to encap- mechanical damage by herbivores, including
sulate the eggs @otesia glomeraté_.) de- green-leaf volatiles and constitutive second-
pends on the species of plant which the hostry compounds, are known to be attractive to
herbivore has fed upon (Benrey & Dennovarious parasitoids (Lecomte & Thibout 1984,
1997). Whitman & Eller 1990, Kester & Barbosa
1991, McAuslaneet al. 1991, Udayagiri &
Plant Signaling Jones 1992, 1993, Steinbeey al. 1993,
Mattiaci et al. 1994). \olatiles released in
In order to exploit arthropod herbivores,response to herbivore feeding are generally
natural enemies must be able to locate smaligliable indicators of herbivore presence and
highly dispersed targets within a complex spacan potentially bring parasitoids in close prox-
tial and chemical environment. Moreover,imity to their hosts.
herbivores have evolved numerous adapta- Wind tunnel experiments witotesia
tions to avoid being discovered and attackedlomerata(L.), a parasitoid of several pierid
(Vet & Dicke 1992). Members of the third caterpillars, demonstrated that this parasitoid
trophic level often rely on information origi- is attracted to artificially damaged cabbage
nating from plants to locate hosts. Plants prdeaves (Steinbergt al. 1993, Mattiaciet al.
vide both olfactory and visual signals used a4994). C. glomeratafemales prefer artifi-
foraging cues by parasitic and predaceous atially damaged leaves over undamaged
thropods (Nordlunét al. 1988, Martinet al.  leaves, but host-damaged leaves, even in the
1990, Lewiset al. 1990, Maet al. 1992, absence of hosts and host by-products, are far
Powell & Wright 1992, Wackers & Lewis more attractive than artificially damaged
1994, Dicke 1994, Godfray 1994, Whitmanleaves (Steinbergt al. 1993, Mattiackt al.
& Nordlund 1994, Turling®t al. 1995). 1994 De Moraes & Lewis, 1999). In a study
Apart from pheromones, the chemicalwith two parasitoidsCardiochiles nigriceps
compounds originating from herbivores argVier.) andMicroplitis croceipes(Cresson),
at most slightly volatile and can only be de-De Moraes and Lewis (1999) demonstrated
tected at close range (Vet & Dicke 1992)that these two species both depend primarily
Thus parasitoids often rely on habitat cues foon herbivore-induced signals although these
long range searching (Salt 1935, Doutt 1964wo species demonstrate a significant plant
Vinson 1975, 1981, van Alphen & Vet 1986).species preferenc€. nigricepsfor tobacco
Numerous studies document the key role adind M. croceipesfor cotton. In choice ex-
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periments the odor of damaged plants of thanformation regarding the identity or devel-
less-preferred species was more attractive thapmental stage of the attacking herbivore
that of undamaged plants of the preferred spéTurlingset al.1990b, 1993a, Takabayashi
cies. Additional studies with corn, lima beanal. 1995, Duet al. 1996, De Moraest al.
and cotton have demonstrated that plants af€98).
actively involved in the production and release De Morae®t al.(1998) demonstrated that
of chemical cues that guide foragingplant emissions can transmit herbivore spe-
parasitoids (see reviews in Dicke 1994, Stoweies-specific information that is detectable by
et al. 1995, Turlingset al. 1995, De Moraes parasitoids. It was shown that tobacco and
et al. 1998). Turlingset al. (1991a, 1993a) cotton each produce distinct volatile blends
showed that plants actively produce volatilén response to damage by two closely related
chemicals in response to a substance assoberbivore speciesjeliothis virescengFab.)
ated with attacking herbivores. They demonandHelicoverpa zegBoddie). The special-
strated that plants produce chemicals in rést parasitic wasiE. nigricepsexploits these
sponse to damage by larvae of several lepdifferences to distinguish infestations by its
dopteran species and that the females of tHest,H. virescendrom nonhosts The pro-
generalist larval parasitoidCotesia duction by these phylogenetically diverse
marginiventrig Cresson) learn to take advan-plant species and exploitation by parasitoids
tage of the plant-produced volatiles to locat®f highly specific, information-rich chemical
hosts after experiencing these volatiles in asignals, keyed to individual herbivore species,
sociation with a host or host by-products. demonstrates the high degree of sophistica-
When plants are attacked by insect hertion that can exist in plant parasitoid chemi-
bivores (Fig.1), they emit compounds that areal interactions.
not produced in response to artificial damage
(Dicke et al. 1990, Turlingset al. 1990a, De  Biosynthesis of Induced Plant Volatiles
Moraeset al.1998). These herbivore-induced
compounds are emitted not only at the dam- As mentioned above the release of
aged site but also systemically from undamvolatiles in response to herbivory is well docu-
aged tissues (Dicket al. 1990a, Turlings & mented. But little is yet known about how
Tumlinson 1992, Turlingst al. 1995, R6se plants produce and regulate the blend of com-
et al.1996, Corteseret al. 1997, De Moraes pounds released. So far four biosynthetic
et al. 1998). Production and release ofpathways (Fig. 2) have been identified which
volatiles is triggered at least in part byappear to be involved in the production of
substance(s) in the oral secretion of herbiwolatile signals (Paré & Tumlinson 1999). An
ores (Turlingset al. 1993b, Mattiaccet al. outline of the metabolic pathways leading to
1995, Pottinget al. 1995, Alborret al.1997). plant volatile emissions is shown in Fig. 2.
In the case of beet armyworm an elicitor hag he isopropenoid precursor isopentenyl py-
been identified and named as volicitin (Albornrophosphate serves as a substrate for
etal.1997). In cotton, the production of somemonoterpenes and sesquiterpenes, the fatty
volatiles is known to be an active processcid/lipoxygenase pathway generates green
where several terpenoids are synthesixed leaf volatiles and jasmone, and the shikimic
novoin response to insect feeding (Paré &cid/tryptophan pathway results in the nitro-
Tumlinson 1997). gen containing product indole (Mann 1987).
In corn, application of herbivore regurgi- Green leaf volatiles are produced when leaves
tate to artificially damaged sites induced theare damaged, independent of the agent caus-
release of volatiles highly attractive M. ing the damage, and are primarily emitted
croceipesaandC. marginiventrigTurlings & from damaged leaf tissues. They are typically
Tumlinson 1992, Turlingst al. 1993b). In mixtures of G alcohols, aldehydes, and es-
some cases, plant volatiles provide specifiters produced by oxidation of membrane-de-
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rived fatty acids. In contrast, monoterpenespctadecatrienoate conjugated to an amino
homoterpenes, and sesquiterpenes are praeid, this may suggest that the elicitor mol-
duced in response to herbivore damage aretule interacts with the octadecanoid pathway
generally released not only from damaged tisn herbivore damaged plants (Alboet al.
sue but also from undamaged leaves (Turlings997).
et al. 1991a).

In the case of cotton, several mono- Parasitoid Foraging Behavior
terpenes and sesquiterpenes, along with the
lypoxygenase products, are released immedi- For parasitoids, success in reproduction
ately in response to damage. Another set afepends on overcoming the challenges of
terpenoids and indole follow a diurnal pat-habitat identification, host location, host ac-
tern of release with a peak in the middle oteptance, host suitability and host regulation
the day (Loughriret al. 1994). It is impor- (Laing 1937, Flanders 1953, Doutt 1964,
tant to keep in mind that the release of comVinson 1975, Vinsoret al. 1998). As with
pounds is highly variable across plant specieall organisms, the life history characteristics
and varieties and is also sensitive to the spef parasitoids are shaped by natural selection
cies of the herbivore (Dicket al. 1990, (involving key factors such as host ecology
Turlings et al. 1990b,19914a,b, Turlings & and the presence of competing species of
Benrey 1998, Takabayasiial. 1991, Rose parasitoids) acting within a framework of

et al. 1996 & De Moraest al. 1998). phylogenetic constraints (De Moraetal.
1999). To succeed, parasitoids must develop
Elicitors of Plant Volatiles efficient strategies for locating hosts in com-

plicated heterogeneous environments and for

So far two elicitors of plant volatiles have overcoming host defenses and competitors.
been identified in the oral secretions of insecBuch strategies will likely involve exploita-
herbivores. Mattiacet al.(1995) found that tion of numerous cues and foraging tactics at
beta-glucosidase iieris brassicadl.) cat- multiple spatial scales as well as the develop-
erpillars elicits the release of volatiles fromment of behavioral and physiological adapta-
cabbage leaves. The major active elicitor ofions to the internal host environment. Given
the oral secretion of beet armyworm larvaghe complex and dynamic nature of the forag-
was recently identified by Alboret al.(1997) ing environment, behavioral flexibility and the
as (N-[17-hydroxylinolenoyl]-L-glutamine) ability to interpret foraging cues in a context-
and, as noted, was named volicitin. Volicitin,dependent manner are at a premium. Thus it
in both its natural and synthesized forms, inis not surprising that parasitoid behavioral
duces corn seedlings to release the same blepdenotypes are often plastic and that learning
of volatiles induced by herbivore feeding.based on prior experience plays an important
This blend has been shown to be exploited asle in shaping the foraging strategy of an in-
a host location cue by the parasitic wasps thalividual parasitoid (Lewis & Tumlinson 1988,
attack this herbivore. Turlings & Tumlinson 1992).

Despite the identification of these two  Parasitoid foraging efficiency is influ-
elicitors, little is known about the pathway thatenced by the interaction of many sources of
leads to the synthesis and emission of thesariation including (1) genetic variation be-
volatile compounds. It has been suggestetiveen individuals adapted to different forag-
that jasmonic acid, which is produced froming environments (Vet 1983, Draadtal. 1988,
linolenic acid by the octadecanoid signallingHoy 1988, Prevost & Lewis 1990), (2)
pathway, may be involved in the transductiorphenotypic plasticity of individuals allowing
sequence that triggers synthesis of volatilbehavioral adaptation to different hosts or
compounds by plants (Krumet al. 1995). habitats (Lewis & Tumlinson 1988, Wardle
In the case of volicitin, which is an & Borden 1989, Vett al. 1990 Lewiset al.
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1991), and (3) the parasitoids’ physiologicahot reliable indications of herbivore presence
state with regard to non-host resources sudbr identity.
as food, egg load, or mating opportunities The production and release by plants of
(Takasu & Lewis 1993, Jervis & Kidd 1996, specific volatile compounds in direct response
Sirot & Bernstein 1996). Numerous addi-to herbivore feeding (Turlingst al. 1993b)
tional factors, such as climatic conditionsprovides an additional set of cues that are re-
habitat type, and host density (Godfray 1994)jably linked to the presence of the host and
also contribute to the foraging success of natwet are produced in large quantities that in-
ral enemies. crease their detectability. Indeed, such com-
Godfray (1994) recognized three broadounds seem to have been tailored by natural
categories of environmental cues used bgelection to serve as effective host-location
parasitoids to locate hosts: (1) stimuli arisingues for foraging parasitoids and predators.
from the host itself, (2) stimuli indirectly as- Moreover, these signals can have high infor-
sociated with the presence of the host (e.gmation content. De Moraext al. (1998)
odors released by the feeding activity of theshowed that highly specific signals are often
herbivore such as plant allelochemicals antkeleased in response to individual herbivore
mandibular and labial gland secretions), andpecies. Thus, plant-released compounds
(3) stimuli arising from the host’s microhabitatappear to represent the most effective cues
or food plant. Parasitoids’ hosts presumablyor long-range host detection by parasitoids.
have faced continuous selection to avoid de@nce an infested plant is located, cues directly
tection by remaining inconspicuous. This mayor indirectly arising from the host itself be-
be a major constraint on the evolution of longcome more important in short-range host lo-
range, host-searching strategies by parasitoidsition.
and may drive the evolution of indirect search-  While it is generally recognized that ol-
ing strategies, i.e., the exploitation of envifaction is not the only sensory modality em-
ronmental information indirectly associatedployed by natural enemies in locating hosts
with the presence of the host (Vet & Dickeor prey (Vinson 1981, Wackers 1994), few
1992). studies have examined the role of other fac-
The quality of an environmental host-lo-tors in this process. Some investigators have
cation cue depends on its reliable associatiostressed the importance of visual cues for host
with the presence of a herbivore, theand prey finding by natural enemies. Not only
detectability of the stimulus (the ease of stimuelo parasitoids show innate preferences for
lus discovery) (Vegét al. 1995) and the infor- specific visual stimuli but they also are able
mation content of the signal (e.g., its taxoto learn cues that are consistently associated
nomic specificity) (De Moraest al. 1998). with the presence of their hosts (Arthur 1966,
All these characteristics presumably enhanc@/eseloh 1972, 1988yardle & Borden 1989,
searching efficiency and hence fitness @tet Wardle 1990, Mat al.1992 Wackers 1994,
al. 1991, Wackers & Lewis 1994, De MoraesWackers & Lewis 1994).Thus, the role of
et al. 1998). Environmental cues arising di-plant signals in the recruitment of natural en-
rectly from the herbivore (Turlingst al. emies appears to be very complex. Numer-
1990a, Turlings & Tumlinson 1992) may beous intrinsic and extrinsic factors can influ-
highly reliable and taxonomically specific in- ence the quantity and quality of plant signals.
dicators of host presence but are probably
quite difficult to detect because herbivores are Conclusion
minor components of complex environments
and because herbivores have evolved mecha- We are only beginning to appreciate the
nisms to avoid detection by natural enemiesomplexity of the physiological changes that
(Vetetal.1995). In contrast, constitutive plantoccur within plants in response to herbivore
cues are highly detectable but, in general, atack and their effects on tritrophic interac-
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