
219

Ricardo Hundelshaussen Rubio et al. 

REM: R. Esc. Minas, Ouro Preto, 69(2), 219-226, apr. jun. | 2016

Abstract

Estimation of some mineral deposits involves chemical species or a granulomet-
ric mass balance that constitute a closed constant sum (e.g., 100%). Data that add up 
to a constant are known as compositional data (CODA). Classical geostatistical esti-
mation methods (e.g., kriging) are not satisfactory when CODA are used, since bias 
is expected when estimated mean block values are back-transformed to the original 
space. CODA methods use nonlinear transformations, and when the transformed data 
are interpolated, they cannot be returned directly to the space of the original data. If 
these averages are back-transformed using the inverse function, bias is generated. To 
avoid this bias, this article proposes geostatistical simulation of the isometric logratio 
ratio (ilr) transformations back-transforming point simulated values (instead of block 
estimations), with the averaging being postponed to the end of the process. The results 
show that, in addition to maintaining the mass balance and the correlations among the 
variables, the means (E-types) of the simulations satisfactorily reproduce the statistical 
characteristics of the grades without any sort of bias. A complete case study of a major 
bauxite deposit illustrates the methodology.

Keywords: compositional data, isometric transformations ratios (ilr), simulation, closure.

Ricardo Hundelshaussen Rubio
Engenheiro Industrial, MSc, Doutorando

Universidade Federal do Rio Grande do Sul - UFRS 

Departamento de Engenharia de Minas

Porto Alegre - Rio Grande do Sul - Brasil

rhundelshaussen@gmail.com

João Felipe Coimbra Leite Costa
Professor, Engenheiro de Minas, MSc, PhD

Universidade Federal Rio Grande do Sul - UFRS

Departamento de Engenharia de Minas

Porto Alegre - Rio Grande do Sul - Brasil

jfelipe@ufrgs.br

Marcel Antonio Arcari Bassani
Engenheiro de Minas, MSc, Doutorando

Universidade Federal Rio Grande do Sul - UFRS

Departamento de Engenharia de Minas

Porto Alegre - Rio Grande do Sul - Brasil

marcelbassani@hotmail.com

A Geostatistical Framework 
for Estimating Compositional 
Data Avoiding Bias in 
Back-transformation

Mining
Mineração

http://dx.doi.org/10.1590/0370-44672015690041

1. Introduction

Mineral deposits such as iron ore, 
bauxite, and phosphate are characterized 
by containing, in addition to the main ele-
ments (Fe2O3, Al2O3, P2O5, etc.), other ele-
ments or chemical species with effects on 
economic viability, industrial processes, or 
mine planning. It is common to estimate 
multiple elements, possibly correlated and 
sometimes with a combination of contents 
that must sum to a particular figure (e.g., 
100%). According to Aitchison (1981), 
data that add up to a constant are termed 
compositional data (CODA), and they 
carry information that is relative and not 
absolute. This condition of summation 
to a constant implies that the estimates 
should also sum to a constant.

When working with multi-element 
deposits and, furthermore, having to deal 
with CODA, which are not necessarily 
physically correlated (spurious correlation; 
Pearson, 1897), it is not possible to use 
traditional methods to achieve closure of 

the mass balance of the multiple chemi-
cal species or physical variables. Thus, to 
overcome this inconsistency, it is typically 
necessary to perform post-processing, 
such as proportional distribution of the 
error of closure between the different 
granulometric fractions for each of the 
estimated elements.

Classical geostatistical methods such 
as ordinary kriging (Matheron, 1963) may 
be appropriate for the best local estimate 
of a single variable, ignoring its spatial 
interdependence with other correlated 
attributes. Each variable is estimated sepa-
rately (in the case of ordinary kriging) with 
its specific parameters of spatial continu-
ity, which leads to different weights being 
obtained for each attribute and a failure to 
obtain estimates that satisfy the constant-
sum constraint. In the case of ordinary 
cokriging (Marechal, 1970), which takes 
into consideration the correlation between 
multiple variables, closure can only be 

ensured when working with an intrinsic 
coregionalization model (ICM). However, 
the model used as reference for the direct 
and cross variograms is rarely adjusted 
adequately for all variables. When a linear 
coregionalization model (LCM) is used, 
the complexity of modeling the variogram 
increases with the number of variables and 
also fails to ensure the closure balance.

Aitchison (1986) developed two 
transformations to deal with CODA, 
ensuring that any operation applied to the 
transformed data sums to a constant after 
these data are back-transformed to the 
original space. These transformations are 
known as additive logratio transforma-
tions (alr) and centered logratio transfor-
mations (clr). Egozcue et al. (2003) defined 
new transformations, called isometric 
logratio transformations (ilr), which are 
used in this article. A fundamental feature 
of the methods mentioned is the use of 
nonlinear transformations (logarithms).
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Pawlowsky et al. (1995) and 
Odeh et al. (2003) applied alr cokrig-
ing and univariate ordinary kriging, 
respectively, to predict composition at 
unsampled locations. They used the 
inverse transformations (agl) to back-
transform the elements of the estimated 
variates. However, this back-transform 
is biased (the average data transformed 
by a nonlinear function cannot be 
back-transformed by a linear function 
(OK) without generating a bias) and a 
solution for an unbiased back-transform 
is unknown (Pawlowsky-Glahn and 
Olea, 2004).

Bragulat et al. (2002), Bragulat and 
Sala (2003), and Boezio et al. (2012) used 

kriging and cokriging of logratio transfor-
mations applied to mineral deposits. They 
also used the inverse transformations in 
the estimated variables, but a problem 
appears when this type of transformation 
is used in the estimation process, since 
the average kriged block values cannot 
be back-transformed without biasing the 
estimated grades. To solve this problem, 
Pawlowsky-Glahn and Olea (2004) sug-
gested a numerical approximation to 
generate unbiased estimates in the inverse 
transformations of CODA. This approxi-
mation is obtained through the use of the 
Gauss–Hermite procedure (Lark and 
Bishop, 2007; Ward and Muller, 2012; 
Delgado et al., 2012).

This paper presents an alternative 
way to deal with transformed data (ilr) 
and avoid bias in the back-transforma-
tion, i.e., geostatistical simulations. The 
main idea is to back-transform simu-
lated points on a closely spaced grid (in-
stead of estimated blocks) to the original 
space (at point support), postponing the 
averaging into larger volumes (blocks) 
to the end of the process. Furthermore, 
it is proposed that closure of the sum on 
chemical and granulometric variables 
be ensured at each simulated block, 
thereby reproducing the correlations 
between them. A complete case study 
of a major bauxite deposit illustrates 
the methodology.

2. Methodology

2.1 Compositional data analysis (CODA)
A composition of D parts is a 

vector x=[x1,x2,…,xD] all of whose com-
ponents are strictly positive numbers 
and carry only relative information. 

This information is conditioned to 
sum of a constant and represents 
parts of a whole, for example, unit (1), 
percent (100%), or parts per million 

(ppm). Pawlowsky-Glahn and Buc-
cianti (2011) define the sample space 
containing the compositional data as 
the D-simplex.

SD =
D

i = 1
∑x = [x1, x2, ..., xD]{ {xi > 0,i = 1,2, ..., D; xi = k

where the components of each vector in 
SD are called the parts of the composi-

tion. The operation that defines the 
closure of a composition in a constant 

k is given by

C (Z) = 
kZ1

D

i=1
∑ Zi

kZ
D

D

i=1
∑ Zi

kZ2
D

i=1
∑ Zi

, , ...,[ [
where
C(Z) is the closure operation;

k is the closure constant (generally 100%);
Z

i
 is the value of the ith sample.

2.2 Isometric logratio transformation (ilr)
Before defining the transforma-

tion (ilr), it is necessary to understand 
the concept of an orthonormal basis. 
As in any Euclidean space, there are an 
infinite number of orthonormal bases in 
SD that can be obtained by various meth-
ods, for example, the Gram–Schmidt 
procedure mentioned by Egozcue et al. 
(2003) or the singular value decomposi-
tion (SVD) procedure described by Paw-

lowsky-Glahn et al. (2010). Pawlowsky 
et al. (2005) proposed a new method for 
obtaining an orthonormal basis, known 
as sequential binary partition (SBP).

The SBP is defined by Egozcue et 
al. (2005) as a hierarchy of parts of a 
composition for obtaining particular or-
thonormal coordinates. In the first order 
of the hierarchy, all parts are divided into 
two binary groups (+1 and −1). In the 

following steps, each group is divided 
into two new groups, and the pro-
cess continues until all groups have 
a single part. The number of binary 
partitions at the end of the process is 
D − 1 (where D is the number of dimen-
sions, corresponding to the number of 
variables per fraction). Table 1 shows 
an example of the SBP applied to a 
composition of five parts.

Table 1
Sequential binary partition of a five-part 
composition (P1,…,P5), where r(+) repre-
sents addition of positive 1’s (+1) and s(−) 
represents addition of negative 1’s (−1).

Order P1 P2 P3 P4 P5 r(+) s(−)

1 +1 +1 +1 −1 −1 3 2

2 +1 +1 −1 0 0 2 1

3 +1 −1 0 0 0 1 1

4 0 0 0 +1 −1 1 1

(1)

(2)
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As proposed by Egozcue et al. (2003), the isometric logratio transformation of the ith composition is defined by

ilri =
rs

r + s
ln [ [(xi1, xi2..., xir)

1/r

(x
j1, xj2..., xjs

)1/s

where
ilr

i 
= ilr transformation for ith composition;

r = sum of the positive 1’s (+1) in the SBP;
s = sum of the negative 1’s (−1) in the SBP;

(xi1 xi2…xir)
1⁄r = geometric mean of the 

variables that were selected with (+1) in 
the SBP;
(xj1 xj2…xjs)

1⁄s = geometric mean of the 

variables that were selected with (−1) in 
the SBP.

This new transformation will have 
D − 1 dimensions for each composition 
analyzed, depending on the number of 
original variables.

The next step consists in using geo-
statistical simulation methods for each 

transformation (ilr). In this specific study, 
the turning bands algorithm (Matheron, 
1973) was used to run simulations in 
multi-Gaussian space. Various alterna-
tive simulation methods are available in 
literature (Deutsch and Journel, 1998), but 

the one chosen here proved to be efficient 
for the purpose of the study. At the end 
of the process, each simulation is back-
transformed to the space of the original 
data by an inverse isometric logratio 
transformation given by

ilr -1 = C (exp( x . ψ ))

where
ilr-1 = back-transformation;

x = simulated value for the transforma-
tion (ilr);

ψ = matrix constructed from the SBP;
C = closure operation (equation (2)).

The construction of the matrix ψ 
is based on the SBP that was initially 

defined. Each partition will have its own 
matrix depending on the number of 

variables. This new matrix is calculated 
as follows:

ψ
i+
 = +

s
i

r
i
 (ri+ si)

ψ
i-
 = -

r
i

s
i
 (ri+ si)

where ψi+ and ψi- represent the values 
of the matrix ψ defined as +1 and −1 
in the SBP, and r

i
 and s

i
 represent the 

sums of +1 and −1 obtained in the same 
partition. For the example presented 
in Table 1 corresponding to an SBP 

of five parts, the matrix ψ is defined 
in Table 2.

Table 2
Matrix ψ of a five-part 

composition (Q1,…,Q5).

(3)

(4)

(5)

(6)

(7) ψ
i0
=0 

Order Q1 Q2 Q3 Q4 Q5

+
2

3 (3+2)
1 +

2
3 (3+2) +

2
3 (3+2) -

3
2 (3+2) -

3
2 (3+2)

+
2

3 (3+2)
2 +

2
3 (3+2) -

3
2 (3+2)

0 0

+
2

3 (3+2)
3 -

3
2 (3+2)

0 0 0

4 0 0 0 +
2

3 (3+2) -
3

2 (3+2)
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2.3 Case study
The case study corresponds to a data set from a bauxite deposit located in the Brazilian Amazon (Figure 1).

Figure 1
Location map of the study area.

The variables correspond to three 
granulometric fractions (percentages of 
the total mass retained at given sieves 
during screening tests). These variables 
are defined as recoveries at the follow-
ing fractions: +14# (REC14), +400# 
(REC400), and −400# (REC-400). Each 
variable is defined as the percentage of 
the mass retained on each sieve, and the 
sum of the variables for each analyzed 
sample should be 100%. However, there 
are some errors associated with sam-
pling (Abzalov, 2011) that prevent that 
the sum of the variables analyzed from 

closing to a constant. In this particular 
case, these errors were not greater than 
±3%. Therefore, to start the analysis of 
the CODA, the closure operation given 
in equation (2) was applied.

The isometric logratio transforma-
tion was subsequently applied for each of 
the compositions of the three analyzed 
variables. This transformation led to 
a two-dimensional sample space, in 
which the variables were called ilr

1
 and 

ilr
2
. Each variable was independently 

simulated, considering their spatial con-
tinuity models and search parameters. 

The total number of simulations was 30 
for each variable (number of realizations 
sufficient to map uncertainty due to the 
standardization of the variance of the 
means). The final estimate was taken 
to be the E-type (average) of these 30 
simulations. Figure 2 shows a suitable 
procedure for working with CODA with-
out generating bias by back-transforming 
block estimations. Note that the average 
of the simulated blocks (50x50x0.5)m is 
obtained after the punctual simulations 
(10x10x0.5)m are back-transformed by 
the inverse function ilr-1 (step 7).

Figure 2
Procedure for using the 
transformation (ilr) without 
generating bias in the average 
blocks that are back-transformed.

step 1

Inverse N-
Score

step 2

step 3

step 4

step 7

step 6

step 5

Inverse
Transformation

(ilr-1)

Upscale
(Block Average)

N-Score
Transformation

Transformation
(ilr)

Variography

Simulations
Original Data
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3. Results

Each simulation generated was 
validated by the reproduction of the 
basic statistics of the original data, the 
variogram model, and the correlations 
among the variables. Table 3 shows a 

statistical summary of the original data 
and the upscaled results for two realiza-
tions selected randomly (Nos. 4 and 
24). Note that these simulations, like 
the others, satisfactorily reproduce the 

general characteristics of the analyzed 
variables, not exceeding the minimum 
and maximum values of the original data 
and with a relative error in the average 
not exceeding 5%.

Table 3
Basic statistics of original 

data and realizations Nos. 4 and 24.

Variable

Original data (%) Upscaled realization 
No. 4 (%)

Upscaled realization 
No. 24 (%)

Min. Max. Mean Min. Max. Mean Min. Max. Mean

REC14 3.21 97.52 67.63 4.06 96.94 67.55 4.23 97.23 66.97

REC400 0.55 44.86 9.36 1.24 50.34 9.57 0.79 62.14 9.67

REC-400 1.04 94.14 23 1.6 85.08 22.87 1.05 92.82 23.36

Figure 3 shows the non-ergodic 
correlogram model of the original data 
(red) and those for the 30 realizations 
(green) corresponding to the variables 
Rec14, Rec400, and Rec-400. Note that 
for all variables, the model satisfactorily 

reproduced the ergodic fluctuations. For 
modeling spatial continuity, a non-ergodic 
correlogram was used (Srivastava, 1987). 
Table 4 shows correlation matrices be-
tween the original variables (a) and the 
E-type simulations (b). Note that the cor-

relation of the E-type simulations between 
the variables Rec14 and Rec400 showed a 
small increase of 0.1. This small increase is 
a characteristic resulting from the smooth-
ing effect generated by the E-type model 
(as in kriging).

Figure 3
Spatial continuity models for the 

original data (red) and simulations (gre-
en), obtained using a non-ergodic correlo-
gram: (a) Rec14; (b) Rec400; (c) Rec-400.

(a) (b)

(c)
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Table 4
Correlation matrices: 
(a) original data; (b) E-type simulations.

(a) Original data

Variable Rec14 Rec400 Rec-400

Rec14 1 −0.67 −0.95

Rec400 −0.67 1 0.42

Rec-400 −0.95 0.42 1

(b) E-type simulations

Variable Rec14 Rec400 Rec-400

Rec14 1 −0.77 −0.95

Rec400 −0.77 1 0.54

Rec-400 −0.95 0.54 1

A final validation was carried out 
through checking the local average re-
production (swath plot) by comparing the 
block grade means versus the declustered 

data means for each variable respectively. 
The plots check the E-type model derived 
from 30 simulations. Figure 4 shows the 
local averages of the variable Rec14 along 

the East–West, North–South, and vertical 
(Z) directions. Note that the model and 
data mean show good adherence along 
all directions.

Finally, the closure of the estimated 
masses retained on each sieve was ana-
lyzed. This closure is given by the sum of 
the percentages retained at the three 

granulometric fractions at each simulated 
point. Figure 5 shows the histograms for 
the closure values at each block for three 
randomly selected simulations (Nos. 8, 15, 

and 21). Note that in each case, the closure 
was at 100%; that is, the sum of the per-
centages of the total mass at each simulated 
node was guaranteed to be constant.

Figure 4
Swath plot for the variable Rec14 
comparing grades from the E-type 
models (red line) and the declustered 
data local mean (green line) along (a) 
the East–West, (b) the North–South, 
and (c) the vertical (Z) directions.

(a) (b)

(c)
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Figure 5
Histograms for the closure (sum of the 
percentages of the total mass for each 
granulometric fraction) of the simula-

tions: (a) No. 8; (b) No. 15; (c) No. 21.

4. Conclusion

Simulations of the transformation 
(ilr) have shown it to be an alternative tool 
for dealing with compositional data on 
multi-element mineral deposits for several 
reasons. It avoids bias in direct kriging 
of blocks of nonlinearly transformed 

data by retaining the E-type of multiple 
simulations. The simulations are satisfac-
torily validated by the data statistics: they 
satisfactorily reproduce the basic statistics 
of the original data, the model of spatial 
continuity, and the correlations between 

variables, and they exhibit good adherence 
between E-type block values and the local 
data average. All the simulations ensured 
the granulometric closure of the masses 
retained on each sieve (100%) at each grid 
node or block (after upscaling).
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