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DIGITAL  SOIL  MAPPING  APPROACH  BASED  ON  FUZZY
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Abordagem de mapeamento digital de solos baseado
 em lógica fuzzy e conhecimento de campo de especialista

Michele Duarte de Menezes1, Sérgio Henrique Godinho Silva2,
Phillip Ray Owens3, Nilton Curi2

ABSTRACT
In Brazil, soil surveys in more detailed scale are still scarce and necessary to more adequately support the decision makers for

planning soil and environment activities in small areas. Hence, this review addresses some digital soil mapping techniques that enable
faster production of soil surveys, beyond fitting continuous spatial distribution of soil properties into discrete soil categories, in
accordance with the inherent complexity of soil variation, increasing the accuracy of spatial information. The technique focused here
is knowledge-based in expert systems, under fuzzy logic and vector of similarity. For that, a contextualization of each tool in the soil
types and properties prediction is provided, as well as some options of knowledge extraction techniques. Such tools have reduced the
inconsistency and costs associated with the traditional manual processes, relying on a relatively low density of soil samples. On the
other hand, knowledge-based technique is not automatic, and just as the traditional soil survey, the knowledge of soil-landscape
relationships is irreplaceable.

Index terms: Digital soil mapping, soil prediction, conditioned Latin hypercube sampling, knowledge miner.

RESUMO
No Brasil, levantamentos de solos em escalas maiores ainda são escassos e necessários para dar apoio mais adequado ao

planejamento de atividades relacionadas a solos e ambientes em áreas menores. Em consequência, este trabalho  apresenta algumas
técnicas de mapeamento digital de solos que permitem a produção mais rápida de levantamentos de solos, além de ajustar a
distribuição espacial contínua das propriedades do solo em categorias discretas, de acordo com a complexidade inerente da variabilidade
dos mesmos, aumentando a acurácia de informações espaciais. A técnica aqui enfatizada é baseada em sistemas que empregam o
conhecimento de um especialista, sob uso de lógica fuzzy e similaridade de vetores. Para isso, é proporcionada a contextualização de
cada ferramenta para a predição de classes de solos e suas propriedades, assim como algumas opções de técnicas para a aquisição de
conhecimentos. Tais ferramentas têm reduzido a inconsistência e custos associados aos tradicionais procedimentos manuais, utilizando
uma relativamente baixa densidade de amostragem. Por outro lado, a técnica baseada no conhecimento de especialistas não é automatizada,
e, assim como no método tradicional de levantamentos de solos, o conhecimento das relações solo-paisagem é insubstituível.

Termos para indexação: Mapeamento digital de solos, predição de solos, amostragem em hipercubo latino condicionado, mineração
do conhecimento.
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INTRODUCTION

In Brazil, soil surveys in more detailed scale are still
necessary because the lack of information or the small-
scale existing maps do not adequately support planning
and management of agricultural and environmental projects.
Soil surveys or sampling schemes in a more detailed scale
are common only in small areas, generally to attend specific
projects (MENDONÇA-SANTOS; SANTOS, 2007). Since
the traditional soil maps are manually produced, even on a
GIS basis, and have as limitation the low speed and high
production cost (ZHU et al., 2001), digital soil mapping is

viewed as an opportunity to optimize soil mapping,
employing more quantitative techniques for spatial
prediction (MCBRATNEY; SANTOS; MINASNY, 2003),
in which the accuracy or uncertainty has been measured
and discussed, and that makes the pedologist mental model
more explicit. In theory, the basis of predictive soil mapping
is similar to traditional soil survey, since it is possible to
use knowledge of soil-environment relations to make
inferences (SCULL et al., 2003).

Various approaches have been used for fitting
quantitative relationships between soil properties or types
and their environment, in order to predict them (spatial
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inference models). The models are divided into data-driven
(Pedometry approach) and quantitative soil survey
approach (knowledge driven). Pedometry approaches are
more quantitative and automatic, mainly based on statistics,
geostatistics, machine learning and data mining techniques.
A dense scheme of sampling is often required. On the other
hand, the knowledge driven approach tries to fit within the
conventional soil survey and mapping framework, aiming
to effectively utilize the soil scientist’s knowledge (SHI et
al., 2009).

Soil survey is a paradigm-based science that is
based on the application of conceptual soil-landscape
models, in which the hypothesis is that the location and
distribution of soils in the landscape is predictable
(HUDSON; HEUVELINK; ROSSITER, 1992). Such models
rely on tacit pedological knowledge, generally acquired
by systematic field observation of repeating relationships
between soils types or properties and landform position
(MACMILLAN; PETTAPIECE; bRIERLEY, 2005). Most of
the information about soils is found in soil maps and
respective legend or in the mind of the soil surveyor.
Hudson, Heuvelink and Rossiter (1992) argued that soil
survey was deficient for not expressing the scientific
knowledge in a more formal and systematic way.

Thus, this review attempts to elucidate the use of
expert systems under fuzzy logic and its application for
predicting soil types and properties. Expert systems allow
the use of existing data or expert knowledge of the
pedologist in conjunction with statistical and mathematical
approaches to generate soil information. Besides, they
allow fitting continuous spatial distribution of soil
properties into discrete soil categories, in accordance with
the inherent complexity of soil variation, increasing the
accuracy of spatial information (ZHU et al., 2001).

EXPERT  SYSTEMS

According to Dale, McBratney, Russell (1989),
expert systems consist of ways to harvesting and
engineering knowledge, which allow exploiting the
information of soil surveyor acquired through experience.
Expert knowledge systems try to capture tacit knowledge
and integrate it in the predictive model in order to improve
it. Dale, McBratney, Russell (1989) delineated the
components of an expert system to soil data: a source
(e.g. data or environmental variables), an organizer and
an information predictor, and a client to use the
information. The predictor includes a knowledge base
and an inference engine which operates on the
knowledge base. The computer-based knowledge can use
the human expert or numerical methods. Such approach

is able to exploit soil surveyor knowledge by developing
rule-based systems that imitate the surveyor’s conceptual
model of soil variability (SCULL et al., 2003). The
pioneering attempts to apply expert systems in Pedology
used the Boolean logic (SKIDMORE et al.,1991), which
defines a strict binary decision (true or false, 0 or 1). In
terms of soil maps, the soil surveyor has to assign
individual soils in the field in only one class (ZHU et al.,
2001). The polygons of the maps, also referred to as crisp
or Boolean, represent only the distribution of a set of
prescribed soil class (central concepts of soils). The same
approach is used for soil property maps, where the whole
polygon assumes a property value assigned to the
mapping unit.

FUZZY  LOGIC

The nature of soil-landscapes are complex, whose
changes in soils or properties are often more gradual and
continuous, differently to the variation represented by a
crisp map (polygon-based) (Figure 1a). There is uncertainty
in the boundaries allocation, as well as in the values of the
soil properties (LEGROS, 2006) (Figure 1b). Fuzzy logic
attempts to represent the uncertainty in the predictor and
predicted properties or types, as an alternative that seems
more adapted to the imprecise knowledge conveyed by
soil surveyors (WALTER; LAGACHERIE; FOLLAIN,
2007), recognizing the concept of partial truth, alternatively
to the subjective rigidity imposed on soils.

Figure 1 – Lateral distribution of an optimal value under
Boolean logic (a) and fuzzy logic (b) related to distribution of
Yellow Latosol (YL) and Red Latosol (RL) in the landscape.
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Instead of a crisp membership (e.g., entirely Red
Latosol or Yellow Latosol, Figure 1a), the idea is that the
soils in nature rarely fit exactly the classification types to
which they are assigned (ZADEH, 1965). Nevertheless,
there is a range of optimal values among classes. The
concept of belonging to a set has been modified to include
partial degrees of membership. The maximum membership
is often 1 and represents the central or modal concept,
whereas the 0 value expresses no membership. Values in
between this range express different degrees of similarity
to the central concept.

Besides the broad application of fuzzy logic in
science, Scull et al. (2003) cited two different approaches
for soil prediction in a continuous way: the first is based
on the fuzzy-k-means classifier, which partitions
observations in multivariate space into natural classes.
The second is known as the semantic import model, and
is used in situations when classification schemes are
pre-defined and class limits are relatively well
understood. The semantic model is commonly used with
expert knowledge and it refers to a data integration
concerned with analysis and interpretation of a multi-
source spatial data. In geographic analysis, it is
frequently required the integration of spatial data with
multi-sources (as raster or vector formats, crisp or
continuous maps) to answer specific questions about
given spatial phenomenon. In this sense, Zhu and Band
(1994) presented the first approach which employs
knowledge-based semantic data integration, combined
with expert system techniques and fuzzy set theory for
spatial data integration.

A fuzzy logic based model called similarity vector
(ZHU et al., 1997) represents soils at a given location, in
which the landscape is perceived as a continuum. The
fuzzy logic is used to infer the membership of a soil type
from environmental variables, such as parent material,
canopy coverage, digital elevation model and its derivative
maps. Under fuzzy logic, a soil at a given pixel (i,j) is
represented by a n-element similarity vector:

1 2 k n
ij ij ij ij ijS  = (S ,S ,...,S ,...,S ) , where n is the number of

prescribed soil types over the area and k
ijS  is an index

which measures the similarity between the local soil at (i,j)
to the prescribed soil type k. k

ijS is soil type k. The similarity
value is measured according to how close the soil is to
centroid concept (between 1 and 0, as already discussed).
The more similar a soil is to a prescribed soil type, the
higher its similarity value (fuzzy membership).

This methodology has been successfully
applied to generate soil maps (crisp maps) (ZHU;

BAND, 1994; ZHU et al., 1996; MCKAY et al., 2010)
and to predict properties in a continuous way, as depth
of A horizon (ZHU et al., 1997), solum depth (QUINN;
ZHU; BURT, 2005; LIBOHOVA, 2010), drainage classes
(MCKAY et al., 2010), A horizon silt and sand contents
(QI et al., 2006), soil transmissivity (ZHU et al., 1997)
or aquifer recharge potential, which is a spatially
distributed phenomenon and closely related to soil-
landscape potential.

SoLIM (Soil-Land Inference Model) and ArcSIE (Soil
Inference Engine)

In order to overcome some limitations of a
traditional soil survey, researches and tools have applied
knowledge-based techniques and fuzzy logic concepts
as a predictive approach, for instance, the softwares
SoLIM (ZHU et al., 2003) and ArcSIE (SHI, 2013). They
have two major components: a similarity model for
representing soil spatial variation and a set of inference
techniques for populating the similarity model. The
improvements of the last versions also contain means of
extracting rules (expert knowledge extraction). Hereafter
is provided a review about the potential of some tools to
predict soil types and properties.

ArcSIE

ArcSIE works as an extension of ArcMAP (ArcGIS
- Environmental Systems Resource Institute). There are
two inference methods implemented in ArcSIE for
calculating fuzzy membership values: rule-based
reasoning (RBR) and case-based reasoning (CBR). In
other words, rule and case are two types of knowledge
supported by ArcSIE. In RBR, rules are created from direct
specifications of soil surveyor, while in CBR it represents
the knowledge of the soil at a specific location, also called
tacit points.

Ruled-based reasoning with ArcSIE (RBR)

Rule-based reasoning (RBR) in ArcSIE can be
useful when the soil scientist knows the soil-landscape
relationships and prescribes, under certain environmental
conditions, where a specific soil type is more likely to occur.
The premise of this technique is that one or two factors
out of the five state factors (parent material, climate,
organisms, time and topography, JENNY, 1941) control the
distribution of soils on the landscape. For example, when
climate, organisms, parent material, and time are relatively
constant, the topography would be the greatest driver for
soil differentiation. Continuous variation of soils are
represented by continuous soil property maps derived from
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the similarity vectors (ZHU et al., 1997) and a lower number
of sample points is required (only one typical value per
soil type). The following steps are required in order to
predict soil types or properties (adapted from LIBOHOVA,
2010) (Figure 2).

Establishing soil-landscape relationships

In order to establish the soil-landscape
relationships, Zhu and Band (1994) used the knowledge
drawn by a certified soil scientist in his domain expert,
since he was working in the study area. Libohova (2010)
used previous soil surveys and block diagrams from the
county soil survey to provide visual insight into the soil-

landscape model established by the field soil scientist. In
Brazil, where soil series have not been established so far, it
could be used information from previous soil survey reports
and scientific papers, which detailed the topographic
sequence of soils. For a better comprehension of spatial
distribution of soils, it is required the integration of
pedologic studies with other branches of science,
especially Geology (stratigraphy), Geomorphology and
Hydrology (VIDAL-TORRADO; LEPSCH; CASTRO,
2005). The analysis of the phenomenon studied by these
disciplines and tis results can help in pedologic
investigations, collaborating for a better soil sampling and
interpretations.

Figure 2 – Steps required for rule-based reasoning.
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Quantifying relationships between soils and terrain
attributes and formalizing these relationships in a set
of rules that relates to raster maps

ArcSIE provides tools for soil scientists to formalize
the relationships based on pedological knowledge of the
local soils. In this case, the inference is based on rules
using fuzzy logic. Threshold values are identified and
assigned to each soil map unit in a GIS basis. For this, data
layers in a raster format that characterize environmental
covariates, as terrain attributes, geology, vegetation,
climate and others are prepared (SHI et al., 2009). Then, the
knowledge about soil-landscape relationships in the first
step is qualitatively modeled on a continuous basis in a
set of created rules.

The values of the environmental covariates and
ranges associated with each soil map class (rules) are
used to define membership functions, which in turn are
referred to as optimality functions as they define the
relationships between the values of an environmental
feature and a soil type. The rules are set within the
software based on “if-then” statements, in which a central
location encompasses the rules that provide 100%
probability of meeting the class. As the covariates get
further from meeting all the rules, the probability of the
location being in that class changes and alters the soil
property prediction. The number of rules is not limited
and information, such as land-use derived from remotely
sensed data, can be inserted as a rule and the predictions
altered based on the land use type. The cutoffs are set
based on knowledge from a soil scientist who understands
the soil-landscape relationships.

 The initial output from the inference is a series of
fuzzy membership maps in raster format, one for each soil
type under consideration (Figure 2). The fuzzy membership
values represent the similarities of each place in the
landscape to those soil types. The equation below
describes how the knowledge of a given soil type is used
for a global knowledge in RBR and CBR in order to create
fuzzy membership values, represented by three functions
(E, P, and T) (SHI et al., 2004):

where k
ijS  is the fuzzy membership value at a location (i, j)

for a soil k. The m is the number of environmental features
used in the inference. The n is the number of instances for
soil type k. Zij,a  is the value of the ath environmental feature

at location (i,j). Zg,a is the most optimal range given by rule or
case g, defining the most favorable condition of feature a for
soil k. In RBR it is directly specified by the soil scientist, while
in CBR, it is derived by the computer based on the case location
and the environmental data layers. E is the function for
evaluating the optimality value at the environmental features
level. If Zij,a falls into the range of Zg,a, E returns the maximum
optimality value; otherwise, E uses a function to derive the
optimality value based on the difference between Zij,a and
Zg,a. Based on the nature of the environmental covariates
used in the prediction, there are five choices for E: cyclic,
ordinal, nominal, raw values, and continuous (bell-shape, z-
shape and s-shape continuous curves). P integrates the
optimality values from individual environmental covariates
to generate an overall predicted value for soil k. T is the
function for deriving the final fuzzy membership value for soil
k at site (i,j) based on all the instances for soil k.

Using this toolbox, the parameters are adjusted to
the curves and explicitly express the mental model of the
pedologist. Accomplishing this step, fuzzy membership
maps are created (Figure 2, step 2). These maps reveal
more details at the spatial level than polygon maps.
According to Zhu et al. (1996), the general shapes on the
membership images follow the landscape better than the
ones on the soil maps where inclusion or exclusion from a
region is more based on restrictions derived from the scale
of the map than on local conditions. The central concept
of the soil type responds to local variations in the apparent
soil forming environment (represented by covariables).

Creating hardened map

The fuzzy membership maps (Figure 2, step 3) for
each soil type are aggregated in order to create a hardened
or a defuzzified map, which corresponds to the traditional
soil vector map (discrete distribution). For that, the ArcSIE
assigns at each pixel the soil type with the highest fuzzy
membership value.

Creating soil property maps

The soil-landscape relationships are extracted and
the characterized environmental conditions are linked
through a set of inference techniques to populate the
similarity model for a given area (ZHU; MCKAY, 2001).
Thus, based on fuzzy membership values, the continuous
variation of soil properties can be derived from the similarity
vectors, using the following formula (ZHU et al., 1997):

n mk
ij k g g,a ij g,a

g=l a=l
S  = T P E (Z ,Z )

     
  

n k k
k=1 ij

ij n k
k=1 ij

S *V
V =

S




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where ijV  is the estimated potential of recharge value at
location (i,j), Vk is a typical value of soil type k (e.g.
Haplic Cambisol under native forest), and n is the total
number of prescribed soil types for the area. If the local
soil formative environment characterized by a GIS
resembles the environment of a given soil category, then
property values of the local soil should resemble the
property values of the candidate soil type. The
resemblance between the environment for local soil at
(i,j) and the environment for soil type k is expressed by

k
ijS , which is used as an index to measure the level of

resemblance between the soil property values of the local
soil and those of soil category (ZHU et al., 2001). The
property value  can be any property that shows a
recognizable pattern or relationship with the terrain
attribute or landscape position (LIBOHOVA, 2010). The
higher the membership of a local soil in a given soil type,
the closer the property values (potential of recharge) at
that location will be to the typical property values (ZHU
et al., 2010).

Case-based Reasoning with ArcSIE (CBR)

CBR, in general, is a method of solving problems
based on similar problems solved in the past. Dutta and
Bonissone (1993) define better this type of methodology
as the action of solving new problems by identifying and
adapting similar problems stored in a library of past
experiences.

CBR has been applied to soil science in association
with fuzzy logic in order to solve problems related to soil
data extrapolation. CBR emerges as an alternative to the
RBR, since the formulation of rules to explain soils
variability becomes laborious, even possessing the
knowledge, motivating a search for alternative solutions,
being one of them also provided by ArcSIE.

For instance, from a set of points (ArcSIE also
works with lines, polygons and rasters as sources of
information) with x, y coordinates distributed within a
study area and a set of environmental covariates layers
(GIS data layers), ArcSIE can extract information from
each environmental covariate layer at the site where each
point is located, and then associate the points classified
as the same soil type with their environmental covariate
values of occurrence. For example, considering two soil
types (A and B), each one containing 8 and 10 sample
points, respectively, and two environmental covariate
layers (elevation and slope). The information obtained
would be 8 slope and elevation values for soil A and 10
ones for soil B. Thus, one could predict soil properties in
no sampled places according to the relationships between

environmental data and soil properties. In this example of
CBR use, the “former problems” would be the sampled
locations, and from them, other places (“new problems”)
would be classified based on membership approaches
characteristics of fuzzy logic.

It has been noticed that a minimum sample size
covering the different combinations among environmental
covariates has to be reached to allow the data extrapolation.
If not, places with environmental combinations not included
in the set of points would not be classified, as in the example
of figure 3. In this case, the watershed is located at a
mountainous region with dense rain forest vegetation,
which hampers the full access to visit and sample soil.
Thus, the same property map could be successfully
generated with the use of RBR, since this watershed has
been intensely studied. Thus, the knowledge could make
up the low density of samples.

Figure 3 –  Example of non-classified places due to the
absence of data covering all the environmental features
of the interest area.

CONDITIONED LATIN  HYPERCUBE
SAMPLING SCHEME

The necessity of finding out the optimal sampling
method in order to adequately represent the soil variability
within an area has generated many suggestions by soil
scientists for years. Over the past decades, extensive work
has been published on sampling schemes for soil mapping
(MULDER; BRUIN; SCHALOMAN, 2013). Additionally,
especially in developing countries, the number of samples
for a soil survey is limited not only by access difficulties,
but also by time and money restrictions, which hampers
the sampling representativeness of the area and influence
the final soil map. Also, this scenery would not allow the
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use of CBR for not covering all of the ranges of the
environmental covariates.

In this context, Minasny and McBratney (2006)
proposed the conditioned Latin Hypercube Sampling
(cLHS), derived from Latin Hypercube Sampling (LHS)
McKay et al. (1979), and it has been used in soil science
and environmental studies for assessing the uncertainty
in a prediction model (MINASNY; MCBRATNEY, 2002).
LHS is a stratified random procedure that provides an
efficient way of sampling variables from their
multivariate distributions (MINASNY; MCBRATNEY,
2006). It follows the idea of a Latin square where there is
only one sample in each row and each column,
generalizing this concept to an arbitrary number of
dimensions. Also, the number of samples desired is taken
into account at the time of determining the sampling
locations. According to Mulder et al. (2013), if n is the
desired sample size, LHS stratifies the marginal
distributions of the covariates into n equally probably
intervals and randomly samples the multivariate strata
such that all marginal strata are included in the sample.
However, it may face the issue that sometimes the
sampling local may not exist in the field.

In this context, the conditioned Latin Hypercube
Sampling (cLHS) adds the condition that the sample chosen
must actually occur on the landscape (BRUNGARD;
BOETTINGER, 2010). Minasny and McBratney (2006)
showed that cLHS closely represented the original
distribution of the environment covariates with relatively
small sample sizes in a digital soil mapping project in the
Hunter Valley of New South Wales, Australia.

Small sample sizes able to represent the soils
variability is interesting especially for soil scientists from
developing countries, where investments and time
availability, area accessibility and former soil information
are scarce. However, Mulder et al. (2013) highlight that,
while LHS is probability sampling, conditioning the LHS
on any constraints and sampling costs leads to a purposive
sampling strategy since the inclusion probabilities of
locations are modified by the conditioning criteria.

The cLHS may distribute the samples throughout
the study area, but, sometimes, some places are very
difficult or even impossible to be visited for sampling. To
avoid this situation, Roudier, Beaudette and Hewitt (2012)
proposed a method for incorporating operational
constraints into cLHS. They created a “cost” map
representing the cost of reaching every place on the
landscape considering terrain and landcover attributes.
The mentioned work showed that a cost-constrained LHS
is not as optimized as the one without cost-conditionings,

but the cost of the produced sampling scheme was reduced,
thus providing an alternative to implement it.

We used the cLHS constrained by a cost map
(created according to the distance from roads, slope and
vegetation cover) to indicate the sampling places for
validating a rule-based Cambisol solum depth map created
through fuzzy logic (RBR) and terrain derivative maps in
a watershed of Minas Gerais State, Brazil. An illustration
of the sampling locals disposal with and without cost-
constraining the sampling scheme is presented in (Figure
4). Also, the cLHS indicated sampling places with different
soil properties, such as solum depth, soil moisture and
color, and amount of pebbles and gravels, providing a
good idea of the soil properties distribution along with
the landscape features within the study area and, mainly,
this sampling scheme reduced the time and investments
needed for the field work.

Figure 4 – Conditioned Latin Hypercube Sampling scheme
without considering the cost-constrained raster (a) and
considering the cost-constrained raster (b) for locating
the sampling places in a Cambisol area.

ACQUIRING  INFORMATION  FROM EXISTING
SOIL  MAPS  FOR  SOIL  DATA  TRANSFERABILITY

Nowadays, there is a plenty of covariates or layers
that can be used to predict soil types and properties,
derived from remote sensing, digital elevation models from
topographic surveys, geomorphometric variables,
analogical or digital soil maps, and others. McKay et al.
(2010) investigated potential data layers involved using
visual assessment and comparison to known soil locations
by expert scientists.  Even if the soil-landscape
relationships are well known, it could be a hard task to find
out which covariate would be more appropriate to tell soil
types apart for predictions. From an existing soil map,
SoLIM and ArcSIE provide tools for a soil scientist to
discover the knowledge implicitly represented by an
existing soil map and revise the discovered knowledge.
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So, it would be possible to transfer the extracted knowledge
to other areas with similar soil-landscape relationships.

Transferability of soil types or rules for predicting
properties from one small area to a larger extent can be
done if the digital soil mapper knows that the initial area is
representative of the larger extent (MCBRATNEY et al.,
1993). LAGACHERIE et al. (2001) applied this concept for
extrapolating French Mediterranean soilscapes
(combination of soil-forming factors in a buffer neighbor
can be expressed as a vector composition of elementary
landscape classes of different sizes). McKay et al. (2010)
applied an accurate transferability of knowledge-based
model to predict soil series and drainage classes between
similar soil-landscape relationship areas. Such concept
along with knowledge mining, fits with the scenery of soil
surveys in Brazil, where detailed and semidetailed types
are available in small areas to support local specific
agricultural and environmental projects (MENDONÇA-
SANTOS; SANTOS, 2007), but the necessity of more
detailed soil maps in large extensions still remains. Hereafter
two ways of extracting knowledge are presented.

SoLIM Knowledge Miner

According to Bui (2004), soil maps represent the
structured mental soil-landscape model. One way to exploit
such information is provided by SoLIM software (ZHU;
BAND, 1994; ZHU et al. 1996; ZHU, 1997; ZHU et al., 1997).
The knowledge acquisition tool allows the users to extract
pixels information from the terrain derivative maps for each
polygon (mapping unit). In this context, occurrence rules
for each soil type could be formulated by a soil expert in
association with SoLIM knowledge acquisition tool and
then transferred to a similar area to identify the places
more likely to find similar soil types.

One potential application of that is in areas with
limited or no soil data availability, but with some soils
similarity, especially in terms of environmental factors that
influence the soil formation, to another area with already
existing soil maps. They could be used as a source of data
for predicting soil information (MCBRATNEY et al., 2003).
From an existing map, which contains the surveyor
knowledge about the distribution of soils on the landscape,
and employing GIS data, models could be adjusted through
the analysis of terrain derivative maps, such as slope,
wetness index, aspect, profile curvature and so forth, which
are supposed to explain the different soil types occurrence
in an area based on the catena concept (MILNE, 1935): soil
profiles occurring on topographically associated
landscapes will be repeated on similar landscapes. This
should permit soil data transferability as a manner of

assuming soil patterns in the no-data area, based on soil
scientist knowledge and soil-landscape models. Zhu et al.
(2001) states that the soil-landscape concept contends that
if one knows the relationships between each soil and its
environment within an area, then one is able to infer what
soil might be at each location on the landscape by assessing
the environmental conditions at that point.

For instance, it is well-known that the Gleysols are
more likely to occur in low elevation and concave places, with
high water accumulation (RESENDE et al., 2007), but it should
be difficult to tell the values of wetness indexes or concavity
in order to separate those places from the surrounding areas.
Likewise, Cambisols are more likely to be found under steep
relief, but how steep the topography should be in an area of
interest to determine the places representative of Cambisols
could be hard to tell. Thus, a tool proposed by Zhu et al.
(1997) that extracts the values of those terrain derivatives
could help to understand soil types occurrence pattern and,
hence, to extrapolate soil types distribution from a mapped
area to a similar one which does not have soil data.

SoLIM software contains a knowledge acquisition
tool which allows the users to extract pixels information
from the terrain derivative maps for each polygon. Regarding
a soil map, polygons should represent different mapping
units. Thus, through the use of terrain derivative maps,
SoLIM provides a way to acquire soil information from
environment characteristics, helping to comprehend how
the soil data were extrapolated to non-sampled places. This
tool also generates graphics from the values of each terrain
derivative map for each mapping unit. This would inform
the user whether the mapping units are overlapping or not
for each terrain derivative map. This latter result would allow
the user to classify an area with no soil data based on
environmental similarities of different areas through
correlations between soil types and terrain attributes.

As an example, a watershed located in Nazareno
county, in Minas Gerais State, Brazil, contains Latosols
(Oxisols) in association with Cambisols (Inceptisols) on
high lands, and Gleysols in low elevation areas (MOTTA
et al., 2001). Using the SoLIM tool, it was possible to extract
the pixel values of altitude above the channel network
(AACN) map over the soil units, as shown on figure 5.
Both curves are not presenting large overlapping areas:
Gleysols, as expected, present lower AACN values,
basically inferior to 10, the contrary of Red Oxisols. This
graphic setting those curves apart contributes to a better
understanding of the soil types correlation to AACN. In
this context, occurrence rules for each soil type could be
formulated by a soil expert in association with SoLIM
knowledge acquisition tool and then transferred to a similar
area to identify the places more likely to find similar soil types.
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Figure 5 –  Graphic showing the pixel frequency distribution (from 0 to 1) for Gleysols and Red Oxisols over altitude
above the channel values.

Boxplots

Boxplots are another way to visualize the differences
between pixel values of terrain derivative maps for different
soil types and also to verify how adequate the extraction
of information from existing maps was. They may show
the overlapping values and present the differences or
similarities of quartiles and medians according to different
terrain derivatives and, thus, it makes it possible to identify
the best environmental covariate for predicting soil
properties.

In order to illustrate this identification tool,
Figure 6 shows boxplots of four different mapping
units (1, 2, 3 and 4) and four terrain derivatives (slope,
profile curvature, wetness index and AACN) of a
watershed in Minas Gerais State, Brazil. They were
created using the R software (R DEVELOPMENT CORE
TEAM, 2013).

Analyzing the boxplots, some overlapping of
ranges in values can be seen for slope data although the
medians are well separated. Wetness index boxplots for
mapping units 1 and 2 are entirely overlapping in values,
as well as for 3 and 4 ones, indicating that this terrain
attribute would not succeed in separating all the mapping
units occurrence. The least overlapping of values is
pursued for  better understanding the mapping
methodology to represent the soils distribution on the
landscape.

 

Figure 6 – Boxplots for terrain derivatives and mapping
units. prfcrv - profile curvature, wetindex - wetness index,
aacn - altitude above the channel network.

FINAL  CONSIDERATIONS

The tools presented in this review have a
potential for faster production of soil surveys, since
the techniques reduce the inconsistency and costs
associated with the traditional manual processes (ZHU
et al., 2001). Also, when compared with pedometric
approaches, a low density of soil samples is necessary.
On the other hand, knowledge-based technique is not
automatic, and just as the traditional soil survey, the
knowledge of soil-landscape relationships is necessary,
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and its use has been considered as efficient as
economical (HUDSON, 1992; MCMILLAN; MOON;
COUPE, 2007).

As raised by Hudson (1992), the soil survey has so
far failed in not expliciting the mental model of the soil
surveyor. Expliciting the rules in functions to get optimality
values, as well as the use of knowledge miner techniques
in order to utilize the legacy data, can contour this limitation
of traditional soil survey. Once the knowledge is explicit,
extracted or  established in reference areas, the
transferability to larger areas within same soil-landscape
relationships should be tested (MCKAY et al., 2010), as an
opportunity to raise the geographic expression of surveyed
areas, very much needed in Brazil.

Since fuzzy membership maps represent soil types
and can be viewed as a non-linear transformation of
environmental variables based on expert knowledge of a
soil-landscape model (ZHU et al., 2010), its use as an
auxiliary in soil property prediction should be more
explored. One example of such application is related to
pedometric prediction methods. Those that do not
incorporate the use of auxiliary variables (interpolation
relying on ly on point observations)  have been
outperformed by hybrid methods (interpolation relying
on point observations combined with interpolation based
on regression of the target variable on spatially
exhaustive auxiliary information). Hybrid methods explore
the extra information when there is auxiliary information
(maps of covariates related to terrain, land use, and others)
able to explain part of variation (HENGL; HEUVELINK;
ROSSITER, 2007). In this sense, Zhu and Lin (2010)
compared maps generated from linear regression and
environmental variables with regression using fuzzy
membership maps as auxiliary. The non-linearity and
complexity inherent to the steeper terrain with more
variable soil types were well captured by a set of soil
membership maps, which can be used to describe model
and non-linear variation of soil property values. The linear
regression using environmental variables would be more
appropriate to be used on gently rolling landscapes, where
soil-environment model is simple and stable over space.

Finally, the mapping tools presented in this work
show the advantages of associating them to the field expert-
knowledge in order to enhance the final results quality.
Along with that, however, it is worthy to remind that these
tools should be used on soil surveys and mapping to assist
the field work (and never in order to replace it), mainly
because the soil variability is not completely predictable,
which makes this field activity irreplaceable for soil
mapping.
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