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ABSTRACT 

 

This study investigates the copula model that best fit to model the dependence structure of 

Credit Derivative Swaps (CDS) spreads. For the analysis, we consider daily data from the 

period of January 1, 2009 to December 31, 2014. Regarding the models, we considered Vine 

copulas and Hierarchical Archimedean copulas, and different families of copulas. Our results 

indicate that C-Vine copulas, as well Student t family, demonstrated better performance, 

according to the criteria used to get the dependence structure. The best fit of the dependence 

structure can avoid the model risk, from the use of an incorrect model.  
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RELACIONES FINANCIERAS INTERNACIONALES: ENTENDIENDO LA 

ESTRUCTURA DE DEPENDENCIA DE LOS CREDIT DERIVATIVE SWAPS (CDS) 

 

RESUMEN 

 

Este estudio investiga el modelo copula que mejor modela la estructura de dependencia de 

Credit Derivative Swaps (CDS) spreads. Para el análisis se consideraron datos diarios del 

período comprendido entre el 1 de enero de 2009 y el 21 de diciembre de 2014. Los modelos 

considerados fueron las Copulas Vine y las Copulas Arquimedianas, con diferentes familias de 

copulas. Nuestros resultados indican que las copulas C-Vine, así como la familia t Student, 

demostró mejor desempeño, de acuerdo con los criterios utilizados, para obtener la estructura 

de dependencia. El mejor ajuste de la estructura de dependencia puede evitar el riesgo del 

modelo, debido al uso de un modelo inapropiado. 

 

Palabras clave: Credit Derivative Swaps. Riesgo del modelo. Copulas Vine. 

 

 

RELAÇÕES FINANCEIRAS INTERNACIONAIS: ENTENDENDO A ESTRUTURA 

DE DEPENDÊNCIA DOS CREDIT DERIVATIVE SWAPS (CDS) 

 

RESUMO 

 

Esse estudo investiga o modelo cópula que melhor modela a estrutura de dependência de Credit 

Derivative Swaps (CDS) spreads. Para a análise foram considerados dados diários do período 

de 01 de Janeiro de 2009 a 21 de Dezembro de 2014. Os modelos considerados foram as 

Cópulas Vine e as Cópulas Arquimedianas, com diferentes famílias de cópulas. Nossos 

resultados indicam que as cópulas C-Vine, bem como a família t Student, demonstrou melhor 

performance, de acordo com os critérios utilizados, para obter a estrutura de dependência. O 

melhor ajuste da estrutura de dependência pode evitar o risco do modelo, decorrente do uso de 

um modelo inapropriado. 

 

Palavras-Chave: Credit Derivative Swaps. Risco do modelo. Cópulas Vine. 
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INTRODUCTION 

  

Credit derivative swaps (CDS) have become a key innovation in the credit risk market 

in the last few years, mainly because they are a versatile and adjustable financial instrument 

that splits the credit exposure of financial products between two or more parties (ALNASSAR 

et al., 2014). Coudert and Gex (2010) explain that the functionality of a CDS is simple, and 

that there are three parties involved: the credit buyer (CB), the credit seller (CS), and the 

reference company (RC). CB therefore buys a CDS from CS against the default risk of RC. CS 

guarantees to CB that he will receive a sum that compensates CB for his loss in the case of an 

RC default. To do this, CS receives a percentage of the face value of the debt from CB for the 

period of the contract or until RC defaults. 

This simplicity and adjustability, along with the efficiency with which the swap acts as 

a protection tool for financial players, creates a huge market for CDS (ABID; NAIFAR, 2006). 

In this sense counterpart credit risk is one of the most important drivers of financial markets 

(ARORA et al., 2012). Because of their importance, these derivative instruments have received 

attention from regulators, practitioners and researchers.  

Correctly modeling the dependence structure of a CDS is important for risk managers 

in order to set trading limits, for traders in order to hedge the market risk of their credit 

positions, and for pricing credit derivatives (FEI et al., 2013). Financial assets usually present 

asymmetry, non-linear dependence, non-normality, and other stylized facts commonly reported 

in the financial literature. The use of flexible models to deal with these characteristics will help 

reduce problems arising from the model risk.5  

Empirical studies on the insurance sector CDS indices have focused on analyzing the 

dependence of these financial instruments using copulas. Abid and Naifar (2006) applied a 

copula procedure on CDS from Japanese companies. Chen et al. (2011), who studied the 

dependence among South American countries during the Argentinian debt crisis in 2001, used 

a copula approach. Tamakoshi and Hamori (2014) investigated the dependence structure of the 

CDS indices of the insurance sector in the United States, the European Union, and the United 

Kingdom. In Gaiduchevici (2015) and Christoffersen et al. (2016) other uses of the copula 

approach are identified.  

Copulas provide a general approach to measuring dependence among groups of random 

variables; in addition, this approach makes no assumptions about the distribution of returns. In 

                                                
5 Model risk is related to sources of uncertainty caused by statistical models, such as model choice and the 

uncertainty of the parameters (parameter risk), according to Alexander and Sarabia (2012).  
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practical applications, the problem is to identify the correct copula to use for modeling the data. 

For the bivariate case, there are various investigations. However, for multivariate cases, the 

choice of adequate families is rather limited. An alternative is to use Vine copulas. Vines are a 

flexible model for describing multivariate copulas using bivariate copulas (KUROWICKA; 

COOKE, 2006). These constructions decompose a multivariate probability density into 

bivariate copulas, where each copula can be chosen independently from the others, which 

results in increased flexibility for modeling the dependence. Another possibility for modeling 

multivariate dependence through copulas is the Hierarchical Archimedean method.  

In this study, we investigate by means of copulas, the dependence structure of the CDS 

spreads of 20 countries, using daily data from January 1, 2009 to December 31, 2014, which 

corresponds to 1,565 observations. To reduce model risk resulting from the misspecification of 

the copula, we carried out an exhaustive investigation to identify which copula models were 

more appropriate for capturing the international dependence structure of CDS spreads, as well 

as which model best adjusted the marginal distribution. In this work, we considered Vine 

copulas and Hierarchical Archimedean copulas, and different families of copulas. 

We believe that this study makes two primary contributions to the above strand of the 

literature. First, it contributes to the identification of the copula model that reduces the model 

risk of the dependence structure of CDS spreads. Appropriate dependence techniques are of 

paramount importance in finance, since they are used as input into expensive decisions. On the 

other hand, our results on the dependence structure are important for regulators wishing to 

model the regulatory framework of the insurance sector. 

 

1 COPULAS 

 

To facilitate the presentation of the copula structure, we focus here on the bivariate case. 

A function 𝐶 ∶ [0,1]2 → [0,1] is a copula for the cases in which 0≤ x ≤ 1, and x1 ≤  x2, 𝑦1 ≤

 𝑦2, (x1, 𝑦1), (x2, 𝑦2)  ∈  [0,1]2.  This function fulfils the following properties: 

𝐶(x, 1) =  𝐶(1, x) = x,    𝐶(x, 0) =  𝐶(0, x) = 0,                                                           (1) 

𝐶(x2, 𝑦2) − 𝐶(x2, 𝑦1) − 𝐶(x1, 𝑦2) + 𝐶(x1, 𝑦1)  ≥ 0.                                                    (2) 

The first property refers to the uniformity of the margins, and the second, the n-

increasing property, represents the fact that 𝑃(x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2 ) ≥ 0 for (X, Y) with 

distribution C. Sklar (1959) showed that a copula C is connected with a distribution function 

and its marginal distributions. According to the theorem:  
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i) Given a copula C, and univariate distribution functions 𝐹1 and 𝐹2, a distribution 

F, with marginal distributions 𝐹1 and 𝐹2, can be represented by: 

            𝐹(x, y) = 𝐶(𝐹1(x), 𝐹2(𝑦)), for (x, y) ∈ ℛ2.                                                                (3)  

ii) Let C be a copula that satisfies (3) for a two-dimensional distribution function 

F with marginal distributions 𝐹1 and 𝐹2. C is unique if 𝐹1 and 𝐹2 are continuous, for every 

(x, y) ∈ [0,1]2: 

𝐶(x, y) = 𝐹(𝐹1
−1(x), 𝐹2

−1(y)),                                                                                     (4) 

where 𝐹1
−1(x) and 𝐹2

−1(y) represent the inverse of the marginal distribution functions of 𝐹1 and 

𝐹2, respectively.  

To extend bivariate copulas to the multivariate case, a flexible and intuitive way is to 

use Vine copulas. In the literature, C-Vines, R-Vines and D-Vines are proposed. For brevity, 

we present here only the C-Vine copula. In this case, the dependence in relation to a particular 

variable, the first root node, is modeled using bivariate copulas for each pair. In conformity 

with the work of Brechmann and Schepsmeier (2013), a root node is generally selected in each 

tree, and all pairwise dependencies, with respect to this node, are modeled conditioned on all 

previous root nodes. The structure is similar to a star, as can be seen in Figure 1. The C-Vine 

density, with root nodes 1, … , 𝑑, is represented by: 

𝑓(x) =  ∏ 𝑓𝑘

𝑑

𝑘=1

(x𝑘) ∗ ∏ ∏ 𝑐𝑖,𝑖+𝑗|1:(𝑖−1)

𝑑−𝑖

𝑗=1

𝑑−1

𝑖=1

(𝐹(x𝑖|x1, … , x𝑖−1), 𝐹(x𝑖+𝑗|x1, … , x𝑖−1)|𝜽𝑖,𝑖+𝑗|1:(𝑖−1)), 

where 𝑓𝑘 , 𝑘 = 1, … , 𝑑 represent the marginal densities and 𝑐𝑖,𝑖+𝑗|1:(𝑖−1) are the bivariate copula 

densities with parameter(s) 𝜽𝑖,𝑖+𝑗|1:(𝑖−1).  

 

2 EMPIRICAL ANALYSIS 

 

We used daily data for the CDS spreads of Argentina, Belgium, Brazil, China, Costa 

Rica, Croatia, France, Germany, Indonesia, Ireland, Italy, Jamaica, Korea, the Czech Republic, 

Russia, South Africa, Spain, Thailand, Turkey, and the United Kingdom. These countries were 

selected because they are representatives from different continents and present daily data 

characterized by periods of turbulence and lulls. Our sample period was from January 1, 2009, 

to December 31, 2014, which corresponds to 1,565 observations. We used log - returns of CDS 

spreads in our analysis. 

 

https://en.wikipedia.org/wiki/United_Kingdom
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Table 1 - Descriptive statistics of the log-returns of CDS spreads, from January 2009 to 

December 2014 

 

Countries Mean Minimum Maximum Std. Dev. Skewness Kurtosis 

Argentine -0.0003 -0.5528 0.5824 0.0496 0.9714 41.0473 

Belgium -0.0005 -0.2643 0.2198 0.0479 -0.0202 4.1972 

Brazil -0.0003 -0.1835 0.1737 0.0320 0.0783 3.2397 

China -0.0005 -0.2231 0.2207 0.0352 0.1991 4.4757 

Costa Rica -0.0001 -0.3204 0.2689 0.0417 0.0728 10.4937 

Croatia -0.0003 -0.2489 0.2324 0.0283 0.1405 13.9121 

France -0.0003 -0.2339 0.361 0.0503 0.2232 5.0577 

Germany -0.0010 -0.3714 0.3187 0.0513 -0.1555 6.9442 

Indonesia -0.0009 -0.2209 0.2011 0.0324 0.1895 6.2922 

Ireland -0.0010 -0.3311 0.2537 0.0385 -0.2352 10.5687 

Italy -0.0002 -0.4520 0.2220 0.0478 -0.4311 7.5565 

Jamaica -0.0003 -0.4075 0.2734 0.0246 -2.9119 107.1356 

Korea -0.0011 -0.1919 0.1759 0.0365 0.2174 3.5283 

Republic Czech -0.0008 -0.3185 0.3023 0.0359 0.3508 15.4411 

Russia -0.0003 -0.2786 0.3014 0.0524 0.0073 8.5657 

South Africa -0.0005 -0.3216 0.1868 0.0348 -0.3566 7.3664 

Spain -0.0002 -0.4175 0.2826 0.0479 -0.2880 6.5781 

Thailand -0.0006 -0.2059 0.1942 0.0316 0.2080 6.8107 

Turkey -0.0006 -0.2476 0.2218 0.0329 -0.0021 5.3755 

UK* -0.0011 -0.2243 0.2545 0.0420 0.1325 4.5323 

Source: prepared by authors. 

* United Kingdom 

 

Table 1 reports the descriptive statistics of the log-returns of the CDS spreads. Jamaica 

presented the lowest standard deviation (Std. Dev.), while the CDS spreads for Russia showed 

the highest standard deviation. In general, skewness values indicate which log-returns are 

skewed. The series also showed excess kurtosis (they have fat tails), which is common behavior 

for financial data. The kurtosis value for Jamaica (107.1356) stands out among the results. 

In the first step, we estimated the conditional means and variances of the log- returns of 

the CDS spreads. The Ljung-Box test indicated that there were significant autocorrelations in 

the series. The conditional mean was adjusted by AR(1) (first-order autoregression) 

specifications with a constant. Subsequently, we analyzed the presence of conditional 
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heteroscedasticity in the residuals of the AR models using the Ljung–Box test applied to the 

squared standardized residuals and the Lagrange multiplier (LM) test applied to the 

standardized residuals. The values for these tests indicated the presence of significant 

conditional heteroscedasticity. In order to model the volatility of the CDS spreads we used 

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) models. Conditional 

volatility was estimated using the GARCH, the exponential GARCH (EGARCH) and the GJR-

GARCH (Glosten-Jagannathan-Runkle GARCH) models. The probability distributions 

considered were as follows: normal distribution, generalized error distribution (GED), Student 

t distribution and asymmetric Student t distribution. To compare the fitted models, we analyzed 

the results using the Akaike information criterion (AIC), the Bayesian information criterion 

(BIC) and the Hannan–Quinn information criterion (HQIC). Finally, to check the adequacy of 

the fitted models we conducted an analysis of the residuals.6 

Our results suggested that the EGARCH model using a generalized error distribution 

presented the best results according to the AIC, BIC and HQIC. In this way, for the marginal 

we estimated the AR(1)-EGARCH(1,1), with generalized error distribution. These results are 

omitted for brevity reasons. The structure of the AR(1)-EGARCH(1,1) model is given by: 

𝑟𝑖,𝑡 = 𝜙0 + 𝜙1,𝑡𝑟𝑖,𝑡−1 + 𝜀𝑖,𝑡,                                                                                        

𝜀𝑖,𝑡 = 𝜎𝑖,𝑡𝑧𝑖,𝑡,    𝑧𝑖,𝑡 ~𝑖. 𝑖. 𝑑. 𝐹(0,1),                                                                                                            

ln(𝜎𝑖,𝑡
2 ) = 𝜔 + 𝛼1𝑔(𝜀𝑖,𝑡) + 𝛽1 ln(𝜎𝑖,𝑡−1

2 ),                                                                     (5) 

where, for asset i in period t,  𝑟𝑖,𝑡 is the log-return of the CDS spreads, 𝜎𝑖,𝑡
2  is the conditional 

variance, 𝜙0, 𝜙1, 𝜔, 𝛼1 and 𝛽1 are parameters, 𝜀𝑖,𝑡 is the innovation in expectation and 𝑧𝑖,𝑡 is a 

white noise process with distribution F. 𝑔(. ) can be written as 𝑔(𝜀𝑖,𝑡) = 𝜃𝜀𝑖,𝑡 + 𝛾[|𝜀𝑖,𝑡| −

𝐸(|𝜀𝑖,𝑡|)], where 𝜃 and 𝛾 are real constants. We estimated the models using quasi-maximum 

likelihood. The adjusted models exhibited a good adjustment to the data. The LM test and the 

Ljung–Box test applied to the squared standardized residuals indicated the adequacy of our 

models. Besides, the coefficients of the AR(1)-EGARCH(1,1) models were significant.  After 

isolating the marginal behavior, it was possible to conduct a joint analysis free of this marginal 

influence. We used the residuals series 𝒛 = {𝑧𝑖,𝑡} and transformed it into pseudo-observations 

𝒖 = {𝑢} ∈  [0,1]𝑝 by inversing the GED distribution fitted to each of them, because of the 

domain and image definition of the copula functions. With these pseudo-observations, we 

                                                
6 The results are omitted but will be sent upon request. 
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estimated the C-, D- and R-Vines.7 The input order for the countries in the models was the 

decreasing order of the sum of the absolute Kendall’s Tau of a country with all the others. From 

that, we obtained the following identification order: [1] Italy, [2] Turkey, [3] South Africa, [4] 

Russia, [5] Spain, [6] Belgium, [7] Brazil, [8] Croatia, [9] China, [10] Ireland, [11] France, 

[12] Korea, [13] Germany, [14] Czech Republic, [15] Indonesia, [16] Thailand, [17] United 

Kingdom, [18] Jamaica, [19] Argentina, and [20] Costa Rica.   

We considered the following copula families: Normal, Student t, Gumbel, Frank, 

Clayton, Joe, BB1, BB7, and BB8. Concerning the estimation of the parameters, we considered 

an ML estimation procedure that follows a stepwise approach. In the first step, ML estimates 

separately the parameters in each relationship. The parameter estimations obtained in this first 

step are known as sequential ML estimates. In the second step, the full log-likelihood function 

is maximized using the sequential ML estimates as starting values, resulting in the so-called 

joint ML estimates. 

The number of estimated parameters was huge, since there were 19 trees in each 

structure. To keep this paper brief, we have omitted the estimated parameters, but they are all 

available upon request. Figures 1 to 3 exhibit plots of the main trees of the C-, D- and R-Vines, 

respectively. From these plots we have a visual interpretation of how relationships occur. Of 

course, there would be 18 more plots like this for each structure. We have also omitted these, 

but they are available upon request. Table 2 shows the fitting results for the models.  

 

Table 2 - Fitting statistics for the C-, D- and R-Vine estimated models 

 

Vine type C-Vine D-Vine R-Vine 

Family Student t Student t  Student t 

AIC -24804 -23054 -24477 

BIC -23267 -21613 -23079 

LL 12689 -1057 12499 

Source: prepared by authors. 

 

To examine which copula was the best fit for the data, we considered the following 

criteria: AIC, BIC, and LL (log-likelihood).8 We observed that the Student t copula is the 

                                                
7 We also considered other complex copula constructions, such the Hierarchical Archimedean type, but their 

performance was much worse than those of the Vines. In higher dimensions, Archimedean copulas have 

shortcomings for modeling asymmetric and complex dependences structures. For brevity, the results are omitted. 
8 Similar fit tests to choose the best fitting copula were used in Abid and Naifar (2006) and Chen et al. (2008).  
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predominant one, as is quite usual for daily financial returns. Regarding CDS analyses using 

copulas, Chen et al. (2008), Tamakoshi and Hamori (2014) and Creal and Tsay (2015) also 

verified that Student t copula are preferred over competing models. Referring to the Vine type, 

we observed that, according to the values of AIC and BIC, the C-Vine structure had the best 

fit. For the values of LL, we found that the best value was presented by the D-Vine copula (-

1057).  

A knowledge of the dependence structure among CDS spreads across countries, which 

shows goodness of fit, is important for investors and regulators, because dependence is an input 

relevant to portfolio allocation and risk management decisions. The use of families and types 

of Vine copulas that present a better adjustment allows the regulator or manager to reduce the 

model risk inherent in the process of estimation of the dependence, and consequently to reduce 

financial losses arising from the use of an incorrect copula. 

 

Figure 1 – C-Vine tree plot 

 

Source: prepared by authors. 
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Figure 2 – D-Vine tree plot 

 

Source: prepared by authors. 

 

 

Figure 3 – R-vine tree plot 

 

Source: prepared by authors. 
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CONCLUSIONS 

 

Understanding the dependence behavior of CDS spreads is important because of the 

popularity and liquidity of these instruments in the credit markets. This study focused on 

determining the copula model that presented the best fit to model dependence structure of CDS 

spreads in the multivariate context. In the analysis, we considered 20 countries and daily data 

for the period from January 1, 2009, to December 31, 2014. The copula model allowed us to 

capture the nonlinear dependence structure that is usually identified in financial data. From the 

descriptive analyses, we noticed the presence of stylized facts in the log-returns for CDS. Our 

main results indicated that the C-Vine structure and the Student t copula family presented the 

better performance. Thus, this specification is the most appropriate for obtaining the 

dependence structure of the data considered, and possibly reduces the model risk arising from 

the use of the wrong model. 
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