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Abstract

This paper presents an analytical method for

analyzing trusses with severe geometrically nonlinear

behavior. The main objective is to find analytical

solutions for trusses with different axial forces in the

bars. The methodology is based on truss kinematics,

elastic constitutive laws and equilibrium of nodal forces.

The proposed formulation can be applied to hyper

elastic materials, such as rubber and elastic foams. A

Von Mises truss with two bars made by different materials

is analyzed to show the accuracy of this methodology.

Keywords: nonlinear analysis, structural mechanics,

trusses, analytical solution, hyper elasticity.
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Resumo

O artigo apresenta uma metodologia analítica para

analisar treliças com severo comportamento não linear

geométrico. O objetivo principal do trabalho é encontrar

soluções analíticas para treliças com diferentes esforços

axiais nos elementos estruturais. A metodologia é baseada

na cinemática estrutural, nas leis constitutivas elásticas e

no equilíbrio de forças nodais. A formulação proposta

pode ser aplicada em materiais hiperelásticos, como

borracha e espumas com comportamento elástico. Uma

treliça do tipo Von Mises com duas barras feitas de

materiais diferentes é apresentada como exemplo de

aplicação, com o objetivo de demonstrar a precisão e

eficiência do método proposto.

Palavras-chave: Análise não linear, mecânica estrutural,

treliças, solução analítica, hiperelasticidade.
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1. Introduction

The nonlinear behavior produced

by major geometrical changes in

structures is a topic of interest in several

engineering fields. The computational

implementation of formulations involving

nonlinearities is widely studied in

graduate disciplines based on classical

literature (Crisfield, 1991; Ogden, 1984).

The structural concept known as truss

consists of straight bars connected by

joints. The truss is a vector-active type

structure, i.e., the forces in the bars are

transmitted along the length of the

elements. The truss concept is

acceptable for slender structures, in

which concentrated forces are applied

only on the nodes. Due to its simplicity,

the truss is the ideal structure for

learning about nonlinear behavior.

Specialized literature offers few analytical

solutions for the severe geometrically

nonlinear behavior of trusses (Bazant

and Cedolin, 1991; Crisfield, 1991; Elias,

1986). In contrast, innumerable numerical

results are available (Greco et al., 2006;

Forde and Stiemer, 1987; Papadrakakis,

1981; Mondkar and Powell, 1977).

Analytical solutions are an important

factor for understanding the

fundamentals of nonlinearity and the

calibration of numerical formulations.

In the development of analytical

solutions, it is assumed that the material

is elastic or hyper elastic and that

equilibrium occurs in the deformed

position. The hyper elasticity considered

in the analysis is an elastic nonlinear

constitutive law. Convenient kinematics

are also adopted for the examples. After

the nonlinear equilibrium equation is

written, the normal forces and nodal

positions of the members are found

analytically. A mathematical software

program, i.e. MATHCAD® (MATHSOFT,

2005), is used to solve the nonlinear

equilibrium equation. This paper

analyzes a Von Mises plane trusses with

two unknowns (normal member forces

or nodal displacements) and a Shed truss

element. Analytical and numerical

examples of an unknown truss problem

are given in references (Greco et al., 2006;

Driemeier et al., 2005). The proposed

methodology presented in this paper is

basically a root-finding procedure that

solves the nonlinear equilibrium

equations using a mathematical software,

while the numerical formulations

presented in Greco et al. (2006) and Coda

and Greco (2004) are based on a finite

elements procedure that searches for

equilibrium using an iterative Newton-

Raphson algorithm. The root-finding

procedure depends specifically on the

internal software strategies and

precision; the default MATHCAD®

(MATHSOFT, 2005) solver parameters

are capable to calculate equation

responses with  10-12 precision.

2. Analytical procedure

The Von Mises truss analyzed here

consists of two bars of different materials

with different cross-sectional areas. In

the initial position, the bars form a

horizontal angle β
0
, as indicated in Figure

1.  A vertical force P  is applied on the

top node.

The equilibrium of the top node in

the deformed position is calculated

based on the balance of forces in the

vertical and horizontal directions. Figure

2 shows the kinematics of the truss in

the deformed position.

Considering the nodal equilibrium

in the horizontal direction, it can be noted

that:
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Based on equation (1) and the nodal

equilibrium in the vertical direction, one

obtains a new equation:
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Firstly, the problem is assumed to

be elastic with geometrical nonlinear

behavior. Considering E
1
A

1
 > E

2
A

2
 , and

applying Hooke’s law combined with the

kinematics of problem (Figure 2) gives

one two expressions relating an instant i

with the applied force P (as a function of

displacements x and y).

The equations (3) and (4) present

variations in the lengths of bars 1 and 2,

considering the kinematics of the

problem.
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Figure 1 - Geometric scheme of the analyzed Von Mises truss’s downward force.
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Considering the Hooke’s law for bar 1 at an instant i, one has:

 

L

u
E

A

� 01

1

1

1 cos
2

β∆
= (5)

Substituting equations (1), (2) and (3) in the equation (5) a nonlinear equilibrium

equation is obtained, based on the applied vertical force and on the structural

kinematics.
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The Hooke’s law can also be applied for bar 2:

 

L

u
E

A

� 02
2

2

2 cos
2

β∆
= (7)

Substituting equations (2) and (4) in the equation (7) another nonlinear

equilibrium equation is obtained, also based on the applied vertical force and on the

structural kinematics.
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Considering equations (6) and (8), the structural problem can be represented

by a nonlinear equation that depends exclusively on the kinematics.
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Substituting equation (4) for equation (7), one has:
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Using the mathematical package and previous equations one can then evaluate

the unknowns x, y, N
1
, N

2
 and P. The analytical procedure is summarized as follows:

a) From the initial position, calculate the

angle β
0
 between bar 1 and the

horizontal direction. The angle  β
0  
will

be used in the procedure as the initial

guess for the root-finding software

algorithm. The MATHCAD®

software can evaluate roots with a

precision tolerance between 10-5 to

10-12. For the examples presented in

this paper the adopted tolerance is

10-8.

b) Adopt an angle β
i
 in which the

nonlinear equilibrium will be

evaluated. It is advisable to define

prescribed angles not too far from the

initial angle β
0
, due to convergence

issues.

c) Considering the top node

trigonometric relations, see Appendix

I, and the nonlinear kinematics

equation (9), the angle γ
i
 can be

calculated as a root of the equation.

MATHCAD® software, automatically

determines the kind of analyzed

equation and it attempts appropriate

algorithms until one of the methods

converges. The available algorithms,

by precedence order, are: linear

(simplex method), nonlinear

conjugate gradient, nonlinear quasi-

Newton, nonlinear Levenberg-

Marquardt and quadratic

(MATHSOFT, 2005). The linear and

the quadratic algorithms do not use

a defined tolerance . The quadratic

algorithm is time-consuming. For the

analyzed problems in this paper, the

nonlinear algorithms are the most

suitable, but the convergence rates

vary depending on the nonlinear

equilibrium equation, the initial

position and the prescribed position.

The convergence criterion is reached

when the error is smaller than the

adopted tolerance, the maximum

number of iterations is reached or no

preferred search direction is verified

(the gradient of the objective function

is smaller than the tolerance). As the

software found the roots in a very

short time (less than a minute) no

maximum iteration number was

defined.

Figure 2 - Von Mises truss kinematics: initial position (0) and deformed position (i).
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d) With the initial angle β
0
, the

prescribed angle β
i
 and the calculated

angle γ
i
, the top nodal positions

(x ; y) can be calculated.

e) The final procedure step is to

calculate the normal forces in the bars

(N
1 

; N
2
) and the applied force P

required to reach the equilibrium

position (for the prescribed angle β
i
).

This step is done using equations

(10), (1) and (2).

3. Von Mises truss with

vertical downwards

force example

The following constants were

adopted as an example: E
1
A

1
=80000kN,

E
2
A

2
=20000kN, H = 1m  and L = 5m. Table 1 presents some numerical values,

while angles β
i
 and γ

i
 are defined in Figure 2.

Instead of using Hooke’s law for both bars, it is possible to consider an elastic

nonlinear constitutive law (hyperelastic case), i.e.  εσ E=  for bar 1. Therefore,

equation (5) becomes:
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The nonlinear kinematics becomes:
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The trigonometric relations and the equilibrium equations are equal to the

equations described previously. Considering the same numerical values, Table 2

presents some numerical values, while angles β
i
 and γ

i
 are defined in Figure 2.

Table 1 - Numerical example of an analytical solution for the Von Mises truss with vertical downwards force.
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Two graphs are plotted based on

results given in Tables 1 and 2. The first

graph (Figure 3) depicts the top node

displacements in the  X and Y  directions

as a function of the applied force. These

displacements are positive for rightwards

and downwards, respectively. The

second graph (Figure 4) illustrates the

normal forces in the bars (positive for

traction and negative for compression)

as a function of the vertical

displacement. Both the displacements

and the normal forces in the bars have

larger values in the elastic nonlinear

constitutive law case than in the Hooke’s

law case. During the compression phase,

both bars have normal forces values that

are very close, for the two constitutive

laws analyzed. During the traction phase,

the normal force values are considerably

different, for the two constitutive laws

analyzed.

4. Shed truss element

with horizontal rightwards

force example

The shed truss element has two

bars of the same material and the same

cross-sectional area. In the initial

position, bar 1 forms a horizontal angle

β
0 

while bar 2 is vertical, as shown in

Figure 5. A vertical force P is applied

rightwards at the top node.

The equilibrium of the top node in

the deformed position is calculated

based on the balance of forces in the

vertical and horizontal directions. Figure

6 shows the kinematics of the truss in

the deformed position.

Considering the nodal equilibrium

in the vertical direction, it can be noted

that:
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Based on equation (13) and the

nodal equilibrium in the horizontal

direction, one obtains a new equilibrium

equation:
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P
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Table 2 - Numerical example of an analytical solution for the Von Mises truss with a vertical downward force (elastic nonlinear

constitutive law).
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Figure 3 - Top node displacements X applied force for two different constitutive laws.

Figure 4 - Normal force in the bars X top node vertical displacement for two different constitutive laws.
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Figure 5 - Geometric scheme of the Shed

truss element with horizontal rightward

force.

Figure 6 - Shed truss element kinematics: initial position (0) and deformed position (i).

The application of Hooke’s law combined with the

kinematics of the problem, see Figure 6, results in two

expressions relating an instant i to the applied force P

(functions of displacements x and y). The Engineering strain

measurement (Crisfield, 1991; Ogden, 1984) is used here to

consider the material’s elastic behavior.

Considering the kinematics of the problem, the variations

in the lengths of bars 1 and 2 are shown in equations (15) and

(16).
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The analytical procedure is similar to the one described

earlier in section 2. The structural problem can be represented

by the nonlinear equation (17)
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The following constants were adopted as an example:n

EA=1000kN, H=10m and L=8m. Table 3 presents some

numerical values, while angles  β
i
 and γ

i
 are defined in Figure 6.

Two graphs are plotted based on the results presented in

Table 3. The first graph (Figure 7) shows the top node

displacements in the  and  directions as a function of the applied

force. These displacements are positive for rightwards and

downwards, respectively. The second graph (Figure 8) depicts

Table 3 - Numerical example of an analytical solution for the Shed truss element with horizontal rightward force.
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the normal forces in the bars (positive

for traction and negative for

compression) as a function of horizontal

displacement. The results are compared

with the finite elements method results

based on the formulation presented in

Greco at al. (2006). The analytical and

the numerical results showed good

agreement.

5. Conclusions

The paper presents a methodology

to analyze geometrical nonlinear

behavior in static trusses. Based on

Hooke’s law, with a simple engineering

strain measure (or a hyperelastic

constitutive law) and the equilibrium in

the deformed position, an analytical

procedure is used to solve the nonlinear

problem directly, considering the specific

kinematics of the problem. The procedure

itself cannot deal with stability problems

in nonlinear analysis, such as the

bifurcations that may occur due to

differential equations. However, with a

basic grasp of structural mechanics, one

can find the geometric nonlinear

response of a truss with two unknowns.

Critical loads of stability analysis can be

evaluated by the differentials of the

nonlinear equilibrium equations.

The nonlinear kinematics equations

are used here to position an equilibrium

configuration, adopting one angle (β
i
)

to find another (γ
i
). The procedure for

two unknowns can be extended to

include more unknowns, enabling one

to obtain a system of equations. Other

robust mathematical software packages

such as OCTAVE (Eaton, 2008), MAPLE®

(MAPLESOFT, 2008), MATLAB®

(MATHWORKS, 2008) or

MATHEMATICA® (WOLFRAM

RESEARCH, 2009) can be used to

calculate semi-analytical solutions. The

simple methodology proposed here can

be taught easily in graduate courses,

adding applications to the learning

process of geometrical nonlinear

formulations.

Figure 7 - Top node displacements X applied force for analytical and numerical

responses.

Figure 8 - Normal force in the bars X top node horizontal displacement for analytical

and numerical responses.
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For the example of the Von Mises truss with vertical

downward force, the trigonometric relations obtained from

Figure 2 give the position of the top node expressions

depending on the kinematics of the structure as follows:
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The angles of the bars are directly calculated from Figure 2.
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APPENDIX I – Trigonometric relations
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For the example of the Shed truss element with horizontal

rightward force, the trigonometric relations obtained from

Figure 6 give the position of the top node expressions

depending on the kinematics of the structure as follows:
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The angles of the bars are directly calculated from Figure

6. The initial angle evaluation remains the same as for the Von

Mises truss problem.
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APPENDIX II – Von Mises hyper elastic truss analytical procedure

Figure 9 presents the MATHCAD® procedure for the Von Mises hyperelastic truss analysis.

Figure 9 - MATHCAD® procedure for Von Mises hyper elastic truss analysis.
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