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Pigment chromatic adaptation in Cyclotella caspia Grunow (Baclllarlophyta) 
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• Abstract: The diatom CycJotella caspia Grunow, isolated from surface waters of the 
Ubatuba region (São Paulo State, Brazil) was submitted to different light spectral 
distributions for examination of its adaptative response. Growth rate and the 
photosynthetic pigments chlorophyll a, chlorophyll c, carotenoids and 
phaeopigments were measured under white, blue and red light of the sarne 
intensity (8 and 20 ,uE.cm -2 .s -1). Growth rate increased under blue light while red 
light increased chi a concentration. The relative proportion of chi a and carotenoids 
did not change, demonstrating the absence of complementary chroJl!atic 
adaptation. 

• Descriptors: Phytoplankton, Photosynthetic pigments, Chromatic adaptatioo, 
llght effects, Growth, Chlorophylls, Carotenoids, Cyclotel/a caspia. 

• Descritores: Fitoplâncton, Pigmentos fotossintéticos, Adaptações cromáticas, 
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Introduction 

Photoadaptative responses of phytoplankton 
pigments have often been studied and are rather well 
known with respect to light intensity effects (Prézelin 1976, 
1981; Perry et ai., 1981; Harding et ai., 1983; Richardson et 
ai., 1983). 

ln marine environments, light quality differs both with 
depth and location. ln estuarine environments, with high 
turbidity, light attenuates rapidly with depth and the 
predominant subaquatic light varies from green to red; in 
oceanic waters, with a small arnount of particulate and 
dissolved material, blue-green light predomioates (Jerlov, 
1976). 

Diatoms are an important and ubiquitous group and 
their accessory pigments absorb radiation over a broad 
range ofvisible wavelenghs (Jeffrey, 1980). The purpose of 
this study was to determine if the diatom CycJotella caspia 
Grunow responds to differences in spectral distributions 
of ambient light with pigment changes, and whether such 
changes occur as complementary chromatic adaptation. 

Meeson & Faust (1985) emphasize that most studies 
have not made a clear distinction between the responses 
due to spectral quality and those due to total irradiance. 
To separate these responses, 1) comparisons must be 
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made in different color spectra but at similar total 
irradiances and 2) irradiance must be expressed in 
quanta. 

These responses were first separated by Jeffrey & Vesk 
(1977) and Vesk & J effrey (1977), working with the diatom 
Stephanopyxis tuTris (Grev.). Using total energy rather 
than quantum fiux density, they showed that cells grown in 
blue green light at low irradiance (400W cm -2) had higher 
pigment content than cells grown in white light at the sarne 
irradiance. Faust et ai. (1982), working with the 
dinofiagellate Prorocentrum minimum (Pavillard) Schiller 
under four different light qualities, showed that cells grown 
in blue light at low photon fiux density (PFD) (11.5 
,umol quanta m-2 s-I), grew faster and had lower pigment 
content than cells grown in red, green or white light at 
similar PFD. 

Complementary chromatic adaptation has often been 
observed in cyanobacteria (Bogorad, 1975; Kohl & 
Nicklisch, 1981; Glover et ai., 1987; Prézelin et al., 1989). 
Cyanobacteria show no change in pigment ratios in 
response to total irradiance, so that change in the pigment 
ratio may indicates a response to light quality change. 
However, in diatoms, dinofiagellates and chrysophytes, 
pigment ratios change in response to total irradiance, and 
any change in accessory pigments causes a change in chi a 
(Richardson et ai., 1983). To detect complementary 
chromatic adaptation in these groups, it is necessary to 
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examine the magnitude of the pigment response at similar 
quantum flux densities (Meeson & Faust, 1985). 

Materiais and methods 

PFD normaUzation 

Light sources with three spectra were used: white, blue 
and red. For each spectrum, two fluorescent lamps of 40W 
were assembled in a horizontal incubator: Osram daylight 
lamps provided white light, Sylvania F4OT12/ AZ provided 
blue light and Sylvania F4Ot12/VE provided red light. The 
emission spectra of the colored lamps, furnished by the 
manufacturer, are shown in Figs 1, 2 and 3. Celluloid 
colored filters, with spectral transmittance obtained with a 
Zeiss PMQ-3 spectrophotometer were used over the 
corresponding lamps to narrow the spectrum and to 
reduce the irradiance coming from the mercury bands 
inherent in fluorescent lamps (F'Ig. 4). 

Experimental flasks were maintained above the lamps 
to permit illumination from the bottom. Flasks were 
covered with opaque shields to exclude light from other 
sources. 
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Fig.1. Emission spectra of the Osram daylight 
lamp (furnished by rnanufacturer). 
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Two PPDs were used in the experiments (8,uE.m-2 .s-l 
and 2O,uE.m-2 .s-l), measured by a U-COR Inc. (Lambda 
LI-18S) quantameter, both below the . level of 
photoinhibition of chlorophyll synthesis. Irradiance 
normalization of the different light sources was obtained 
by neutral filters. 

Cultw'e conditions 

Cultures of the diatom Cyclotella caspia were isolated 
from coastal waters off Ubatuba-SP by Dr. E. Aidar. 
During the experiments the algae were maintained in f/2 
medium (Guillard & Ryther, 1962) under continuous 
illumination and at 21°C temperature. 

First, the culture was transfered to 250ml Erlenmeyer 
flasks with 1S0ml of f(2 medium. Subsamples were 
maintained under each different light quality during 36 
hours to allow photoadaptation. After this time, 
experimental tlasks were inoculated in triplicate with 
1.5x104 cells mi-I. 

ln a first stage, cells were grown to determine growth 
rate and dN/dt max under each light quality. This point is 
necessary to be established to ensure a low concentration 
of degraded pigments at the next stage of the experimento 
when pigments were analysed. 
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Fig. 2. Emission spectra ofthe Sylvania F40T12/f\Z.. 
(blue) lamp (furnished by rnanufacturer). 
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Fig. 3. Emission spectra of the Sy/vania F40T12NE 
(red) lamp (furnished by manufacturer). 

Subsamples were obtained every 24 hours for growth 
rate determination. Cell counts were made with Nageotte 
hemacyt;ometer chambers at cell densities lower than. ~04 
cells mrl, ~asse- Lafont charnbers were used for dens1l1es 
between 10 and lOS cells.ml-1 and Fuchs-Rosenthal for 
cell densities higher than lOS cells.ml·l .dN/dt Max was 
attained after 3 days for cells illuminated with blue light, 
after 5 days for red light and 6 days for white light 

Pigment analysis 

Pigments were analysed by the time of dN/dt Max for 
each light spectrum, to assure a similar physiological state 
for the cultures. Extraction was in 90% acetone, and 
concentrations were determined for chI a and Cl (Jeffrey 
& Humphrey, 1975), carotenoids (Parsons et ai., 1984) and 
phaeopigments (Lorenzen, 1967) using a Zeiss model 
PMO-f3 speftrophotometer. Pigments were expressed in 
pg lO' cell' . 

Statistical analyses 

Growth rates and pigment concentrations were 
submitted to single factor analysis of variance (ANDV A) 
to test the null hypothesis Ho: f1.1=f1.2=113 (Zar,1984). 
Tukey multiple comparison test was applied (Zar, op. cit. ) 
when Ho was rejected. 
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Fig.4. Transmission spectra of the celluloid filters 
used in the experlment. 

Results 

Growthrate 

Cultures submitted to the different light spectra at8f1.E. 
m·2.s·1 PFD did not grow (Fig. 5), showing that this light 
leveI was below the comp'ensation irradiance for this 
population. At 20 f1.E.m·2.s·1 PFD, cells in blue light grew 
better than cells grown in the other bands at the sarne PFD 
(Fig.6). The treatment with blue light showed, by ANDV A 
and Tukey test, significant1y higher growth rates than those 
with red or white lights (Table 1). 

Photosynthetic pigments 

Analysis of variance of cell number showed that cultures 
submitted to the three spectral qualities prese':lted similar 
cell numbers by time of sampling for pigments analysis 
(Table 2). 

Different pigment concentrations per cell are presented 
in Table 3. ChI a concentration was lowest .in cellsgrown 
in blue light and highest in cells grown in red light. The 
treatment with white light showed an intermediate result, 
not statistically different fram the others. 

ANDV A of chI c, carotenoids, phaeopigmepts, chI a: 
carotenoid, chI a:chI c and carotenoids:chI c ratio for the 
different treatments showed no significant differences at 
a = 5% (Table 4) . 
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Flg.5. Growth curves for Cyclotella caspia growlng ln Gulllard f/2 medlum under 8 .uE.m-2.s-1 PFD. 
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Fig. 6. Growth curves for Cyclotella caspia growing in Guillard f/2 medium under 20.uE.m-2.s-1 PFD. 
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Table 1. ANOVA and Tukey multlple comparlson 
test for growth rate (dlv./day) ln Cyclotella 
easpia u~der the three IIght quallty, 
20 ,uE.m- .S,1 PFO 

TREATMENT 
(light) 

BlUE 
REO 
WHITE 

TUKEY TEST: 

GRMH RATE 
(div./dey + SO) 

0.85 + 0.03 
0.50 + 0.03 
0.49 + 0.01 

A N o V A a = 0.05 

HO: ,uI = 1!:2 = ,u3 
HA: means are not 

ali eq.Jal 
F=249.80 (p«0.OO1) 
Reject HO 

~les ranked by mean: 2 3 
Ranked sample means(in div./day): 0.49 0.50 0.85 
Treatment: IIH ITE REO BlUE 

COI'AR I SON q CONClUSION 

3 vs. 1 
3 vs. 2 

2 vs. 1 

24.49 (p<0.001) 4.339 
23.81 (p<0.001) 4.339 
3.78 (p>0.20) 4.339 

,uI :ii' ,u3 

,u2 :ii' j.t3 

,uI = j.t2 

SD = standard deviation; 
q = q value of Tukey test; 
a = signif icance leveI = 0.05; 
1) = error degree of freedom = 6; 
K = total I'Ulber of means being tested = 3 

Table2. ANOVA for log of cell number per mi by 
time of sampling for pigments analysis in 
Cyclotella e~ia underthethree Iight quality, 
20,uE.m·2.s' PFO 

TREATMENT 
(light) 

BlUE 
REO 
IIHITE 

lOG(CEll NUMBER/ml) 
± so 

4.84 :!: 0.02 
4.82 :!: 0.04 
4.82 :!: 0.01 

50 = standard deviation; 
a = significance leveI 

A N o V A a = 0.05 

HO: j.tl = j.t2 = j.t3 
HA: means are not 

ali eq.Jal 
F=O.80 (p»O.25) 
Do not reject HO 

Discussion 

Growthrate 

C. easpia showed results similar to those observed in P. 
minimum by Meeson & Faust (1985): both grew faster 
under blue light at low PFD and had lower pigment content 
than eells grown in red or white at similar PFD. 

Wallen & Geen (1971a,b), who studied the effeet of 
blue, green and white light on the growth and 
photosynthetie rate of Dunaliella tertioleeta (Butcher) and 
Cyclotella nana (Hustedt), also observed high values of 
growth and photosynthetie rate whe~ ~ese algae were 
illuminated with blue light at 37,uE.m' .s' intensity. They 
also verified that blue and green light ehanged the direetion 
of algal metabolism in favor of protein synthesis, whereas 
the white light caused carbohydrate synthesis. These 
results confirm the hypothesis that blue light causes the 
conversion of photosynthetic products in new cells, 
because algae that grow in this spectral quality have a 
higher cellular division rate than those grown in other 
spectral qualities. 

Photosynthetic pigments 

Meeson & Faust (1985) verified a clear increase in the 
peridinin:chI e ratio in P. minimum illuminated with blue 
light but only at low irradiances. They concluded that 
complementary chromatic adaptation is a function of PFD, 
because this phenomenon was not verified at higher light 
intensities. 

The studies of Jeffrey & Vesk (1977), Vesk & Jeffrey 
(1977), Shimura & Fujita (1975) and the present work 
support the statement of Halldal (1974) that 
complementary chromatic adaptation probably does not 
occur in phytoplankton groups that use chI e and 
carotenoids as accessory pigment. 

The present data shows that spectral differences at the 
sarne PFD stimulate adaptative effects in C. easpia as if it 
had been submitted to PFD variations: a simultaneous 
increase or decrease of all pigment concentrations occurs, 
in response to light quality variation. This response 
suggests a change at photosynthetic unit (PSV) density and 
not on the density of light-harvesting pigments per 
photosystem. 

Vesk & Jeffrey (1977) observed an increase in thilakoids 
concentration in cells of the diatom S. turris illuminated 
by different light qualities. This response could be 
explained by the incapacity of the algae to change pigment 
ratio in the PSUs and solely changing the absorption 
capacity of the pigments. Carotenoids absorb primarily 
blue light as does the Soret band of chI a and predominate 
only in J erlov I (J erlov, 1976) underwater environments. To 
absorb the sarne number of quanta under red light, the cells 
could possibly increase their light harvesting chI a, 
diverting their metabolic path from cell division. Higher 
efficiency of cellular division occurs under blue light with 
low pigment production, as verified by Meeson & Faust 
(op. cit.) with P. minimum. 

The present study shows that the diatom C. caspia 
presents chromatic adaptation responses at low photon 
fIux densities (20 j.tE.m,2 .s,l), with lower values of chl a 
in blue light when compared with white or red light. 
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Table 3. ANOVA for plgments concentratlon (pg 10.1 calr1) and Tukey multlple 
comparlson test for fhlwophyll a ln Cyclo~/la caspla under the three 
IIght quallty, 20,uE.m· .s· PFO. 

T R E A T M E N T 
PIGMENT 
(PII.10· 1 cell'1) WHITE SUJE 

eh lorophyll a :t SD 7.51 :!: 0.36 6.82 :t 0.59 

eh lorophyll c :t SD 1.47 :!: 0.12 1.28 ± 0.13 

Carotenoids !.SD 2.99 :!: 0.14 2.72 :t 0.20 
Phaeopigments !. SD 0.31 :!: 0.19 0.10 !. 0.07 

A N O V A FOR PIGMENTS CONCENTRATION 
HO: ,uI = ,u2 = ,u3 

RED 

8.48 :t. 0.46 

1.43 :!:. 0.02 

3.40 :!:. 0.42 
0.17 ! 0.07 

HA: me8"\S are not ElCJl8l a = 0.05 
PIGMENT 

Reject HO Ch lorophyll a 
Ch lorophyll c 
Carotenoids 
Phaeopi gments 

F = 7.10 (p<O.05) 
F = 1.40 (p>0.25) 
F = 4.67 (p>0.05) 

F = 1.87 (p>O.20) 

Do not reject HO 
Do not re ject HO 

Do not reject HO 

TUKEY TEST FOR CHLOROPHYLL a 

Salples rankecl by me8"\ 
Rankecl sarple me8"\s( in pg Chl a 10'1 cell'1) 6.82 

Treatment 

a»IPAR I S(JI q 

3 vs. 1 5.304 (p<O.05) 
3 vs. 2 3.099 (p>0.05) 

2 vs. 1 2.464 (p>0.05) 

SD = standard deviation; 
q = q value of Tukey test; 

a = siglific8"\ce level = 0.05; 

q(a,v,/C) 

4.602 
4.602 

4.602 

v = error degree of freedom = 6; 
/C = total rurber of me8"\S be ing tested = 3 

SUJE 

2 

7.51 

WHITE 

CONCLUSION 

,uI yI; ,u3 
,u2 = ,u3 
,uI = ,u2 

3 
8.48 
RED 
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Table 4. ANOVA for Chi a: Carotenolds ratio ln 
Cyclotella caspia un~er the three light 
quallty of 20 pE m- .S·1 PFD 

TREATMENT Ch l a:Caroten.RATIO 
(l ight) :!: 50 

BlUE 2.52 ± 0.02 

REO 2.51 :!:. 0.20 

WHITE 2.51 ± 0.17 

50 = standard deviationi 
a = significance level 

A N o V A a. 0.05 

HO: PI = P2 = P3 

HA: means are not 

aLl equal 
F=0.OO7 (p»O.25) 
Do not re ject HO 

However, this adaptation does not correspond to 
complementary chromatic adaptation (Engelmann, 1983), 
because the relative proportion between the pigments 
remained constant in each treatment. 

Future investigations shold focus on the metabolic 
products under different light spectra that should permit 
different ecological strategies of the species in the 
environment. 

Resumo 

A diatomácea Cyc/oteUa caspia Grunow, isolada de 
águas superficiais da região de Ubatuba (Estado de 
São Paulo, Brasil), foi submetida a diferentes 
intervalos espectrais de luz com a finali~de de se 
examinar sua resposta adaptativa. Foram medidos a 
taxa de crescimento e os pigmentos fotossintéticos 
clorofila a, clorofila c, caroten6ides e feopigmentos, sob 
luz branca, azul e vermelha de mesmas intensidades (8 
e 2OpE.cm·2.s·1). A taxa de crescimento aumentou sob 
luz azul, sendo que a concentração de clorofila a 
aumentar sob luz vermelha. A proporção relativa de 
cl a e caroten6ides não variou, demonstrando a 
ausência de adapatação cromática complementar. 
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