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Resumo

Esse trabalho descreve a pesquisa sobre a aplicação de análise de complexidade 
para avaliar o desempenho do processo de desmonte de rocha na mineração. O ob-
jetivo principal da pesquisa é o desenvolvimento de um método que permita identifi-
car uma solução robusta para gerenciar a fragmentação do desmonte e para planejar 
o processo de forma a alcançar as metas de produtividade da britagem. A pesquisa 
utiliza ferramentas de análise de complexidade, introduzindo uma abordagem parti-
cular de sistemas complexos inédita em mineração e em aplicações de desmonte. Os 
resultados alcançados indicam que a compreensão adequada das correlações entre as 
variáveis-chaves no desmonte traz benefícios importantes para apoiar a tomada de 
decisão no ambiente de alta incerteza do processo de desmonte de rocha. A busca por 
um sistema robusto se mostrou mais relevante do que a busca por uma solução teori-
camente ótima, já que os níveis de robustez e de complexidade podem ser utilizados 
para comparar diferentes modelos e para medir a aderência desses modelos aos dados 
de campo. 

Palavras-chave: Perfuração e desmonte; fragmentação de rocha; análise de complexi-
dade, análise de robustez.

Abstract

The paper describes the research carried out in the application of complexity 
analysis in order to evaluate the performance of the rock blasting process in mining. 
The main objective of the research is the development of a new method to allow the 
identification of a robust solution for managing rock fragmentation and to plan the 
process so that productivity targets can be achieved. The research uses complexity 
analysis tools introducing a particular approach for complex system analysis in min-
ing and in rock blasting. The results indicate that the proper understanding of the 
correlations between the key-variables in blasting provides important benefits in the 
decision making process in the highly uncertain environment of rock blasting. The 
search for a robust system has proven to be more relevant than the search for a theo-
retically optimum solution, as the levels of robustness and complexity can be used to 
compare different models and to measure the adherence of such models to the actual 
field data. 

Keywords: Drilling and blasting, rock fragmentation, complexity analysis, robustness 
analysis.
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1. Introduction

Rock fragmentation by blasting 
is a fundamental procedure in the min-
ing process. It is higly related to the 
performance of subsequent operations, 
from loading equipment wear through 
comminution and processing costs to the 
final customer’s requirements. It has been 
observed in many case studies (Sastry & 
Chandar, 2004; Ryu et al., 2009; Clerici 
& Mancini et al., 1974) that the energy 
consumption of mucking and crushing 
depends directly upon the blast fragmenta-
tion. Even though primary blasting costs 
can be reduced by a coarser fragmenta-
tion output (Ryu et al., 2009), in general, 
poor fragmentation leads to the following 
situations (Bozic 1998, Sastry & Chandar 
2004, Ryu et al. 2009, Clerici & Mancini 
et al. 1974, Mansfield & Schoeman 2010, 

Scott, 1996):
•	 Increased secondary blasting.
•	 Decreased rate of muck shovel loading.
•	 Increased difficulty in transportation.
•	 Increased energy consumption at 

crushing or milling.
•	 Increased vibrations and noise to 

neighborhood.
•	 Unsafe situation and damage to equip-

ment when handling oversize material.
•	 low crusher and mill performances

Secondary blasting should be avoid-
ed as much as possible, as it decreases the 
productivity by moving equipment and 
people to a safe place. This situation can 
be interpreted as “rework” which gener-
ally means high costs for a low production. 
McKenzie (1967) showed how increasing 
rock fragmentation decreases loading, 

hauling and crushing costs, while drilling 
and blasting costs increase; an optimum 
situation should be found at the inter-
section of McKenzie costs curves. One 
important challenge is the high degree 
of uncertainty posed by local geological 
conditions. In practical situations, due 
to structural conditions (Grenon et al., 
1998; Lu & Latham, 1998, Chakraborty 
et al., 2004), the cost curves, and hence the 
optimum conditions, vary from bench to 
bench. Nevertheless, aiming at industrial 
level productivity, a robust pre-defined 
blast design must be used to drive the 
subsequent operations, with minimal 
adjustments if any. This paper proposes 
an innovative approach to the solution of 
the blasting problem, as an alternative to 
conventional optimization approaches.

2. Complexity analysis

The blasting process in open pit 
mining incorporates several variables 
that can contribute to its fragmentation 
results. Such variables have been discussed 
by many authors (Lu & Latham, 1998; 
Thornton et al., 2002; Mancini & Cardu, 
2001; Chakraborty et al., 2004.) follow-
ing a general classification that includes: I) 
geometrical variables (drilling pattern and 
bench geometry); II) explosive variables; 
III) initiation system variables; and IV) 
rock parameters. This paper presents a 
new approach to understand the inter-
dependencies among all these variables 
through Complexity Analysis tools. In 
this heuristic procedure, where neither ap-

proximation nor linear regression models 
are applied to the data, it is possible to 
take into account the a-typical set of data 
usually considered as outliers. It results 
in an innovative methodology: the whole 
complexity of the given system is captured, 
revealing hidden structural links that 
would be necessarily by-passed through a 
traditional linear-regression based analy-
sis, in the form of a system map. 

Engineering systems can be seen 
as transformations of input data into 
elaborated output results through par-
ticular types of flow. The complexity 
C is a function of the structure and the 
entropy of the data flowing through the 

system. Moreover, every system has a 
critical level of complexity CCR, in which 
proximity it starts to behave erratically 
and in an unpredictable way. The degree 
of Robustness, or resilience, defined as 
the difference between C and CCR, is the 
measure of the system’s ability to with-
stand changes in its working environment 
without losing functionality. Thus, a sys-
tem is considered “robust” if its results are 
not greatly affected by pathologic input 
data. Further elaboration on Complexity 
Analysis is beyond the scope of this paper. 
A more detailed reading on the subject 
can be found in Marczyk (2006) and 
Marczyk (2008).

Complexity and fragility

Highly complex systems are more ex-
posed to the effects of uncertainty because 
of the countless ways by which they can 
fail, some of them even due to apparently 
innocent causes. Complexity derives from 
the design, while uncertainties derive from 

the realization and the work environment. 
Their combination leads to the fragility of 
the system. In this case study, the design is 
the blast project, totally controllable; the 
realization is the drilling and charging op-
erations, only controllable up to a certain 

level; the environment is the local geo-
logical condition, not controllable. Since 
uncertainty in the environment (geology) 
cannot be avoided, we must learn to live 
with it. Hence the need is to manage com-
plexity through the design (blast project).

Optimization and robustness

The approach to this problem by 
searching for the optimum appears to be 
inefficient. As specified in the introduction, 
the geological environment is character-
ized by too many uncertainties to have 

an optimum valid for many applications. 
Robustness is the capability of the system 
to produce expected and acceptable results 
under varying or even unforeseen condi-
tions. Since the geology varies from site to 

site, and often from bench to bench on each 
site, setting a robust method can grant bet-
ter overall results in varying environments, 
lowering the costs and increasing benefits 
such as predictability and safety.

Model Analysis

The reliability of a model can be considered as the rate of fitting between the complexity of the model and the 
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complexity of the system. A measure-
ment of the reliability (credibility) of 
a model can be given by the Model 
Credibility Index (Marczyk, 2008):  .  

In the present case, test refers to real 
measurements from the field. Gener-
ally, if Ctest>Cmodel the Model misses 
physics; if Ctest<Cmodel the Model gener-

ates noise. A model is a well-done one 
when its MCI is low, and both System 
Maps have the same topology (same 
connections between the variables). 

3. Complexity analysis application

The proposed approach has been ap-
plied to actual blasting data of a limestone 
quarry located in Taubaté, São Paulo, in 
Brazil. In order to evaluate the impact of 
Complexity Analysis, the first approach 
has been the determination of the levels 

of complexity in the dimensioning of the 
geometrical and charging parameters of 
the blast. 

To achieve this analysis three model-
ing instances have been evaluated: 
i)	 the empirical dimensioning model used 

by the mine management.
ii)	 An analytical dimensioning model 

proposed by Berta (1985).
iii)	The field data of drilling pattern and 

charging used in the mine during blast-
ing operations in March 2010.

Empirical model

The model used by the mine man-
agement to dimension the blast is based 
on an empirical procedure. It refers to 
the monomial formula: Q = P.F.×H×E×V, 
where Q is the quantity of explosive per 
hole, P.F. is the powder factor, or specific 
charge, H is the height of the bench, E 

the spacing between the holes and V the 
burden. All the geometrical variables of 
the blast, including stemming and sub-
drilling, are correlated by empirical thumb 
rules, with proportions referring to the 
available drilling diameter. The specific 
charge is empirically determined. The 

mine management refers it to the mass of 
the rock instead of its volume, and con-
siders two different conditions: Massive 
Rock (150~200 g/t) and Weathered Rock 
(80~120 g/t). The charge of explosive per 
hole is consequently calculated knowing 
the volume weight of the rock ρR [t/m

3].

Analytical model

Berta (1985) wrote a blast design 
model based on a total energetic balance of 

the blast. According to Berta, the expres-
sion of the specific charge can be written 

as follows:

Where s is the desired degree of 
fragmentation, εss the rock specific 
surface energy, ε the explosive specific 
energy, η1 an acoustic transfer efficiency 
taking into account the acoustic imped-
ances of the rock and the explosive, η2 a 

coupling efficiency taking into account 
the backlash between the cartridges 
and the hole wall, and η3 an energetic 
fragmentation transfer efficiency con-
sidered as 0,15 as Berta analytically 
demonstrates that the amount of en-

ergy transferred to the rock to produce 
fragmentation is 15% of the total. The 
burden can then be calculated after 
the diameter of the cartridge Øc, the 
specific charge and the density of the 
explosive ρe:

P.F. =      s. εss

            η
1
. η

2
.η

3
.ε

Berta usually suggests a squared 
drilling pattern, hence considering E = 

V. Known the height of the bench H, the 
charge per hole Q[kg] is therefore calcu-

lated using again the monomial formula 
reported in the previous paragraph.

V =  ∅
c            

ρ
e  π

                  4.P.F.√

Mine site data

The mine extracts limestone by 
open pit blasting of horizontal benches 
and sub-vertical holes. Depending on 

the zone of the quarry, the rock appears 
to be from compact to quite weathered. 
The data used in this analysis are taken 

from the field reports compiled by the 
blasters and referring to the drilling pattern 
and charging parameters used on the field. 

Complexity analysis on the empirical model

The empirical model shows such 
a high degree of empiricism that at this 
stage no correlations appear between 
the geometrical characteristics of the 
pattern (V, S, B, U) and the charging 
parameters (P.F., Q). These results are 
shown in Figure 1a. The P.F. is mainly 
determined by the weathering condition 

of rock, being calculated around two 
central values for massive or weathered 
rock. That creates two attractors shown 
in the multidimensional map of Figure 
1b (specific charge P.F. Vs the charge 
per hole Q), which cannot be explained 
anywhere else in the model. This means 
that, according to complexity, this kind 

of modeling cannot be based on theo-
retical proceedings without calibrating 
the specific charge with tests, in order 
to artificially create the missing links 
through field tests. 

Since the drilling parameters have 
no significant connection with the blast-
ing variables, they have been deleted 
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Figure 1
System process map 
a) and scatter plot 
b) of P.F. of the empirical model.

to consider a simplified datasheet that 
takes into account only the height of 
the bench and the P.F. as inputs and the 
charge per hole as a result. 

It can be concluded that:
•	 It is necessary to calibrate the P.F. 

with test blast at the beginning of 
excavations.

•	 Robustness is artificially high, due to 
the hard coded analytical geometric 
relationships of the model that add 
structure to the system and increases 

global entropy due to additional 
information exchange.

•	 In this kind of modeling the height 
of the bench doesn’t influence the 
complexity of the determination of 
the result (charge per hole).

Complexity analysis on the analytical model

Berta’s model contains many more 
variables than available at this stage 
of the analysis. Missing values of geo-
morphological variables have been taken 
from literature suggested by Berta himself 
to simulate the local conditions of the 
limestone orebody. The energetic and 
acoustic values of the explosive, where 
not available, have been assumed to be 
the same of similar emulsion explosives. 
The choice of the specific values, anyhow, 

doesn’t affect the behavior of the model.
Complexity Analysis performed on 

this model shows that the variables appear 
to have a high degree of inter-correlation, 
notable by the number of links of Figure 
2. Connections appear redundant, and 
this contributes to increase complexity. 
On the other hand, the model’s level of 
complexity is very close to the critical 
level (see the rainbow column in Figure 
2) hence the system appears to be very 

fragile. The model has a low level of 
confidence. This means that the model 
might be able to generate inconsistent 
results if fed with a high number of highly 
varying inputs. 

It can be concluded that:
•	 The system appears fragile, close to its 

critical level of complexity.
•	 The variables appear strongly inter-

correlated and their inter-connec-
tions redundant.

Figure 2
System process map 
of Bertá s model.

Complexity analysis on the mine site data

Complexity Analysis performed on 
the mine site data, as illustrated in Figure 
3, shows the structural links between 
geometrical and charging parameters 
that were lacking in the empirical model, 
as indicated in section 3.4. The com-
plexity of this amount of data appears 
considerably low, and very far from its 

level of criticality.
It can be concluded that in this kind 

of open pit bench blasting:
•	 The large dimension of the bench to be 

blasted (number of rows x total length 
of the blast) greatly contributes to the 
complexity of the operations.

•	 The number of rows influences the 

charging parameters, confirming what 
is suggested by many authors (e.g. 
Mancini & Cardu, 2001) to vary the 
P.F. for the holes of the rows after the 
first one.

•	 The degree of complexity of this kind 
of working appears to be very low and 
far away from its criticality.
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Figure 3
System process map and 

Complexity profile of field data.

Comparison of the models

A comparison has been carried out 
on the level of complexity of these two 
extremely different approaches to blast 
design. The results, reported in Table 
1, indicate that the analytical approach, 

with a greater number of active nodes, 
links and rules, appears to be more af-
fected by complexity. On the other hand, 
the parameter that mostly contributes 
to complexity appears to be much more 

critical for the empirical model than in 
analytical model.

In this case, the Empirical Model 
appears more robust, while the analyti-
cal one is more suitable for optimization.

Table 1
Comparison between the complexity 

levels of the analyzed models.

Complexity Parameters Empirical Model
(Mine Management)

Analytical Model
(Berta)

Complexity Level C  6.39  8.50

Critical Complexity CCR  8.16  9.74

Robustness 73.90 56.70

Maximum Contribution to complexity 
of the most critical parameter 25.03% 16.95%

Comparison between the empirical model and the site data 

Table 2 presents a summary compari-
son between the empirical model and the 
actual site data collected during drilling and 
charging. The complexity of the empirical 
model is much higher than the complexity 
of the field data. This appears to be due to 
the high dependency on the geometrical 

correlation of the drilling pattern. On the 
other hand, simplifying the datasheet to the 
essential variables (height of the bench and 
pre-determined P.F.) produces a degree of 
complexity which appears to be very close 
to the complexity of the field data. 

From the point of view of Complex-

ity Analysis, the drilling and the charging 
are separated and independent character-
istics of the blast. In both cases the model 
depends largely on the determination of 
P.F. This increases the complexity of the 
model, and it generates noise that requires 
further calibration to be eliminated.

Table 2
Comparison between the complexity 
levels of the model and the field data.

Complexity Parameters Empirical Model Mine Site Data Simplified Data 
Empirical Model

Complexity Level C 6.39 1.98 2.12

Critical Complexity CCR 8.16 2.89 2.56

Robustness 73.90 86.80 70.30

4. Conclusions

In the proposed approach, searching 
for the optimum appears to be inefficient 
for a high productivity target. The geological 
environment is characterized by too many 
uncertainties to have an optimum point valid 
for different blasting scenarios. Researching 
for robustness in blast design appears to 

produce much more efficient results. 
Complexity Analysis allows a clear 

understanding of the correlations between 
the variables in blasting systems and helps 
to manage their robustness.

Robustness and complexity levels 
can be used to compare different models 

and to measure the fitting of models with 
field data.

Complexity Analysis allows the 
understanding of the behavior of 
critical variables that can generate 
instability in the system thus leading 
to unexpected results.
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