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ABSTRACT
The distribution of externally studentized midrange was created based on the original studentization procedures of Student and was 
inspired in the distribution of the externally studentized range. The large use of the externally studentized range in multiple comparisons 
was also a motivation for developing this new distribution. This work aimed to derive analytic equations to distribution of the externally 
studentized midrange, obtaining the cumulative distribution, probability density and quantile functions and generating random values. 
This is a new distribution that the authors could not find any report in the literature. A second objective was to build an R package for 
obtaining numerically the probability density, cumulative distribution and quantile functions and make it available to the scientific 
community. The algorithms were proposed and implemented using Gauss-Legendre quadrature and the Newton-Raphson method in R 
software, resulting in the SMR package, available for download in the CRAN site. The implemented routines showed high accuracy proved 
by using Monte Carlo simulations and by comparing results with different number of quadrature points. Regarding to the precision to 
obtain the quantiles for cases where the degrees of freedom are close to 1 and the percentiles are close to 100%, it is recommended to 
use more than 64 quadrature points.

Index terms: Distribution function; density function; Gauss-Legendre quadrature; Newton-Raphson method; R.

RESUMO
A distribuição da midrange estudentizada externamente foi criada com base nos procedimentos de estudentização de Student e foi inspirada 
na distribuição da amplitude estudentizada externamente. O amplo uso da amplitude estudentizada externamente em comparações 
múltiplas também foi uma das motivações para desenvolver esta nova distribuição. Neste trabalho objetivou-se derivar expressões 
analíticas da distribuição da midrange estudentizada externamente, obtendo a função de distribuição, função densidade de probabilidade, 
função quantil e geradores de números aleatórios. Essa é uma nova distribuição que os não há relatos na literatura especializada. Um 
segundo objetivo foi construir um pacote R para obter numericamente as funções mencionadas e torná-las disponíveis para a comunidade 
científica. Os algoritmos foram propostos e implementados usando os métodos de quadratura Gauss-Legendre e Newton-Raphson no 
software R, resultando no pacote SMR, disponível para baixar na página do CRAN. As rotinas implementadas apresentaram alta acurácia, 
sendo verificadas usando simulação Monte Carlo e pela comparação com diferentes pontos de quadratura. Quanto a precisão para se 
obter os quantis da distribuição da midrange estudentizada externamente para 1 grau de liberdade ou percentis próximo de 100%, é 
sugerido utilizar mais do que 64 pontos de quadratura. 

Termos para indexação: Função de distribuição; função densidade; quadratura Gauss-Legendre; método Newton-
Raphson; algoritmo; R.

INTRODUCTION
Many problems on statistical investigations are 

based on studies of sample order statistics. Important cases 
of the order statistics are the minimum and maximum value 
of a sample. Among other functions of order statistics, 
the range and midrange are of special interest here, which 
correspond to the difference between the maximum and 
the minimum and to the average from these two extreme 
values, respectively. Several authors studied and applied 
this subject (Tippet, 1925; Pearson and Hartley, 1942; 

Gumbel, 1944, 1946; Wilks, 1948; Yalcin et. al., 2014; Wan 
et. al., 2014; Barakat et. al., 2015; Bland, 2015; Mansouri, 
2015; Li and Mansouri, 2016) and some of these studies 
are discussed in the sequence.

Tippet (1925) studied the first four moments of 
the range. Pearson and Hartley (1942) obtained tabulated 
values of the cumulative probabilities for several range 
values in small samples (n = 2 to 20) drawn from normal 
populations. Gumbel (1944, 1946) established the 
independence of extreme values for large samples from 
several continuous distribution, as well as the distribution 
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of the range and midrange. Wilks (1948) reviewed several 
articles relating to the order statistics and suggested several 
examples of their applications to statistical inference.

Studies related with studentization were initially 
proposed by Student (1927) and the particular case of 
the studentized range distribution have been largely used 
in multiple comparison procedures in different areas 
of scientific research since the pioneering works in this 
area (Duncan, 1952, 1955; Tukey, 1949, 1953). The 
studentized range refers to the random variable defined 
simply as the range divided by the sample standard 
deviation, considering that both terms of this ratio are 
random variables independently distributed and computed 
in samples drawn from the normal distribution. 

Let Y1, Y2, …, Yn be the order statistics in a sample of 
size , that are defined by sorting the original sample variables 
X1, X2, …, Xn in increasing order. The sample X1, X2, …, 
Xn are drawn from a population with distribution function 
F(x). The range is defined by W = Yn - Y1. The cumulative 
distribution and the probability density functions (cdf and 
pdf) of the range are the Equations 1 and 2,

respectively, as showed in David and Nagaraja (2003) and 
in Gumbel (1947).

Considering now samples of size n from the normal 
distribution with standard deviation σ and mean µ∈, 
the externally studentized range is defined by the ratio  

W W
Q

X S
=

′
=  where W’ = W/σ is the sample standard range 

and S 2 is an independent and unbiased estimator of σ2, 
associated with ν degrees of freedom. The cumulative 
distribution and the probability density functions, according 
to David and Nagaraja (2003), are given by Equations 3 and 4,

where ϕ(y) and Ф(y) are the probability density and 
cumulative distribution functions from a standard normal 
population evaluated at y, with y ∈]−∞,∞[ and f(x;ν) is 
the probability density function of X = S/σ. Considering 
that X is obtained in a sample of size ν+1 from the normal 
distribution, then it is well known the fact that 

2
2

2

S
ν

ν χ
σ

∼ , i.e., 
it has a chi-square distribution with ν degrees of freedom 
(Mood et al., 1974). Hence, 

2 2
2

2 2
 /

S S
ν

ν χ ν
νσ σ

= ∼ . Therefore, it can 

be concluded that 2 /
S

X νχ ν
σ

= ∼ .

Theorem 1. If X=S/σ is computed in a sample of size ν+1 
from a normal distribution with mean μ and variance 
σ², then its probability density function is given by 
Equation 5,
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Proof. If 2 ,U νχ∼ , as discussed above, then the distribution of 
X = S/σ can be obtained from the transformation U = v X 2. 
The Jacobian of this transformation is given by

2
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for x > 0.
The density function of X, from samples of a 

normal population, is obtained from the chi-square 
distribution by
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resulting in Equation 5.
Another very interesting order statistic is the 

midrange and introduced, among others, by Gumbel (1947) 
and Rider (1957).
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X2, … , Xn are drawn from a population with distribution 
function F(x). Therefore, the distribution of the midrange  
is given by the following theorem.
Theorem 2. The probability density function and the 
cumulative distribution function of R , Definition 1, from 
a random sample X1, X2, … , Xn, of size n, where Xj has 
distribution function F(x) and probability density function 
f(x), j = 1, 2, … , n given by Equations 7 and 8,  

Definition 1. The midrange is defined as the mean between 
the minimum and the maximum order statistics by Equation 6,

1( ) / 2.nR Y Y= + (6)

The externally studentized midrange is defined 
considering the original studentization procedures 
of Student (1927) and was inspired in the externally 
studentized range definition.
Definition 2. The externally studentized midrange are 
defined by

/ ,Q R S=

where R is expressed in Equation 6 and S is an estimator of 
the population standard deviation σ with ν degrees of freedom 
obtained independently from R. It should be noticed that  Q 
is a random variable.

However, few studies address the midrange 
distribution and none was found on the externally 
studentized midrange, considering normal or non-normal 
populations. The importance of studies about the distribution 
of the externally studentized midrange could be enormous 
in the analysis of experiments. Rider (1957), among others, 
proved that the midrange estimator is more efficient than the 
sample mean in platykurtic distributions. Another important 
aspect that could be useful is the proposition of multiple 
comparison procedures based on externally studentized 
midrange, that could potentially show better results than the 
traditional tests based on the studentized range.

This work aimed to obtain the externally studentized 
midrange distribution. It intended to develop analytic 
equations to distribution of Q, obtaining the cumulative 
distribution, probability density and quantile functions 
and generating random values. A second objective was to 
build an R package (R Development Core Team, 2017) for 
obtaining numerically the probability density, cumulative 
distribution and quantile functions using Gaussian 
quadratures and Newton-Raphson method and make the 
R package available to the scientific community.

MATERIAL AND METHODS

The externally studentized normal midrange 
distribution

Let Y1, Y2, … , Yn be the order statistics in a sample 
of size n, that are defined by sorting the original sample 
variables X1, X2, … , Xn, in increasing order. The sample X1, 

2
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respectively.
Proof. Let the joint distribution of Y1 and Yn (David and 
Nagaraja, 2003) given by Equation 9,
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for u< x, then to obtain the distribution of R, the transformations 
( )1
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Therefore, the joint density of R and Z, using 9, is given by
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The required density ( )Rf r  can be obtained by integrating 
the above joint density in relation to z, resulting in
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The distribution function R can be obtained by Equation 10,

and2
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The simplification of the equation 10 can be 
performed by inversion of the order of the integrals. There 
is a dependency between R and Z, then by fixing z, t will 
vary in the interval [z,r ]. Note that the upper limit of 
the interval, r , refers to the definition of the cumulative 
distribution function. Therefore, the results of the change 
of integration order is
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the result of the cumulative distribution function ( )Rf r  is

1( ) ( )[ (2 ) ( )] ,
r n

R
F r n f z F r z F z dz−

−∞
= − −∫

as showed in Gumbel (1958).

RESULTS AND DISCUSSION
In the particular case of standard normal 

population, the Equations 7 and 8 can be rewritten by 
Equations 11 and 12, 

2
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respectively.
If samples from a normal distribution with mean 

0 and variance σ2 are considered, then the distribution 
of R will depend on σ. The cumulative distribution 
function of R in this case is obtaining directly from 12 
by Equation 13,
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where ϕ0,σ2
 (z) and Ф0,σ2

 (z) are the probability density 
and cumulative distribution functions, respectively, of 
the normal distribution with mean 0 and variance σ2. 
The probability density function Ф0,σ2

 (z) is related to 
the probability density function of the standard normal 
distribution by ϕ0,σ2

 (z) = ϕ(z/σ)/σ. In the same way, the 
relationship between the cumulative probability functions 
is  ϕ0,σ2

 (z) = ϕ(z/σ). Hence, if Z/σ is denote by Y, the 
cumulative distribution function, Equation 13, can be 
rewritten by Equation 14,
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Similarly, the same procedure can be realized for Equation 11.
Definition 3. The standardized midrange is defined by 
Equation 15,

,
R

W
σ

= (15)

where R is the midrange from Definition 1 and  is the 
population standard deviation.

Theorem 3. The probability density function and cumulative 
distribution function of  W ,  from Equation 15 are given by 
Equations 16 and 17,
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respectively.
Proof. The cumulative distribution function of W  is obtaining 
from the cumultive distribution function given in 14. Hence, 
making the transformations of variables  W  = R/σ and Y, with 
the Jacobian J = σ, the cumulative distribution function of 
W  is given by

and S, the standard deviation, is from another random 
sample of size v + 1. The independence also occurs when 
W  is a function of factor means in an experimental design, 
with n levels and /S MSE r= , where MSE is the mean 
square error with v degrees of freedom and r is the number 
of replications associated with each treatment mean, as can 
be found, e.g., in  Searle (1987).

Theorem 4. The probability density function and cumulative 
distribution function of Q from Definition 2 are given by 
Equations 19 and 20,

and
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Solving
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the probability density function of W  is
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as expected.
It is worth noting that the probability density functions 

11 and 16 and the cumulative probability functions 12 and 17 
are equals. Therefore, the standardized midrange distribution 
obtained in normal populations with mean zero and variance σ2 
is the same of the midrange from standard normal populations.

However, the objective is to find the externally 
studentized normal midrange (Q, Definition 2) distribution, 
where Q can also be defined by Equation 18,

/
,

/

R R W
Q
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where W  and S, with v degrees of freedom, are independently 
distributed. This occurs, for example, when W  is obtained 
from a random sample of size n from a normal population, 
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respectively.
Proof. The distribution of Q given in (18), is obtained from 
the joint distribution of W  given in  16 and X = S/σ  given in  
5. As the variables W  and X are independently distributed, 
the joint density is the product of their marginal densities, 
given by Equation 21,
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where f(x;y) is given in 5.

Considering the transformations Q = W / X and X, the 
Jacobian is

, 0.
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Therefore, from the above transformations W  = XQ 
and using the joint distribution of W  and  X, given in 21, the 
joint distribution of X and Q is given by Equation 22,
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Integrating the Equation 22 with respect to x, for 
[0, ]x∈ ∞ , the probability density function of Q is obtained. Thus,

The Equations 19 and 20 are the probability density 
and cumulative distribution functions, respectively, of Q, 
which is the externally studentized normal midrange. This 
is a novel distribution that the authors could not find any 
report in the literature.

In the next section, numerical methods for obtaining 
the probability density and cumulative distribution 
functions are described. Also, the quantile functions are 
also taken into account. The same approaches will be 
considered for the distribution of W , Equations 16 and 
17, which is the standard normal midrange.

Gauss-Legendre quadrature

The basic idea of Gauss-Legendre quadrature of a 
function f(x) is to write equal the Equation 23,

The cumulative distribution function Q can be 
obtained by performing the integration of 19 in q  over 
[-∞,q ]. Changing the variable to z, the cumulative 
distribution function of Q is given by
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Changing the order of the integrals, and fixing the 
smallest studentized order statistic, the lower limit with 
respect to Q is now y/x. So, 
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Solving,

the cumulative distribution function of Q is given by
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where f(x) ≡ w(x)g(x) and w(x) is the weight function 
in the Gaussian quadrature, wk and xk are the nodes and 
weights, respectively, in an s-point Gaussian quadrature 
rule, for k = 1, 2, …, s. The weight function is w(x)=1 in 
the Gauss-Legendre quadrature, thus f(x)=g(x). The set 
{xk, wk} should be determined such that equation 23 yields 
an exact result for polynomials of degree 2s-1 or less. For 
non-polynomial function the Gauss-Legendre quadrature 
error is defined by Equation 24,
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The Gauss-Legendre quadrature was used to 
compute the functions 16, 17, 19 and 20. However, these 
functions depend on integrals over infinite intervals. 
The integral over an infinite range must be changed 
into an integral over [-1,1] by using the Equations 25, 
26 and 27,
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Therefore, the integrals 25, 26 and 27 were computed 
by applying the Gauss-Legendre quadrature rule in these 
transformed variables by Equations 28, 29 and 30.

With infinity degrees of freedom v = ∞, it is suffice 
to compute
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Details of how to compute the nodes and weights 
to apply the Gauss-Legendre quadrature can be found in 
Hildebrand (1974).

An R package (R Development Core Team, 2017) 
denoted by SMR (Batista; Ferreira, 2012) was developed 
to apply the Gauss-Legendre quadratures to compute 
the cumulative distribution functions 17 and 20 and the 
probability density functions 16 and 19. The numerical 
transformations given by Equations 28, 29 and 30 and 
the methods of computation of the nodes and weights of 
Gauss-Legendre quadrature, as  described in  Hildebrand 
(1974) and Gil, Segura  and Temme (2007) were used in 
the R codes of the implemented package. The quantiles 
were computed using the Newton-Raphson method solving 
equations formed by equating the functions 17 or 20 to p, 
where 0 < p < 1 is the cumulative probability (Gil, Segura, 
Temme, 2007), which is known. These computations 
make use of numerical quadratures of the respectively 
probability density functions 16 or 19, which are the first 
derivatives of 17 or 20.

Besides computing the cumulative distribution, 
probability density and quantile functions, the SMR 
package generates random samples of size N by Monte 
Carlo simulation. For this, random samples of size n, X1, 
X2, …, Xn, are generated, where the Xi’s are independent 
and identically distributed standard normal variables, N(0, 
1), for i = 1, 2, …, n. A random variable U, distributed as a 
chi-square variable, 2

νχ , is simulated, which is independently 
distributed of the Xi’s, where v > 0 is the degrees of freedom. 
Finally, the following transformation is performed

[ ( ) ( )] / 2
.i i

max X min X
Q

U

ν

+
=

The process was repeated N times and the required 
sample values of Q  or of W  were obtained. The package SMR 
provides the following functions, where np is the number of 
nodes and weights of the Gauss-Legendre quadrature:
l dSMR(x, n, nu, np=32): computes values of the probability 
density function, given in (16) or (19);
l pSMR(x, n, nu, np=32): computes values of the cumulative 
distribution function, given in (17) or (20);
l qSMR(p, n, nu, np=32): computes  quantiles of the externally 
studentized normal midrange;
l rSMR(N, n, nu=Inf): drawn random samples of the externally 
studentized normal midrange.

The user can choose the argument nu as finity 
or infinity value. If nu=Inf, values of the probability 
density, cumulative distribution and quantile functions 
of the  normal midrange (standard normal midrange) are 
computed. If the argument nu is not specified in the rSMR 
function, the default value Inf is used and random samples 
from the normal midrange distribution are drawn.

Performance

Evaluations of the accuracy of quadratures for 
computing the cumulative distribution functions 17 and 20 
and for computing quantiles were performed. The SMR 
package was used for this purpose. There are no cumulative 
probabilities or quantiles of the externally studentized normal 
midrange to be compared, since reports of this distribution 
were not found in the literature. Two strategies were proposed 
to verify the accuracy. First, Monte Carlo simulations were 
used to obtain quantiles and cumulative probabilities and to 
compare them to those obtained by using the Gauss-Legendre 
quadratures from the SMR package. Second, two different 
number of quadrature points were used to compute these 
quantities. Thus, the quadrature errors were computed by 
comparing these two values, as showed in 24.

Validations of the algorithm by Monte Carlo 
simulation were done using the R software with the SMR 
package (Batista; Ferreira, 2012). A random sample of 
externally studentized normal midrange, Q, of size N = 
1,000,001 was simulated using the rSMR function of the 
SMR package, following the procedure described above. If 
the degrees of freedom were ∞, then this function generates 
random sample from the standard normal midrange, W .

( ) ( )
.

2
i i

max X min X
W


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Therefore, given a quantile q   or w, the cumulative 
probability is computed, respectively, by

Table 1 shows the values of the distribution function 
computed by 64 Gauss-Legendre quadrature points and by 
Monte Carlo simulations (with N=1,000,001 observations 
in the Monte Carlo sample). Several combinations of n and 
v were used for some particular choices of the quantiles 
q   or w. The cumulative probabilities computed by Gauss-
Legendre quadrature were close to those obtained by Monte 
Carlo simulations (MC). The MC error is proportional to 
1/ N   (Ciftja and Wexler, 2003), which in this case is 0.001. 
The two methods showed differences in the third and fourth 
decimal places (Table 1), as expected. These results show, 
in principle, that the Gauss-Legendre quadrature has at least 
three significant digits of accuracy.

The quadrature error ɛ can also be computed 
increasing the number of points and calculating the 
difference between the two results. Cumulative probabilities 
computed by using s=64 and i=250 quadrature points 

Table 1: Computed values of ( )P Q q≤ , using the Gauss-Legendre Quadrature and by simulation using Monte 
Carlo method, with sample size n, and v degrees of freedom, considering N=1,000,001 simulations.

Values Method

n v  q  or w Quadrature MC

15 4 4.000 0.999712051088144 0.999719000280999
30 7 2.000 0.999521701960583 0.999520000479999
45 10 4.000 0.999999689708233 0.999999999999999
60 25 1.000 0.996635357142795 0.996665003334996
20 2 1.000 0.941476242577670 0.941947058052942
30 5 0.300 0.786876942543113 0.786846213153786
90 40 0.200 0.748082418017427 0.748314251685748
30 10 0.000 0.500000000000000 0.500382499617500
40 5 -1.000 0.016709246604515 0.016733983266017
20 20 -0.400 0.147628604257637 0.147586852413147
15 ∞ 0.300 0.778662390742543 0.778745221254779
60 ∞ 0.800 0.991576069342297 0.991477008522991

1

( )

( ) , or

N

i

i

I Q q

P Q q
N

ν=

≤
≤ = < ∞

∑

1

( )

( ) , .

N

i

i

I W w

P W w
N

ν=

≤
≤ = = ∞

∑

and the errors obtained by calculating the differences 
between these values are shown in Table 2. The maximum 
observed error is of the order of 10-10, showing that with 
64 quadrature points a high precision was achieved, for 
computing 17 or 20. Several other combinations of n, v 
and q   or w were used to compute the Monte Carlo errors 
and their maximum value is still the same.

Table 3 shows quantiles for a settled value of the 
cumulative probabilities of 0.95, using the qSMR function 
of SMR package (Batista; Ferreira, 2012, 2014). In this 
case, almost all the quantiles were computed using 64 
quadrature points, except, for the case of v = 1, where this 
number of points was insufficient. In such circumstances, 
there are two alternatives: a) refine the quadrature, dividing 
the integral interval into small subintervals and approximate 
the integral by a sum of computation on each subinterval; or 
b) increasing the number of quadrature points. In this case, 
we opted for the latter, using 250 quadrature points. The 
results were shown using 3 decimal places, for v degrees 
of freedom, of 1(1)20(5)30, 50(50)200, 300, 1,000 and ∞, 
and for sample sizes n of 2(1)10(5)50(25)100. When v → 
∞, thus s2 → σ2 and the studentized midrange cumulative 
distribution function from standard normal populations 

( ; , )F q n ν  , given in  20, tends to ( ; )WF w n  , the standardized 
midrange cumulative  distribution function, given in 17. If 
the desired value of q  can not be found in Table 3, the SMR 
package can be used or linear interpolations can be applied 
to compute this quantile.
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Table 2: Computed values of P(Q ≤ q ), using the Gauss-Legendre Quadrature for s=64 and i=250 points of 
quadrature, with sample size  n, and v degrees of freedom.

Values Quadrature

n v  q   or w s = 64 points i = 250 points ɛ
15 4 4.000 0.999712051088145 0.99971205062441360 4.637313 x 10-10

30 7 2.000 0.999521701960583 0.9995217019605828 1.110223 x 10-10

45 10 4.000 0.999999689708230 0.99999968970816311 6.694644 x 10-10

60 25 1.000 0.996635357142795 0.99663535714279172 3.330669 x 10-10

20 2 1.000 0.941476242577670 0.94147624257766860 1.443290 x 10-10

30 5 0.300 0.786876942543113 0.78687694254311258 4.440892 x 10-10

90 40 0.200 0.748082418017427 0.74808241801730846 1.185718 x 10-10

30 10 0.000 0.500000000000002 0.50000000000000200 1.000000 x 10-10

40 5 -1.000 0.016709246604515 0.01670924660451461 3.920475 x 10-10

20 20 -0.400 0.147628604257637 0.14762860425763724 2.498002 x 10-10

15 ∞ 0.300 0.778662390742543 0.77866239074254306 3.330669 x 10-10

60 ∞ 0.800 0.991576069342296 0.99157606934229103 5.662137 x 10-10

Table 3: Upper quantile of the distribution of externally studentized normal midrange (q  or w) for different degrees 
of freedom v and sample sizes (n), according the following probability event: P(Q ≤ q) = 0.95 or P(W  ≤ w) = 0.95.

Sample size (n)

v 2 3 4 5 6 7 8 9 10
1 4.464 3.799 3.445 3.219 3.060 2.941 2.846 2.770 2.705
2 2.065 1.757 1.594 1.490 1.417 1.362 1.319 1.284 1.254
3 1.664 1.416 1.285 1.201 1.143 1.098 1.064 1.035 1.012
4 1.507 1.283 1.164 1.088 1.035 0.995 0.964 0.938 0.917
5 1.425 1.213 1.100 1.029 0.978 0.941 0.911 0.887 0.867
6 1.374 1.169 1.061 0.992 0.944 0.907 0.879 0.855 0.836
7 1.340 1.140 1.034 0.967 0.920 0.885 0.857 0.934 0.815
8 1.315 1.119 1.015 0.949 0.903 0.868 0.841 0.819 0.800
9 1.296 1.103 1.001 0.936 0.890 0.856 0.829 0.807 0.789

10 1.282 1.091 0.990 0.925 0.880 0.846 0.820 0.798 0.780
15 1.240 1.055 0.957 0.895 0.851 0.819 0.793 0.772 0.754
16 1.235 1.051 0.953 0.891 0.848 0.815 0.789 0.769 0.751
17 1.230 1.047 0.950 0.888 0.845 0.812 0.787 0.766 0.748
18 1.226 1.044 0.947 0.885 0.842 0.810 0.784 0.763 0.746
19 1.223 1.041 0.944 0.883 0.840 0.807 0.782 0.761 0.744
20 1.220 1.038 0.942 0.881 0.838 0.805 0.780 0.759 0.742
25 1.208 1.028 0.933 0.872 0.830 0.798 0.772 0.752 0.735
30 1.200 1.021 0.927 0.867 0.824 0.793 0.768 0.747 0.730
50 1.185 1.009 0.915 0.856 0.814 0.783 0.758 0.738 0.721

Continue...
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In Table 3, if the number of degrees of freedom 
and the cumulative probability is settled, the quantiles 
decrease as the sample size increases. Comparing 
these results of the studentized normal midrange with 
quantiles of the studentized normal range in the same 

Sample size (n)

v 2 3 4 5 6 7 8 9 10
100 1.174 0.999 0.906 0.848 0.806 0.775 0.751 0.731 0.714
150 1.170 0996 0.904 0.845 0.804 0.773 0.748 0.729 0.712
200 1.168 0.994 0.902 0.844 0.803 0.772 0.747 0.727 0.711
300 1.167 0.993 0.901 0.842 0.801 0.770 0.746 0.726 0.710

1000 1.164 0.991 0.899 0.841 0.800 0.769 0.744 0.725 0.708
∞ 1.163 0.990 0.898 0.840 0.799 0.768 0.744 0.724 0.708

Sample size (n)
v 15 20 25 30 35 40 45 50 75 100

1 2.492 2.366 2.280 2.215 2.165 2.124 2.090 2.060 1.957 1.893
2 1.156 1.099 1.059 1.030 1.007 0.988 0.972 0.959 0.912 0.882
3 0.933 0.887 0.855 0.832 0.813 0.798 0.785 0.774 0.736 0.713
4 0.846 0.804 0.775 0.754 0.737 0.723 0.712 0.702 0.668 0.646
5 0.800 0.760 0.733 0.713 0.697 0.684 0.673 0.664 0.632 0.611
6 0.771 0.733 0.707 0.687 0.672 0.660 0.649 0.640 0.609 0.590
7 0.752 0.715 0.689 0.670 0.656 0.643 0.633 0.625 0.594 0.575
8 0.738 0.702 0.677 0.658 0.643 0.632 0.622 0.613 0.583 0.564
9 0.728 0.692 0.667 0.649 0.634 0.623 0.613 0.604 0.575 0.556

10 0.719 0.684 0.660 0.641 0.627 0.616 0.606 0.598 0.568 0.550
15 0.696 0.661 0.638 0.620 0.607 0.596 0.586 0.578 0.550 0.532
16 0.693 0.659 0.635 0.618 0.604 0.593 0.584 0.576 0.548 0.530
17 0.691 0.656 0.633 0.616 0.602 0.591 0.582 0.574 0.546 0.528
18 0.688 0.645 0.631 0.614 0.600 0.589 0.580 0.572 0.544 0.527
19 0.686 0.652 0.629 0.612 0.598 0.587 0.578 0.570 0.542 0.525
20 0.685 0.651 0.628 0.610 0.597 0.586 0.577 0.569 0.541 0.524
25 0.678 0.645 0.622 0.605 0.591 0.580 0.571 0.563 0.536 0.519
30 0.674 0.640 0.618 0.601 0.587 0.577 0.568 0.560 0.532 0.515
50 0.665 0.632 0.610 0.593 0.580 0.569 0.560 0.553 0.526 0.509

100 0.659 0.626 0.604 0.588 0.575 0.564 0.555 0.548 0.521 0.504
150 0.657 0.625 0.602 0.586 0.573 0.562 0.553 0.546 0.519 0.503
200 0.656 0.624 0.601 0.585 0.572 0.561 0.553 0.545 0.518 0.502
300 0.655 0.623 0.601 0.584 0.571 0.561 0.552 0.544 0.518 0.501

1000 0.654 0.621 0.599 0.583 0.570 0.559 0.551 0.543 0.517 0.500
∞ 0.653 0.621 0.599 0.582 0.569 0.559 0.550 0.543 0.516 0.500

circumstances (Newman, 1939), this is not observed. 
Fixing the number of degrees of freedom and the 
probability, the studentized normal range quantiles 
increase as the sample size increases. This difference 
can be observed in Figure 1, where the studentized 

Table 3: Continuation...
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range and midrange probability density functions were 
plotted, for v = 10 with n = 10 and n = 1,000. Another 
interesting observation is that fixing the sample size 
and the cumulative probability, the studentized normal 
midrange quantiles decrease as the number of degrees of 
freedom increases (Table 3). The same can be observed 
for the studentized normal range quantiles. In Figure 
1(a), for n=10 and n=1,000, with v = 10, the quantiles 
for P(Q ≤ q) = F(q;n,v) = 0.95 are qn=10 = 5.6 and qn=1,000 
= 10.5, respectively. Increasing the sample size there is 
a translation of the range probability density function 
to the right. This occurs because the range increases as 
sample size increases.

In Figure 1(b), for n=10 and n=1,000, with v = 10, the 
quantiles for ( ) ( ; , ) 0.95P Q q F q n ν≤ = =  are qn=10 = 0.78 and 
qn=1,000 = 0.45, respectively. When the sample size increases 
there is an increased concentration of data around its center 
without change its central position. This concentration of 
data decreases the value of the quantile in larger sample, 
considering the same cumulative probability.

(a) studentized range density function.

Applications

The development of externally studentized 
normal midrange distribution allows theat several 
applications can be performed. One of the already 
results of this distribution is the midrangeMCP package 
that performs four multiple comparison tests based 
on this distribution (Batista; Ferreira, 2014). The tests 
developed and implemented in this package are versions 
similar to the Tukey, SNK and Scott-Knott tests. The 
first two, in their original version, are based on the 
distribution of externally studentized normal range. 
The Scott-Knott test is based on the likelihood ratio as 
a criterion for separating groups of means. However, in 
the midrangeMCP package, these tests were based on the 
distribution of externally studentized normal midrange, 
which present high performance when evaluated for the 
type I error rates and power, although results are in the 
publishing process. Another interesting application of 
this distribution is in the building of control charts in the 
statistical area of quality control, replacing the normal 
standardized range or the studentized range.

CONCLUSIONS
The analytical equations of the distribution of the 

externally studentized normal midrange (Q), as well as of 
the distribution of normal midrange (W ), were achieved. 
Probability  density, cumulative distribution  and quantiles 
functions were obtained computationally for Q and W . The 
algorithms were proposed and implemented using Gauss-
Legendre quadrature and the Newton-Raphson method in 
R software, resulting in the SMR package, available for 
download in the CRAN site. The implemented routines 
showed high accuracy proved by using Monte Carlo 
simulations and by comparing results with different 
number of quadrature points. Regarding to the precision to 
obtain the quantiles for cases where the degrees of freedom 
are close to 1 and the percentiles are close to 100%, it is 
recommended to use more than 64 quadrature points.
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