Preparação de compósitos alumina-mulita de baixo custo via sinterização reativa entre uma argila caulinítica da Paraíba e hidróxido de alumínio

(Preparation of low-cost alumina-mullite composites via reactive sintering between a kaolinite clay from Paraíba and aluminum hydroxide)

S. G. Medeiros¹, R. P. S. Dutra², J. P. F. Grilo³, A. E. Martinelli¹, C. A. Paskocimas¹, D. A. Macedo^{2,*} ¹Programa de Pós-Graduação em Ciência e Engenharia de Materiais, UFRN, Natal, Brasil 59078-970 ²Programa de Pós-Graduação em Ciência e Engenharia de Materiais, UFPB, João Pessoa, Brasil 58051-900 ³Departamento de Materiais & Engenharia Cerâmica, University of Aveiro, Aveiro, Portugal 3810-193 sloany@outlook.com, ricardopsd@gmail.com, grilo.jpf@gmail.com, martinelli.ufrn@gmail.com, paskocimas@uol.com.br, *damaced@gmail.com

Resumo

Este estudo aborda os efeitos do processamento na microestrutura e nas propriedades de compósitos alumina-mulita via sinterização reativa de uma mistura argila caulinítica e hidróxido de alumínio. Amostras prensadas a 40 MPa foram sinterizadas entre 1300 e 1600 °C. As propriedades tecnológicas foram determinadas em função da temperatura de sinterização. A avaliação das fases cristalinas e da microestrutura foi realizada por difração de raios X e microscopia eletrônica. Os resultados indicaram a obtenção de mulita e alumina a partir de 1300 °C. Para sinterizações acima de 1450 °C foram obtidos valores de porosidade aparente inferiores a 0,8% e tensão de ruptura à flexão superior a 40 MPa. Amostras com morfologia bimodal (grãos equiaxiais e alongados) e resistência mecânica de 70 MPa foram obtidas após sinterização a 1600 °C. Este estudo demonstra a possibilidade de preparar compósitos alumina-mulita de baixo custo e com propriedades tecnológicas compatíveis com as de cerâmicas produzidas por companhias com grande atuação no mercado internacional de produtos refratários.

Palavras-chave: caulinita, mulita, alumina, microestrutura, propriedades tecnológicas.

Abstract

This work aimed to evaluate the effects of processing on microstructure and properties of alumina-mullite composites via reactive sintering of a mixture of kaolinite clay and aluminum hydroxide. Cylindrical pellets were pressed at 40 MPa and sintered between 1300 and 1600 °C. The technological properties were determined as a function of sintering temperature. The evaluation of crystalline phases and microstructure was performed by X-ray diffraction and electron microscopy. Structural results indicate the attainment of mullite and alumina at 1300 °C. Apparent porosity below 0.8% and flexural strength higher than 40 MPa were obtained for sintering temperatures above 1450 °C. A flexural strength as high as 70 MPa was obtained after sintering at 1600 °C. This study demonstrates the possibility of preparing low cost alumina-mullite composites with technological properties compatible with those of ceramics produced by companies with large operations in the international market of refractory products. **Keywords**: kaolinite, mullite, alumina, microstructure, technological properties.

INTRODUÇÃO

Mulita $(3Al_2O_3.2SiO_2)$ é um alumino-silicato de grande importância tecnológica comumente obtido por reação no estado sólido (sinterização reativa) entre caulinita $[Al_2Si_2O_5(OH)_4]$ e alumina (Al_2O_3) em temperaturas a partir de 1300 °C [1-3]. A proporção mássica estequiométrica da mulita corresponde a 71,8% de Al_2O_3 e 28,2% de SiO₂, podendo ser obtida em formulações contendo até aproximadamente 74% de Al_2O_3 . Devido ao seu conjunto de propriedades especiais, tais como, alto ponto de fusão (1830 °C), elevado módulo de ruptura, boa resistência ao choque térmico, à erosão e ao ataque químico, e baixo coeficiente de expansão térmica (~4,5 x 10^{-6} K⁻¹), a mulita tem se qualificado como uma das mais importantes cerâmicas refratárias da atualidade.

A obtenção de mulita por sinterização reativa de fontes sílico-aluminosas ocorre por difusão iônica das espécies envolvidas; íons de AI^{3+} difundem-se para o interior das camadas de SiO₂ formadas durante a decomposição da caulinita (> 500 °C), caracterizando a mulitização como um processo lento e termicamente ativado [4-7]. A adição de alumina a uma matriz de mulita tem um efeito positivo nas propriedades mecânicas do compósito, sendo um método atrativo para preparar compósitos cerâmicos de baixa densidade para aplicações estruturais, elétricas (componentes isolantes) e refratárias [8]. Matérias-primas naturais e sintéticas, como argilas, alumina, caulinita e isopropóxido de alumínio, têm sido utilizadas para produzir compósitos alumina-mulita [2, 8, 9].

Neste trabalho, compósitos alumina-mulita de baixo custo foram preparados via sinterização reativa de uma mistura contendo uma argila caulinítica do estado da Paraíba (Brasil) e hidróxido de alumínio (fonte adicional de Al) comercial. O uso de uma matéria-prima natural rica em Si e Al, com boa disponibilidade na Paraíba, torna a rota de preparação usada neste trabalho adequada para a produção em larga escala de compósitos cerâmicos alumina-mulita. Os efeitos da temperatura de sinterização na formação de mulita, na microestrutura e nas propriedades tecnológicas dos compósitos foram discutidos.

MATERIAIS E MÉTODOS

Cerâmicas de alumina-mulita foram preparadas por sinterização reativa de uma argila caulinítica e hidróxido de alumínio. O material argiloso (fonte natural de Si e Al), proveniente do estado da Paraíba (Brasil), apresenta baixo custo e boa disponibilidade local. O hidróxido de alumínio (usado como fonte adicional de alumina) foi adquirido da Synth (Brasil). A argila como recebida foi peneirada em granulometria inferior a 0,074 mm (peneira nº 200 da ABNT), seca em estufa a 110 °C por 24 h e caracterizada por difração de raios X (DRX, Shimadzu XRD-7000), fluorescência de raios X (FRX, Shimadzu EDX-700) e análise termogravimétrica (TG) simultânea com análise térmica diferencial (DTA, Shimadzu DTG-60H). As medidas de DRX foram realizadas usando varredura angular 2θ entre 10° e 70° , passo de 0.02° e tempo de contagem de 2 s/passo usando radiação K α do cobre ($\lambda = 1,5418$ Å) obtida com 40 kV e corrente de filamento de 40 mA. A perda ao fogo foi determinada com base no resultado de TG. Com os resultados de FRX e DRX realizou-se a análise racional da argila. O pó de hidróxido de alumínio foi caracterizado apenas por análise térmica (TG-DTA).

Uma formulação cerâmica foi preparada misturando 33% em massa de argila com 67% em massa de hidróxido de alumínio, correspondendo a um excesso de alumina em relação à composição ideal da mulita estequiométrica (3Al₂O₂.2SiO₂). Essa formulação foi moída por 3 h em moinho de bolas (via úmida: água destilada) usando uma relação mássica material/bolas de 1:2. Os pós secos foram peneirados em peneira nº 35 da ABNT. Corpos cerâmicos retangulares (61 mm x 21 mm x 7,6 mm) foram preparados por prensagem uniaxial a 40 MPa e posteriormente sinterizados entre 1300 e 1600 °C por 3 h em atmosfera de ar. A identificação das fases cristalinas e a caracterização microestrutural de amostras sinterizadas foram realizadas por difratometria de raios X e microscopia eletrônica de varredura (MEV, LEO 1430). As propriedades físicomecânicas foram avaliadas por ensaios de retração linear de queima, absorção de água, porosidade aparente, massa específica aparente e ruptura à flexão em três pontos em máquina de ensaios universal (Shimadzu AG-X 10 kN) usando uma velocidade de 0,5 mm/min.

RESULTADOS E DISCUSSÃO

Caracterização das matérias-primas

O comportamento térmico das matérias-primas (argila e hidróxido de alumínio) é mostrado na Fig. 1. Como pode ser observado da curva de análise termodiferencial (DTA) da Fig. 1a, a argila apresenta um primeiro pico endotérmico entre a temperatura ambiente e aproximadamente 100 °C que pode ser atribuído à eliminação de água adsorvida na sua superfície. Um segundo pico endotérmico próximo a 500 °C está associado ao processo de desidroxilação, característico da transformação da caulinita em metacaulinita. O pico exotérmico entre 990 e 1000 °C é característico do argilomineral caulinita, sendo classicamente atribuído à formação do espinélio Si-Al e sílica amorfa e/ou nucleação da mulita primária (mulita 2:1). A formação da mulita primária ocorre a partir da interação da sílica amorfa com

Figura 1: Curvas de TG/DTA de: (a) argila e (b) hidróxido de alumínio.

[[]Figure 1: TG/DTA curves of: (a) clay, and (b) aluminum hydroxide.]

alumina da caulinita ou da fase espinélio proveniente da metacaulinita [10-12]. A curva termogravimétrica mostra uma contínua perda de massa da temperatura ambiente até cerca de 600 °C. A perda de massa entre 30 e 400 °C está associada a processos de desidratação (eliminação da água adsorvida e interlamelar) e oxidação de matéria orgânica. A acentuada perda de massa entre 400 e 600 °C (> 10%) é devida ao processo de desidroxilação da caulinita, em conformidade com o pico exotérmico observado na curva de DTA. A perda de massa ao fogo calculada a partir da curva termogravimétrica (entre 30 e 1000 °C) foi de 16%. A partir de 1300 °C (fora do limite de detecção do equipamento) ocorre a formação de mulita secundária (mulita 3:2) como resultado da interação da alumina de transição derivada do hidróxido de alumínio com a sílica remanescente da transformação da caulinita [13].

Na caracterização térmica do hidróxido de alumínio (Fig. 1b), um evento endotérmico a aproximadamente 100 °C é referente à desidratação do hidróxido. A curva termogravimétrica indica o fim do processo de decomposição térmica a aproximadamente 800 °C. A principal contribuição para a acentuada perda de massa até 800 °C é a conversão do Al(OH)₃ em uma série de fases de alumina de transição, tais como γ , $\delta \in \theta$. De acordo com a curva de DTA, o pico de transformação de θ -Al₂O₃ a α -Al₂O₃ começa a se formar acima de 1000 °C. A literatura relata que esta transformação de fase ocorre próximo a 1250 °C [14, 15]. Devido à estreita faixa de medida do analisador térmico empregado (30 a 1100 °C), não foi possível observar o pico característico desta transformação de fase.

A caracterização mineralógica da argila é mostrada na Fig. 2. De acordo com o difratograma de raios X, a argila é predominantemente composta pelo argilomineral caulinita, em bom acordo com os resultados de análise térmica, associado às fases acessórias mica e quartzo. A composição química da argila (expressa na forma de percentual dos óxidos constituintes) é apresentada na Tabela I. O elevado

Figura 2: Difratograma de raios X da argila. [Figure 2: X-ray diffraction pattern of the clay.]

Tabela I - Composição química da argila obtida por FRX. [Table I - Chemical composition of the clay obtained by XFR.]

Constituinte	Percentual mássico
SiO ₂ (%)	57,6
$Al_2O_3(\%)$	41,0
K ₂ O (%)	0,7
$Fe_{2}O_{3}(\%)$	0,5
MgO (%)	0,08
Outros (%)	0,12

teor de óxido de silício (57,6%) é devido à presença de caulinita $[Al_2Si_2O_5(OH)_4]$, quartzo (SiO_2) e mica muscovita $[KAl_2Si_3AlO_{10}(OH)_2]$. O óxido de alumínio (Al_2O_3) também está associado à presença do mineral caulinita. O baixo teor de Fe₂O₃ (< 3%) caracteriza a matéria-prima como sendo de cor clara após queima. De acordo com a metodologia de análise racional proposta por [16], a argila contém 86,7% de caulinita, 9% de quartzo e 4,3% de mica. Com base nestes resultados, a argila caulinítica utilizada neste trabalho tem grande potencial para ser utilizada como matéria-prima para a obtenção de cerâmicas refratárias à base de mulita.

Caracterização dos corpos de prova

O difratograma de raios X da Fig. 3 mostra que a mistura argila + hidróxido de alumínio é completamente convertida em mulita (JCPDS 15-0776) e α-alumina (JCPDS 75-1862) após sinterização a 1300 °C por 1 h. Não há evidência de formação de cristobalita ($2\theta = 20.8^{\circ}$), indicando que a alumina reativa (derivada da desidroxilação do hidróxido) reage com a sílica remanescente da transformação da caulinita para cristalizar mulita a temperaturas tão baixas quanto 1300 °C. Isto pode ser atribuído à boa homogeneidade de fase e à alta reatividade química proporcionadas pelas fases de alumina metaestáveis derivadas da calcinação do hidróxido de alumínio. Uma pequena convexidade na região de 20 de 20 a 30° sugere a presença de sílica amorfa. Sainz et al. [17] também relataram a obtenção de cristais de mulita primária (com aproximadamente 300 a 500 Å de tamanho) após queima de uma mistura de caulinita/α-alumina a 1300 °C por 4 h. De acordo com estes autores, a esta temperatura a reação entre caulinita e α-alumina foi limitada, havendo formação apenas de mulita primária. Por outro lado, quando a temperatura de sinterização foi aumentada para 1400 °C observaram a nucleação de pequenos cristais de mulita secundária (~500 Å). A nucleação e o crescimento da mulita ocorrem na interface entre as partículas de Al₂O₂ e SiO₂ por difusão de Al³⁺ e Si⁴⁺ através da rede cristalina. A alumina residual forma diferentes fases cristalinas de alumina (até atingir α -alumina) dependendo da temperatura de sinterização [9].

Os difratogramas das amostras sinterizadas entre 1400 e 1600 °C são apresentados na Fig. 4. A característica amorfa em 2 θ de 20 a 30° diminui com o aumento da temperatura

Figura 3: Difratograma de raios X da amostra sinterizada a 1300 °C.

[Figure 3: X-ray diffraction pattern of the sample sintered at 1300 °C.]

de sinterização, indicando que a formação de mulita reduz a quantidade de fase vítrea rica em SiO₂. Como pode ser observado, não foram detectadas outras fases além de mulita e alumina identificadas na amostra sinterizada a 1300 °C. Os planos de difração (110), (120), (210), (001), (220), (111), (201), (121), (230), (041), (331), (002), (250) e (520) característicos da fase mulita (JCPDS 15-0776) estão presentes a partir de 1400 °C. Em comparação ao difratograma obtido para a amostra sinterizada a 1300 °C, que apresenta apenas uma reflexão de mulita em 20 de 26°, as amostras sinterizadas a partir de 1400 °C exibem duas reflexões, planos (120) e (210), o que é classicamente atribuído à transformação de mulita tetragonal para ortorrômbica (mulita secundária) [18]. Portanto, a mistura argila caulinítica/hidróxido de alumínio usada neste trabalho

Figura 4: Difratogramas de raios X de amostras sinterizadas entre 1400 e 1600 °C.

[Figure 4: X-ray diffraction patterns of samples sintered between 1400 and 1600 °C.]

permitiu obter mulita secundária à mesma temperatura relatada em [17].

As microestruturas dos compósitos alumina-mulita sinterizados a 1400 e 1600 °C são apresentadas na Fig. 5. A amostra sinterizada a 1600 °C (Fig. 5b) apresenta uma

Figura 5: Microestruturas das amostras sinterizadas a (a) 1400 °C e (b) 1600 °C.

[Figure 5: Microstructures of samples sintered at (a) 1400 °C, and (b) 1600 °C.]

Figura 6: Retração linear e porosidade aparente em função da temperatura de sinterização.

[Figure 6: Linear shrinkage and apparent porosity as a function of sintering temperature.]

morfologia bimodal, composta por grãos equiaxiais de mulita secundária (e alumina) e grãos alongados de mulita primária. Estas micrografias evidenciam que ainda há presença de mulita primária (nucleada na caulinita) após sinterização a 1400 °C (Fig. 5a) e que o crescimento de grão (alongado) e teor relativo desta fase diminui com a elevação da temperatura de sinterização, como esperado.

A Fig. 6 apresenta os resultados da retração linear e porosidade aparente em função da temperatura de sinterização. Observa-se que a retração linear aumenta com a temperatura de sinterização até a temperatura de 1550 °C.

Figura 7: Micrografias obtidas por microscopia eletrônica de varredura de superfícies de fratura de amostras sinterizadas a (a) 1400 °C, (b) 1500 °C e (c) 1600 °C.

[Figure 7: SEM micrographs of fracture surfaces of samples sintered at (a) 1400 °C, (b) 1500 °C, and (c) 1600 °C.]

Figura 8: Massa específica aparente em função da temperatura de sinterização.

[Figure 8: Bulk density as a function of sintering temperature.]

Este comportamento de sinterização é principalmente devido ao reduzido tamanho de partícula da caulinita e das fases de alumina de transição. Em altas temperaturas (acima de 1400 °C) o mecanismo de fase líquida (rica em sílica) também contribui para o processo de sinterização e a retração linear atinge 30% a 1550 - 1600 °C. A notável desaceleração na taxa de retração linear em temperaturas mais altas (acima de 1450 °C) pode ser atribuída ao efeito de barreira causado pelo aumento do teor de mulita, estagnando o processo de retração [19]. A progressiva redução da porosidade aparente, sobretudo acima de 1450 °C é um indicativo da alta densificação atingida pela mistura argila/hidróxido, em bom acordo com as imagens de microscopia eletrônica da Fig. 7.

O início da reação entre sílica amorfa e alumina, formando mulita secundária, marca o começo da conversão de Al octaédrico (na alumina) para Al tetraédrico. Isto resulta em uma expansão gradual que balanceia a retração volumétrica devido à sinterização [7]. Como resultado, ocorre uma recuperação gradual do volume e uma pequena diminuição de densidade (expressa como massa específica aparente, MEA) é observada após sinterização a 1600 °C (Fig. 8). A resistência mecânica dos compósitos obtidos neste trabalho aumentou com a temperatura de sinterização, como esperado. Valores de resistência em torno de 20, 45 e 70 MPa foram obtidos para amostras sinterizadas a 1400, 1500 e 1600 °C, respectivamente. O conjunto de propriedades obtidas para as amostras sinterizadas a 1600 °C (70 MPa, absorção de água de 0,09% e porosidade aparente de 0,27%) é compatível como o de cerâmicas comerciais de mulita (Mulcoa 70) produzidas pela C-E Minerals, companhia chinesa especializada em minerais industriais e com grande atuação no mercado de produtos refratários. O teor de alumina presente na mulita foi calculado usando a relação proposta por Ban e Okada [20]. De acordo com estes autores, o percentual molar de alumina (%mol Al₂O₂) da fase mulita pode ser obtido (com uma incerteza de apenas 1,5%) a partir das intensidades dos picos (220) e (111) da mulita, usando a seguinte expressão: %mol $Al_2O_3 = 41,77 \text{ x}$ (I_{220}/I_{111}) + 27,6. No presente trabalho, o valor de %mol Al_2O_3 para a amostra sinterizada a 1550 °C foi de 56%. Sabendo-se que %mol Al_2O_3 na mulita secundária (mulita 3:2) é ~60%, a relação linear proposta por Ban e Okada é um método indireto que permite ratificar a obtenção de mulita secundária nos compósitos alumina-mulita preparados neste trabalho.

CONCLUSÕES

Com base nos resultados deste estudo, as seguintes conclusões podem ser apontadas: (1) cerâmicas de aluminamulita podem ser obtidas por sinterização de uma mistura contendo uma argila caulinítica da Paraíba e hidróxido de alumínio comercial; (2) a utilização de um pó fino e de alta reatividade de hidróxido de alumínio favoreceu o surgimento da fase α-alumina e, como resultado, a retração linear de queima dos corpos de prova foi intensa, favorecendo também a densificação; (3) para sinterizações acima de 1450 °C foram obtidos corpos de prova cerâmicos com absorção de água inferior a 2% e tensão de ruptura à flexão superior a 40 MPa, propriedades que qualificam as cerâmicas obtidas neste trabalho para aplicações refratárias; (4) este estudo demonstra a possibilidade de controlar a microestrutura e as propriedades tecnológicas de compósitos cerâmicos alumina-mulita de baixo custo via tratamento térmico de uma formulação cerâmica contendo uma argila caulinítica abundante no estado da Paraíba.

AGRADECIMENTOS

Os autores agradecem ao Laboratório de Solidificação Rápida (LSR) da UFPB pela utilização do microscópio eletrônico de varredura.

REFERÊNCIAS

[1] K.G. Liu, G. Thomas, A. Caballero, J.S. Moya, S. Aza,

Acta Metall. Mater. 42 (1994) 489-495.

[2] C.Y. Chen, G.S. Lan, W.H. Tuan, J. Eur. Ceram. Soc. **20** (2000) 2519-2525.

[3] A.E. Souza, S.R. Teixeira, G.T.A. Santos, E. Longo, Cerâmica **59** (2013) 147-155.

[4] I.A. Aksay, J.A. Pask, J. Am. Ceram. Soc. **58** (1975) 507-512.

[5] S.H. Risbud, J.A. Pask, J. Mater. Sci. 13 (1978) 2449-2454.

[6] M.V. Magliano, V.C. Pandolfelli, Cerâmica 56 (2010) 368-375.

[7] M. Panneerselvam, K.J. Rao, Chem. Mater. 15 (2003) 2247-2252.

[8] C. Sadik, E.I-E. Amrani, A. Albizane, J. Asian Ceram. Soc. 2 (2014) 310-316.

[9] A.K.P. Thakur, B. Bagchi, N.A. Hoque, S. Das, Appl. Clay Sci. **114** (2015) 349-358.

[10] J.E. Gardolinski, Química Nova 26 (2003) 30-35.

[11] R.P.S. Dutra, M.L. Varela, R.M. do Nascimento, C.A. Paskocimas, U.U. Gomes, P.T. Melo, Cerâmica Ind. **11** (2006) 42-46.

[12] F. Sahnoune, M. Chegaar, N. Saheb, P. Goeuriot, F. Valdivieso, Appl. Clay Sci. **38** (2008) 304-310.

[13] A.H. Aza, X. Turrillas, M.A. Rodriguez, T. Duran, P. Pena, J. Eur. Ceram. Soc. **34** (2014) 1409-1421.

[14] Z-Y. Deng, T. Fukasawa, M. Ando, J. Am. Ceram. Soc. **84** (2001) 485-491.

[15] Z.D. Zivkocic, Thermoch. Acta 21 (1977) 391-398.

[16] M.L. Varela, R.M. do Nascimento, A.E. Martinelli, D. Hotza, D.M.A. Melo, M.A.F. Melo, Cerâmica **51** (2005) 388-392.

[17] M.A. Sainz, F.J. Serrano, J.M. Amigo, J. Bastida, A.J. Caballero, J. Eur. Ceram. Soc. **20** (2000) 403-412.

[18] L.S. Cividanes, T.M.B. Campos, L.A. Rodrigues, D.D. Brunelli, G.P. Thim, J. Sol-Gel Sci. Technol. **55** (2010) 111-125.

[19] I. Ganesh, J.M.F. Ferreira, Ceram. Int. **35** (2009) 2007-2015.

[20] T. Ban, K. Okada, J. Am. Ceram. Soc. 75 (1992) 227-230.

(Rec. 06/10/2015, Rev. 08/01/2016, Ac. 15/03/2016)