

Caracterização tecnológica de rejeito de minério de ferro

Technological characterization of iron ore tailing

Marcos Antônio Gomes

Engenheiro de Minas, Mestrando, Pós-Graduação em Engenharia Mineral Mineração Ferrous. marcosminer@ig.com.br

Carlos Alberto Pereira

DEMIN/UFOP. pereira@demin.ufop.br

Antônio Eduardo Clark Peres

Dr., Professor, Engenharia Metalúrgica da UFMG, Pesquisador 1A CNPq. aecperes@demet.ufmg.br

Resumo

Nesse trabalho, é apresentada a caracterização dos finos, estocados na barragem I como rejeito proveniente do tratamento de minério ferro. Na caracterização das amostras, estão apresentadas análises granulométricas por peneiramento a úmido, análises químicas por espectrometria de plasma e análise mineralógica por difração de raios X. De posse das análises de caracterização, foram executados ensaios tecnológicos, visando à obtenção de concentrado para aplicação na indústria metalúrgica. Foram avaliadas duas rotas de concentração em escala de bancada: uma (rota I) constando de classificação (0,15mm), separação magnética (-1,0+0,15mm), deslamagem e flotação (-0,15mm) e outra (rota II) constando de separação magnética (-1,0mm total). De acordo com a distribuição granulométrica dos finos do minério de ferro, 8,21% das partículas encontram-se retidas em 0,150mm e 58,81% abaixo de 0,045mm. A amostra, conforme Tabela 1, apresenta teores médios (calculado) de 48,08% de Fe, 20,58% de SiO₂, 3,16% de Al₂O₃. Os minerais portadores de ferro identificados foram hematita, martita, magnetita e goethita e os minerais de ganga foram quartzo, gibbisita e caolinita. A melhor opção de concentração estudada consistiu na utilização de circuito de concentração somente por separação magnética, rota II. A recuperação em massa e metalúrgica foram, respectivamente, 68,00% e 90,81%, apresentando um concentrado com 67,54% de Fe, 1,50% de SiO₂ e 0,49% de Al₂O₃, atendendo a especificação do produto comercializado pela empresa.

Palavras-chave: Caracterização, concentração magnética, flotação, finos de minério ferro.

Abstract

This paper addresses the characterization of fines stocked in a pond as tailings from an iron ore concentrator. The characterization consisted of size analyses by wet screening, chemical analyses by ICP, and mineralogical analyses by X-ray diffraction. The next stage consisted of technological tests. Two concentration routes were evaluated at bench scale: the first (route I) consisting of classification (0.15mm), magnetic separation (-1.0+0.15mm), desliming and flotation (-0.15mm); and the second (route II) consisting of magnetic separation (-1.0mm global), aiming at achieving a concentrate adequate for use in the metallurgical industry. The size distribution of the iron ore fines indicated 8.21% above 0.150mm and 58.81% passing 0.045mm. The calculated average chemical composition of the sample is 48.08% Fe, 20.58% SiO₂, and 3.16% Al_2O_3 . The iron minerals identified by X-ray diffraction were: hematite, martite, magnetite, and goethite; and the detected gangue minerals were: quartz, gibbsite, and kaolinite. The best performance came from route II, magnetic separation only: weight recovery 68.00%, metallurgical recovery 90.81%, 67.54% Fe, 1.50% SiO₂, 0.49% Al_2O_3 .

Keywords: Flotation, silicon-carbonate ore, carbonates, apatite, phosphoric acid.

1. Introdução

O impacto ambiental gerado pelo setor mineral, particularmente o visual, é grande, porque é de fácil verificação e até mesmo constatação, particularmente nas minas e atividades extrativas a céu aberto (Reis & Barreto, 2001 e Resende, 2009).

A preocupação com a conservação ambiental tem levado cada vez mais ao aproveitamento de rejeitos de mineração, quer pelo emprego de novas tecnologias de beneficiamento desses "minérios" de teores mais pobres ou pela utilização dos mesmos para outras aplicações. Sem dúvida alguma, para a verificação da possibilidade do aproveitamento desses rejeitos, faz-se necessária a caracterização tecnológica dos mesmos (caracterização mineralógica, granulométrica, química e ensaios tecnológicos específicos para um determinado emprego) (Reis, 2005).

A caracterização tecnológica de minérios é uma etapa fundamental para o máximo aproveitamento de um recurso mineral. É um ramo especializado aplicado ao beneficiamento de minérios e que estuda aspectos específicos da mineralogia dos minérios. As informações obtidas são utilizadas para o desenvolvimento e a otimização de processos (Gomes, 1984).

A avaliação inicial da explotabilidade comercial de um minério, o planejamento da planta de processamento, a montagem da planta-piloto e a primeira operação eficiente em escala industrial de beneficiamento são atribuições vitais desempenhadas pela caracterização tecnológica de minérios (Gomes, 1984).

A caracterização, até bem pouco tempo, era pouco aplicada a rejeitos de usinas de beneficiamento de minérios, sendo esses descartados sem maiores conhecimentos de suas características físicas, químicas e mineralógicas e de sua resposta a processo de refino. Nos últimos anos, isto vem mudando, não só pela maior preocupação com questões ambientais, como também, em alguns casos, devido à escassez do minério e à depleção de reservas, com a conseqüente diminuição dos teores das minas (Borges, 2008).

O conhecimento dos rejeitos favorece a viabilização de seu ulterior aproveitamento como subproduto na própria usina, ou em outro segmento industrial. Viabilizando-se seu reuso, minimiza-se o impacto ambiental e cria-se receita, onde antes havia despesas (Borges, 2008).

Após o sucesso da implantação dos separadores magnéticos de alta intensi-

dade via úmida (WHIMS) tipo Jones na Vale, em Itabira, seguiram-se a flotação em máquinas mecânicas, na SAMARCO, e a flotação colunar, na CSN (Companhia Siderúrgica Nacional). Durante décadas, foram produzidos rejeitos com alto teor de ferro, acumulados em bacias. Mesmo os reieitos mais pobres atualmente gerados têm merecido investigações, buscando-se recuperar o ferro neles contido. Fica nítido que cada caso é um caso. Rocha (2008) obteve bons resultados usando a flotação colunar para tratar lamas da CSN. Vieira (2008) conseguiu produzir, em laboratório, pellet feed processando rejeito da flotação mecânica da Samarco em um circuito misto de separação magnética/ flotação colunar.

Dentro desse contexto, esse trabalho apresenta a caracterização tecnológica de rejeito de minério de ferro estocado em barragem, onde há uma quantidade expressiva de finos. No ano de 2008, para uma produção de 6.039.597t de produtos, foram geradas 1.479.157t de rejeitos, estimando-se em 20.000.000t, ao fim de sua vida útil previsto para 2010. As rotas de concentração selecionadas foram a combinação de separação magnética e flotação e a separação magnética isoladamente.

2. Materiais e métodos

A amostra dos finos, estocados na barragem I como rejeito proveniente do tratamento de minério ferro, foi coletada através de furos de sondagem (SPL) com a finalidade de dar subsídios para cubagem da reserva e definição da qualidade em profundidade. A malha utilizada foi (50x50)m, totalizando 17 furos, com profundidade variando de 8,0 a 79,4 metros. Na região com presença de água, os furos foram executados com os equipamentos tripé e conjunto moto-bomba disposto sobre plataforma flutuante de madeira sobre 36 tambores de plásticos medindo (6x5)m, com um furo no centro de (30x30)cm para passagem do revestimento e, na região de praia, utilizou-se o trado helicoidal, para começar a perfuração, até o mesmo se tornar inoperante ou quando era encontrado o nível d'água. Abaixo do nível d'água, a perfuração foi procedida com auxílio de circulação direta d'água com auxílio de uma bomba d'água com mangote de sucção, através de haste de percussão e do trépano de lavagem que funciona como

ferramenta de escavação. O volume estimado com o fim da vida útil da barragem, previsto para 2010, é 20Mt. Foram feitas análises granulométricas e químicas por furo. Após homogeneização de todos os furos, retirou-se uma alíquota para análise mineralógica e com o restante da massa realizaram-se testes de concentração. A mineralogia é essencialmente constituída pelos minerais de ferro hematita, martita, magnetita e goethita e pelos minerais de ganga quartzo, gibbisita e caolinita. Esses minerais foram determinados por difração de raios X. A distribuição granulométrica foi obtida por peneiramento a úmido, em peneiradores mecânicos suspensos, em laboratório, com aberturas em mm: 2,40 /1,00/0,84/0,710/0,500/0,420/0,300 /0,210/0,150/0,105/0,075 e 0,045. Os teores de Fe, SiO₂, Al₂O₃, P, Mn, CaO, MgO, TiO, e PF foram determinados por espectometria de plasma.

Foram avaliadas duas rotas de concentração: uma (rota I) constando de classificação (0,15mm), separação magnética

(-1,0+0,15mm), deslamagem e flotação (-0,15mm) e outra (rota II) constando de separação magnética (-1,0mm total).

Para os ensaios, em bancada, de separação magnética, nos estágios rougher, scavenger I e scavenger II, foi utilizado um separador magnético tipo tambor, modelo L4 para as frações -1,0mm total e -1,0+0,15mm, utilizando matrizes de GAP 2,5mm com variação de campo de 1000 e 4000Gauss.

Para o ensaio, em bancada, a deslamagem, precedente à flotação, foi realizada em um balde e teve como parâmetros a porcentagem de sólidos na alimentação igual a 25% e pH=9,8. Empolpou-se a amostra para 25% de sólidos, corrigindo-se o pH para 9,8 com adição de soda e agitou-se, por 5 minutos; após 5 minutos, deixou-se decantar por 15 minutos, retirando-se o flutuado (overflow). Esse processo foi repetido até a retirada de toda a lama.

Para os ensaios, em bancada, de flotação (exaustão) foram utilizados cé-

lula CDC, cuba de 2,5 litros, 1200rpm, amido como depressor dos minerais de ferro (800 g/t) com tempo de condicio-

namento de 5 minutos e como coletor do quartzo amina (SiO₂<10% - 250 g/t de SiO₂, 10%<SiO₂<20% - 400 g/t de

SiO₂ e SiO₂>20% - 700 g/t de SiO₂) com tempo de condicionamento de 1 minuto. O pH foi de 9,8.

3. Resultados e discussão

A Figura 1 mostra a mineralogia da amostra coletada. Os minerais de ferro

identificados foram hematita, martita, magnetita e goethita e os minerais de gan-

ga identificados foram quartzo, gibbisita e caolinita.

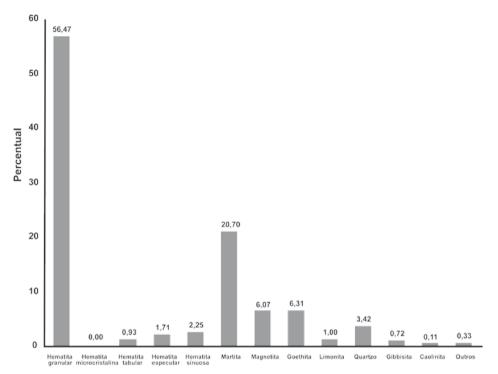


Figura 1 Mineralogia da amostra coletada da barragem I.

A Tabela 1 mostra a distribuição granulométrica e química da amostra dos furos de sondagem, onde se observa que 8,21% das partículas encontram-se retidas em 0,150mm e 58,81% abaixo de 0,045mm e que os teores médios de

Fe, SiO₂ e Al₂O₃, são, respectivamente, 48,08%, 20,58 e 3,16%.

As Tabelas 2 e 3 mostram os resultados dos ensaios das duas rotas de concentração.

Na rota I, na etapa de separação

magnética da fração -1,00+0,15mm, o concentrado apresentou teor de SiO₂ de 2,28%, acima da especificação de mercado (1,5%). A flotação apresentou teores de Fe e SiO₂ no concentrado, respectivamente, 66,74% e 1,48%, dentro da especificação

		Análise química (%)										
Furo	+0,150mm	+0,045mm	-0,045mm	Fe	SiO ₂	Al ₂ O ₃	Р	Mn	TiO ₂	CaO	MgO	PPC
SPL 02	18,50	48,92	32,58	54,19	14,30	2,20	0,194	0,587	0,091	0,071	0,067	2,51
SPL 03	11,93	57,14	30,93	51,52	15,31	1,70	0,057	0,436	0,086	0,021	0,068	2,40
SPL 05	10,72	47,21	42,07	51,14	18,17	2,18	0,078	0,682	0,092	0,044	0,085	30,90
SPL 06	6,55	60,11	33,34	48,60	24,70	1,88	0,056	0,461	0,095	0,017	0,062	3,00
SPL 12	0,00	0,00	100,00	47,91	11,90	7,92	0,171	1,955	0,243	0,076	0,257	6,62
SPL 13	0,00	6,84	93,16	44,24	15,86	6,63	0,188	2,182	0,319	0,085	0,254	10,00
SPL 14	0,00	11,66	88,34	48,68	19,36	4,07	0,133	1,574	0,151	0,065	0,138	4,26
SPL 15	0,00	0,00	100,00	43,23	34,66	1,43	0,047	0,200	0,107	0,005	0,045	1,91
SPL 16	0,00	2,98	97,02	38,90	35,98	3,04	0,095	0,873	0,106	0,105	0,171	3,51
SPL 18	0,00	3,35	96,65	37,02	29,27	7,32	0,165	1,859	0,311	0,071	0,160	6,40
SPL 19	11,56	19,70	68,74	34,80	-	-	-	-	-	-	-	-
SPL 21	10,55	48,30	41,15	51,70	20,08	1,92	0,064	0,629	0,074	0,036	0,091	2,57
SPL 22	9,95	48,42	41,63	50,72	20,37	2,22	0,068	0,605	0,108	0,019	0,053	3,69
SPL 23	18,27	49,88	31,85	60,78	8,82	1,35	0,046	0,491	0,065	0,040	0,056	1,61
SPL 24	16,41	46,18	37,41	55,64	14,48	1,88	0,063	0,649	0,108	0,015	0,063	2,87
SPL 25	12,83	57,46	29,71	48,11	25,30	1,96	0,065	0,545	0,106	0,021	0,059	2,91
SPL 26	12,23	52,55	35,22	50,23	20,79	2,89	0,077	0,516	0,127	0,035	0,077	3,38
Média	8,21	32,98	58,81	48,08	20,58	3,16	0,098	0,890	0,137	0,045	0,107	3,80

Tabela 1 Análise granulométrica e química das amostras dos furos de sondagem da barragem I.

de mercado. Na composição final do concentrado, separação magnética e flotação, verifica-se que o concentrado final não atende às especificações de mercado.

Na rota II, na etapa de separação magnética da fração -1,00mm, o con-

centrado apresentou teores de Fe e SiO₂, respectivamente, 67,54% e 1,50%, dentro da especificação de mercado.

Verificou-se que os melhores resultados foram obtidos com concentração na rota II: melhor qualidade no concentrado

com 67,54% de Fe, 1,50% de SiO₂ e demais elementos, atendendo as especificações químicas dos produtos comerciali-

zados pela empresa. Também, apresentou maiores recuperações em massa e metalúrgica, 68,00% e 90,81%, respectivamente.

Ensaio	Fluxos	Recuperação mássica (%)	Recuperação metalúrgica (%)	Fe	SiO ₂	Al ₂ O ₃	P	CaO	MgO	Mn	TiO ₂	PPC
Separação magnética (-1,0 +0,15)mm	Alimentação	11,63		53,43	19,38	1,42	0,053	0,019	0,055	0,298	0,071	2,14
	Concentrado	7,99	85,74	66,68	2,28	0,73	0,035	0,016	0,042	0,054	0,054	1,22
	Rejeito	3,64		24,33	56,93	2,95	0,092	0,025	0,082	0,109	0,109	4,17
Deslamagem	Alimentação	76,94		55,60	15,06	2,00	0,057	0,022	0,071	0,566	0,087	2,27
	Overflow	8,05	91,84	43,34	12,29	10,45	0,225	0,081	0,216	3,270	0,296	9,11
	Underflow	68,89		57,03	15,30	1,02	0,037	0,015	0,054	0,250	0,063	1,47
	Alimentação	68,89		56,97	15,16	1,06	0,036	0,020	0,054	0,234	0,065	1,54
Flotação	Concentrado	52,21	88,78	66,74	1,48	0,81	0,036	0,020	0,046	0,227	0,065	1,50
	Rejeito	16,68		26,38	57,99	1,88	0,034	0,021	0,080	0,258	0,065	1,65
Rota I	Alimentação	80,52		56,46	15,77	1,12	0,038	0,020	0,054	0,243	0,066	1,63
	Concentrado	60,20	88,36	66,73	1,59	0,80	0,036	0,019	0,045	0,221	0,063	1,46
	Rejeito	20,32		26,01	57,80	2,07	0,044	0,022	0,080	0,310	0,073	2,11

Ensaio	Fluxos	Recuperação mássica (%)	Recuperação metalúrgica (%)	Fe	SiO ₂	Al ₂ O ₃	P	CaO	MgO	Mn	TiO ₂	PPC
Separação magnética 1,0mm	Alimentação	88,56		57,11	15,49	0,89	0,035	0,017	0,049	0,206	0,060	1,38
	Concentrado	68,00	90,81	67,54	1,50	0,49	0,029	0,017	0,041	0,160	0,054	0,92
	Rejeito	20,56		22,64	61,78	2,22	0,055	0,019	0,077	0,361	0,080	2,87

Tabela 2 Resultados da rota I.

Tabela 3 Resultados da rota II.

4. Conclusões

A caracterização mineralógica mostrou que, praticamente, todo o ferro é proveniente de hematita e o quartzo é responsável por, praticamente, toda SiO₂ existente na amostra estudada. Os demais minerais aparecem, individualmente, em conteúdos muito baixos.

A análise granulométrica da amostra

apresentou 8,21% retido em 0,15mm e 58,81% abaixo de 0,045mm.

A análise química da amostra apresentou teores médios de 48,08% de Fe, 20,58% de SiO_2 e 3,16% de Al_2O_3 .

A melhor opção de concentração estudada consistiu na utilização de cir-

cuito de concentração por separação magnética. As recuperações em massa e metalúrgica foram, respectivamente, 68,00% e 90,81%, apresentando um concentrado com 67,54% de Fe, 1,50% de SiO₂ e 0,49% de Al₂O₃, atendendo às especificações do produto comercializado pela empresa.

5. Referências Bibliográficas

BORGES, A. A. Caracterização da parcela magnética de minério fosfático de carbonatito Ouro Preto, REM - *Revista Escola de Minas*, v. 61, n.1, p.29-34, 2008.

GOMES, C. B. *Técnicas analíticas instrumentais aplicadas à geologia*. São Paulo: Editora Edgard Blücher Ltda., 1984, 251p.

REIS, E. L. Caracterização de resíduos provenientes da planta de beneficiamento do minério de manganês sílico-carbonatado da RDM – Unidade Morro da Mina. Ouro Preto: Departamento de Engenharia Mineral, Universidade Federal de Ouro Preto, 2005. 124p. (Dissertação de Mestrado).

REIS, N. L., BARRETO, M. L. *Desativação de empreendimento mineiro no Brasil*. São Paulo: Signus Editora, 2001. 48p.

RESENDE, A. G. *Aplicabilidade do plano de fechamento de mina no plano de aproveitamento econômico de uma jazida*. Ouro Preto: Departamento de Engenharia Mineral, Universidade Federal de Ouro Preto, 2009. 62p. (Dissertação de Mestrado).

ROCHA, L. Estudo do aproveitamento econômico das lamas de uma mineração de ferro, através de concentração por flotação catiônica reversa. Belo Horizonte: Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas, Universidade Federal de Minas Gerais, 2008.126p. (Dissertação de Mestrado).

VIEIRA, M. G. *Produção de um pellet feed a partir da concentração do rejeito da flotação mecânica da SAMARCO*. Belo Horizonte: Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas, Universidade Federal de Minas Gerais, 2008. 90p. (Dissertação de Mestrado).