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Resumo

O artigo apresenta uma metodologia analitica para
analisar treligas com severo comportamento nao linear
geométrico. O objetivo principal do trabalho ¢ encontrar
solu¢des analiticas para trelicas com diferentes esforgos
axiais nos elementos estruturais. A metodologia ¢ baseada
na cinematica estrutural, nas leis constitutivas elasticas e
no equilibrio de forcas nodais. A formulagao proposta
pode ser aplicada em materiais hiperelasticos, como
borracha e espumas com comportamento eldstico. Uma
trelica do tipo Von Mises com duas barras feitas de
materiais diferentes ¢ apresentada como exemplo de
aplicagcdo, com o objetivo de demonstrar a precisdo e
eficiéncia do método proposto.

Palavras-chave: Analise nao linear, mecanica estrutural,
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Abstract

This paper presents an analytical method for
analyzing trusses with severe geometrically nonlinear
behavior. The main objective is to find analytical
solutions for trusses with different axial forces in the
bars. The methodology is based on truss kinematics,
elastic constitutive laws and equilibrium of nodal forces.
The proposed formulation can be applied to hyper
elastic materials, such as rubber and elastic foams. A
Von Mises truss with two bars made by different materials
is analyzed to show the accuracy of this methodology.

Keywords: nonlinear analysis, structural mechanics,
trusses, analytical solution, hyper elasticity.
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1. Introduction

The nonlinear behavior produced
by major geometrical changes in
structures is a topic of interest in several
engineering fields. The computational
implementation of formulations involving
nonlinearities is widely studied in
graduate disciplines based on classical
literature (Crisfield, 1991; Ogden, 1984).
The structural concept known as truss
consists of straight bars connected by
joints. The truss is a vector-active type
structure, i.e., the forces in the bars are
transmitted along the length of the
elements. The truss concept is
acceptable for slender structures, in
which concentrated forces are applied
only on the nodes. Due to its simplicity,
the truss is the ideal structure for
learning about nonlinear behavior.
Specialized literature offers few analytical
solutions for the severe geometrically
nonlinear behavior of trusses (Bazant
and Cedolin, 1991; Crisfield, 1991; Elias,
1986). In contrast, innumerable numerical
results are available (Greco et al., 2006;
Forde and Stiemer, 1987; Papadrakakis,
1981; Mondkar and Powell, 1977).
Analytical solutions are an important
factor for wunderstanding the
fundamentals of nonlinearity and the
calibration of numerical formulations.

In the development of analytical
solutions, it is assumed that the material
is elastic or hyper elastic and that
equilibrium occurs in the deformed
position. The hyper elasticity considered
in the analysis is an elastic nonlinear
constitutive law. Convenient kinematics
are also adopted for the examples. After
the nonlinear equilibrium equation is
written, the normal forces and nodal
positions of the members are found
analytically. A mathematical software
program, i.e. MATHCAD® (MATHSOFT,
2005), is used to solve the nonlinear
equilibrium equation. This paper
analyzes a Von Mises plane trusses with
two unknowns (normal member forces
or nodal displacements) and a Shed truss
element. Analytical and numerical
examples of an unknown truss problem
are given in references (Greco et al., 2006;

Driemeier et al., 2005). The proposed
methodology presented in this paper is
basically a root-finding procedure that
solves the nonlinear equilibrium
equations using a mathematical software,
while the numerical formulations
presented in Greco et al. (2006) and Coda
and Greco (2004) are based on a finite
elements procedure that searches for
equilibrium using an iterative Newton-
Raphson algorithm. The root-finding
procedure depends specifically on the
internal software strategies and
precision; the default MATHCAD®
(MATHSOFT, 2005) solver parameters
are capable to calculate equation
responses with 1072 precision.

2. Analytical procedure

The Von Mises truss analyzed here
consists of two bars of different materials
with different cross-sectional areas. In
the initial position, the bars form a
horizontal angle 3, as indicated in Figure
1. A vertical force P is applied on the
top node.

The equilibrium of the top node in
the deformed position is calculated
based on the balance of forces in the
vertical and horizontal directions. Figure
2 shows the kinematics of the truss in
the deformed position.

Considering the nodal equilibrium
in the horizontal direction, it can be noted
that:

cosy,

N, cos f, 2 (D)

Based on equation (1) and the nodal
equilibrium in the vertical direction, one
obtains a new equation:

P
Ny =~ . @
cosy,.tan 3, +siny,

Firstly, the problem is assumed to
be elastic with geometrical nonlinear
behavior. Considering £,4,> E A4, , and
applying Hooke’s law combined with the
kinematics of problem (Figure 2) gives
one two expressions relating an instant i
with the applied force P (as a function of
displacements x and ).

The equations (3) and (4) present
variations in the lengths of bars 1 and 2,
considering the kinematics of the
problem.

(L—x) L
Aul = — (3)
cos 5, 2cosf,
X L
Au2 = - (4)
cosy, 2cosf,

Figure 1 - Geometric scheme of the analyzed Von Mises truss’s downward force.
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Figure 2 - Von Mises truss kinematics: initial position (0) and deformed position (i).

Considering the Hooke’s law for bar 1 at an instant i, one has:

N Au, cos
—L -9 E, l—ﬁo 5)
4, L

Substituting equations (1), (2) and (3) in the equation (5) a nonlinear equilibrium
equation is obtained, based on the applied vertical force and on the structural
kinematics.

_cosy; P . _E 4 2(L —x) cos B, 1 ©
cosf3; cosy,.tan S, +siny, L cosp,
The Hooke’s law can also be applied for bar 2:
N. A
N o, u, cosf3, o
A L

Substituting equations (2) and (4) in the equation (7) another nonlinear
equilibrium equation is obtained, also based on the applied vertical force and on the
structural kinematics.

_ i : = E, 4, ﬁ%_l ®)
cosy,.tan B3, +siny, L cosy,

Considering equations (6) and (8), the structural problem can be represented
by a nonlinear equation that depends exclusively on the kinematics.

cosy; (Zicosﬁ(, _IJ: E 4, [Z(L—x)cosBO _1}

cos f3; L L cosvy; E,A, L cosP,; ©)
Substituting equation (4) for equation (7), one has:
x cosP,
N,=FE,A|2———-1
2 =L, 2[ L cosy, ] (10)

Using the mathematical package and previous equations one can then evaluate
the unknowns x, y, N, N, and P. The analytical procedure is summarized as follows:

a)

b)

From the initial position, calculate the
angle B, between bar 1 and the
horizontal direction. The angle 8, will
be used in the procedure as the initial
guess for the root-finding software
algorithm. The MATHCAD®
software can evaluate roots with a
precision tolerance between 107 to
102, For the examples presented in
this paper the adopted tolerance is
108,

Adopt an angle B, in which the
nonlinear equilibrium will be
evaluated. It is advisable to define
prescribed angles not too far from the
initial angle 8, due to convergence
issues.

Considering the top node
trigonometric relations, see Appendix
I, and the nonlinear kinematics
equation (9), the angle y, can be
calculated as a root of the equation.
MATHCAD® software, automatically
determines the kind of analyzed
equation and it attempts appropriate
algorithms until one of the methods
converges. The available algorithms,
by precedence order, are: linear
(simplex method), nonlinear
conjugate gradient, nonlinear quasi-
Newton, nonlinear Levenberg-
Marquardt and quadratic
(MATHSOFT, 2005). The linear and
the quadratic algorithms do not use
a defined tolerance . The quadratic
algorithm is time-consuming. For the
analyzed problems in this paper, the
nonlinear algorithms are the most
suitable, but the convergence rates
vary depending on the nonlinear
equilibrium equation, the initial
position and the prescribed position.
The convergence criterion is reached
when the error is smaller than the
adopted tolerance, the maximum
number of iterations is reached or no
preferred search direction is verified
(the gradient of the objective function
is smaller than the tolerance). As the
software found the roots in a very
short time (less than a minute) no
maximum iteration number was
defined.
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d) With the initial angle f
prescribed angle 3, and the calculated
angle y,, the top nodal positions

(x; y) can be calculated.

e) The final procedure step is to
calculate the normal forces in the bars
(N,; N,) and the applied force P
required to reach the equilibrium

the

0’

nonlinear constitutive law (hyperelastic case), i.e. o= E\/e for bar 1. Therefore,
equation (5) becomes:

position (for the prescribed angle j3). 4,
This step is done using equations

(10), (1) and (2).

3. Von Mises truss with

vertical downwards
force example

The following constants were

Au, cos 3,

The nonlinear kinematics becomes:

adopted as an example: £,4,=80000kN,

Table 1 - Numerical example of an analytical solution for the Von Mises truss with vertical downwards force.

L cosy,

E,A, cosy,

( X cosP, —1)2 :[EIAI cos 3, jz(Z (L —x)cosP,

. IJ
cos 3,

The trigonometric relations and the equilibrium equations are equal to the
equations described previously. Considering the same numerical values, Table 2
presents some numerical values, while angles 3, and y, are defined in Figure 2.

E,4,=20000kN, H = Im and L = 5m. Table 1 presents some numerical values,
while angles 3, and y, are defined in Figure 2.

Instead of using Hooke’s law for both bars, it is possible to consider an elastic

Bi Vi AX AY N, N, P
0.3805063  0.38050631 0. 0. -0.0009006  -0.0009006  6.689*10™
0.3 0.31033158  0.04506495  0.21271915 -850.473 -847.709 510.228
0.2 0.21364330  0.08485474  0.476024 -1643 -1639 674.002
0.1 0.10896012  0.10798164  0.73832902 -2127 2125 443.35
0 1.10*10"°  0.11554944 1 -2289 -2289 4.799*107
-0.1 -0.10896012  0.10798164  1.26167098 -2127 2125 -443.35
-0.2 -0.21364330  0.08485474 1.523976 -1643 -1639 674002
-0.3 -0.31033158  0.04506495  1.78728085 -850.473 -847.709 -510.228
-0.380506  -0.3805063 4.896916*10° 1.9999998  -0.0009006  -0.0009006  -0.000669
-0.4 -0.39635698  -0.0127411  2.0515962 232.746 233.103 180.628
-0.5 -0.47040554  -0.08965458  2.31677771 1579.319 1604.157 1484.897
-0.6 -0.53253820 -0.18611601  2.58301321 3159.001 3297.502 3465.803
-0.70 -0.58396954  -0.30175339  2.85155757  4944.725 5393.647 6200.907
-0.78 -0.61878170  -0.40731321  3.07021455  6510.384 7459.79 9022.621
-0.82 -0.63453447  -0.46414358  3.18185526  7338.632 8663.1 10684.35
-0.92 -0.67072225 -0.61688269  3.47302961 9553.769 12353.773 15766.845
-0.96 -0.68455628  -0.6817887  3.59705573 10506.96 14192.599 18270.317
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Table 2 - Numerical example of an analytical solution for the Von Mises truss with a vertical downward force (elastic nonlinear

constitutive law).

Bi Vi AX AY N, N, P
0.3805063  0.38050632127 0. 0. -0.001 -0.001 -7.9%10™
0.3 0.31683174560 0.07274114  0.20415791  -1.026.406  -1020.917 621.486
0.2 0.22309175212 0.14059144  0.46472562  -2029.407 -2019.368 850.184
0.1 0.11558221578 0.18209917  0.73089246  -2667.419 -2662.925 573.469
0 0. 0.19608892 1. -2886.978 -2886.978  6.265*10°
-0.1 -0.115582215  0.18209917  126.910.754  -2667.419 -2662.925 -573.469
-0.2 -0.223091752  0.14059144  153.527.438  -2029.407 -2019.368 -850.184
-0.3 -0.316831745 0.07274114  179.584.209  -1026.406 -1020.917 -621.486
-0.380506  -0.380506321 0. 2. -0.001 -0.001 -7.9%10™
-0.4 0394310537 -0.01993828  2.04855328 273.377 274.03 211.736
-0.5 -0.455629749  -0.13578096  2.29157875 1802.267 1844.166 1677.188
-0.6 -0.502434986 -0.27291633  2.52362992  3501.153 3717.826 3785.261
-0.70 -0.537109441 -0.42909638  2.74429806  5322.397 5978.955 6574.977
-0.78 -0.557944379 -0.56585936  2.91337095 6843.59 8166.572 9366.676
-0.82 -0.566586015  -0.6375627  2.99599961  7621.395 9425.775 10982.435
-0.92 -0.584808889 -0.82416783  3.20080955 9612.35 13229911 15832.141
-0.96 -0.591477107 -0.90076282  3.28428241 10429.69 15096.026  18182.005

Two graphs are plotted based on
results given in Tables 1 and 2. The first
graph (Figure 3) depicts the top node
displacements in the Xand Y directions
as a function of the applied force. These
displacements are positive for rightwards
and downwards, respectively. The
second graph (Figure 4) illustrates the
normal forces in the bars (positive for
traction and negative for compression)
as a function of the wvertical
displacement. Both the displacements
and the normal forces in the bars have
larger values in the elastic nonlinear
constitutive law case than in the Hooke’s
law case. During the compression phase,
both bars have normal forces values that
are very close, for the two constitutive
laws analyzed. During the traction phase,

the normal force values are considerably
different, for the two constitutive laws
analyzed.

4. Shed truss element
with horizontal rightwards
force example

The shed truss element has two
bars of the same material and the same
cross-sectional area. In the initial
position, bar 1 forms a horizontal angle
B, while bar 2 is vertical, as shown in
Figure 5. A vertical force P is applied
rightwards at the top node.

The equilibrium of the top node in
the deformed position is calculated

based on the balance of forces in the
vertical and horizontal directions. Figure
6 shows the kinematics of the truss in
the deformed position.

Considering the nodal equilibrium
in the vertical direction, it can be noted
that:

_sinf,; N
cos 7,

N, = (13)

Based on equation (13) and the
nodal equilibrium in the horizontal
direction, one obtains a new equilibrium
equation:

3 P
cos 5, —sin B tany,

1

(14)
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—O0— AX (Hooke's law) ,
-- @ - AY (Hooke's law) .
—— AX (elastic nonlinear constitutive law)
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Figure 3 - Top node displacements X applied force for two different constitutive laws.
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Figure 4 - Normal force in the bars X top node vertical displacement for two different constitutive laws.
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Figure 5 - Geometric scheme of the Shed

truss element with horizontal rightward
force.

The application of Hooke’s law combined with the
kinematics of the problem, see Figure 6, results in two
expressions relating an instant i to the applied force P
(functions of displacements x and y). The Engineering strain
measurement (Crisfield, 1991; Ogden, 1984) is used here to
consider the material’s elastic behavior.

Considering the kinematics of the problem, the variations
in the lengths of bars 1 and 2 are shown in equations (15) and
(16).

(L+x) L
Au, = - (15)
cos B, cosp,
x
Au, = -H
> siny, (16)

Figure 6 - Shed truss element kinematics: initial position (0) and deformed position (i).

The analytical procedure is similar to the one described
earlier in section 2. The structural problem can be represented
by the nonlinear equation (17)

cosy; ( X

| (L +x) cos B,
—= , l= |—/——-1 17)
sin 3, \ H.siny, L cosp,

The following constants were adopted as an example:n
EA=1000kN, H=10m and L=8m. Table 3 presents some
numerical values, while angles 3 and y, are defined in Figure 6.

Two graphs are plotted based on the results presented in
Table 3. The first graph (Figure 7) shows the top node
displacements in the and directions as a function of the applied
force. These displacements are positive for rightwards and
downwards, respectively. The second graph (Figure 8) depicts

Table 3 - Numerical example of an analytical solution for the Shed truss element with horizontal rightward force.

Bi Yi ax AY N, N, P
0.89605538 0 0 0 -1.604*10°  2.054*10° 1.283*10°
0.89 0.0082543818 0.08236812  0.0215127 2117 2.725 1.697
0.8 0.13627558  1.31521187  0.40869869 -31.894 44.049 26.356
0.7 0.28980959  2.68340359  1.00149329 -609.91 90.727 51.962
0.6 0.45407081  4.01052214  1.78315971 -85.666 136.343 74.953
0.5 0.62742992 524877902  2.76215903  -105.931 178.87 94.785
0.4 0.80808320  6.34782172  3.93383827  -121.973 216.398 111.134
0.3 0.99426829  7.25968574 527962604  -134.061 247.29 123.853
0.2 1.18437782  7.94301344  6.76819118  -142.468 270.261 132.91
0.1 1.37698260  8.36620175  8.35790251 -147.417 284.402 138.325
0 1.57079632  8.50949359 10 -149.051 289.177 140.126
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the normal forces in the bars (positive
for traction and negative for
compression) as a function of horizontal
displacement. The results are compared
with the finite elements method results
based on the formulation presented in
Greco at al. (2006). The analytical and
the numerical results showed good
agreement.

5. Conclusions

The paper presents a methodology
to analyze geometrical nonlinear
behavior in static trusses. Based on
Hooke’s law, with a simple engineering
strain measure (or a hyperelastic
constitutive law) and the equilibrium in
the deformed position, an analytical
procedure is used to solve the nonlinear
problem directly, considering the specific
kinematics of the problem. The procedure
itself cannot deal with stability problems
in nonlinear analysis, such as the
bifurcations that may occur due to
differential equations. However, with a
basic grasp of structural mechanics, one
can find the geometric nonlinear
response of a truss with two unknowns.
Critical loads of stability analysis can be
evaluated by the differentials of the
nonlinear equilibrium equations.

The nonlinear kinematics equations
are used here to position an equilibrium
configuration, adopting one angle ()
to find another (). The procedure for
two unknowns can be extended to
include more unknowns, enabling one
to obtain a system of equations. Other
robust mathematical software packages
such as OCTAVE (Eaton, 2008), MAPLE®
(MAPLESOFT, 2008), MATLAB®
(MATHWORKS, 2008) or
MATHEMATICA® (WOLFRAM
RESEARCH, 2009) can be used to
calculate semi-analytical solutions. The
simple methodology proposed here can
be taught easily in graduate courses,
adding applications to the learning
process of geometrical nonlinear
formulations.

140

]
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— 80-
b | §
f - m  AX Analytical solution

60 1 AX FEM Solution
O AY Analytical solution

ol 5 e AY FEM Solution

204 ;

0 1 2 3 4 5 6 7 8 9 10
Top node displacements [m]

Figure 7 - Top node displacements X applied force for analytical and numerical
responses.

300+ B N, Analytical solution

—— N, FEM Solution
2504 o N, Analytical solution
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150+
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-100- ”"‘---m-n...._
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'200 1 1 1 1 1 I I 1 1
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Figure 8 - Normal force in the bars X top node horizontal displacement for analytical
and numerical responses.
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APPENDIX | — Trigonometric relations

For the example of the Von Mises truss with vertical

For the example of the Shed truss element with horizontal

downward force, the trigonometric relations obtained from
Figure 2 give the position of the top node expressions
depending on the kinematics of the structure as follows:

_ L.tanp,

tan y, + tan 3, AD
_ L.tany, tan g,

tan y, + tan S, (A2)

The angles of the bars are directly calculated from Figure 2.

rightward force, the trigonometric relations obtained from
Figure 6 give the position of the top node expressions
depending on the kinematics of the structure as follows:

_ tany,.tan B,.L
1 -tany,.tan S, (A6)
_ tang.L
4 1-tany,.tan S, (A7)

The angles of the bars are directly calculated from Figure
6. The initial angle evaluation remains the same as for the Von
Mises truss problem.

2H
B, = arctan A (A3) ,
. = arctan
B ( I xj (A8)
Yy
B = arctan( j A4
72 (A4) .
]/i = arctan| — ( A9)
Yy
V= arctan(%) (AS)
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APPENDIX Il — Von Mises hyper elastic truss analytical procedure

Figure 9 presents the MATHCAD® procedure for the Von Mises hyperelastic truss analysis.

(__HYPERELASTIC ANALYTICALPROCEDURE

A

E,A;,A,H L

o

B, = arctan(ﬁ)
L

_ L.tanB, _ Ltany, tanf, -
r tany, + tanf. tany, + tanf3,
2 2 2
(cosy,} (2£COSBO _IJ B ElAlj (2(L—x) cosf3, _lj
cos 3, L cosy, E, A4, L cosp,
Find (y,) »
\
L.tanf, L.tany, tan,
X=— e ————
tany, + tan 3, tany, + tanf,
x cosf
N, =E2A2( = 0 —1]
L cosy,
COSY;
N, = -N —{ END OF PROCEDURE
' cosP, )
P =-N,sinf, — N,siny,

Figure 9 - MATHCAD® procedure for Von Mises hyper elastic truss analysis.
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