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ABSTRACT
Soils have the ability to maintain plant growth and biological activity due to their physical and chemical properties. The aim of this study was to 
observe the spatial distribution of some chemical properties of the soil, such as pH, organic matter (OM), electrical conductivity (EC), effective 
cation exchange capacity (ECEC), sulfur (S) and aluminum (Al) content and to establish zones with homogeneous chemical characteristics 
using the MULTISPATI-PCA technique and the fuzzy c-means algorithm. The study area was located in the Tundama and Sugamuxi Valleys 
(Boyacá, Colombia) with an area of ​​8,017 ha. Chemical properties such as pH, OM, EC, S, Al, and ECEC were indicators of the chemical 
degradation of these soils. Four homogeneous zones were identified. The first zone represents areas with acidity and excessive sulfur, with 
a pH of 4.54, 15.88% OM, 3.19 dS m-1 EC, 2.47 meq 100 g-1 Al and 365.59 meq 100 g-1 S. In contrast, the second zone represents areas with a 
high self-neutralizing capacity, with a pH of 5.98, 4.22% OM, 0.75 dS m-1 EC, 0.20 meq 100 g-1 Al and 44.64 meq 100 g-1 S. Zone three showed 
a high similarity with the first two, except for its EC and S contents. Finally, zone four showed similarity with the first, except in OM, EC and 
S contents. These data show that S and EC influenced the homogeneous zones because the soils in this area are called acid sulfate soils.

Index terms: Geostatistics; semivariogram; soil degradation; Multispati-PCA; spatial distribution.

RESUMO
A capacidade do solo para manter o crescimento da planta e a actividade biológica reside nas suas propriedades físicas e químicas. 
O objectivo deste estudo foi observar a distribuição espacial das propriedades químicas do solo como pH, matéria orgânica (MO), 
condutividade eléctrica (CE), capacidade de troca catiônica eficaz (CTCE) e conteúdo de S e Al e determinar áreas com características 
químicas homogêneos por meio da técnica MULTISPATI-PCA e c-meios algoritmo. A área de estudo está localizada nos vales de Tundama 
e Sugamuxi (Boyacá-Colômbia) com uma área de 8,017 ha. O pH, MO, CE, S, Al, e as propriedades de CTCE eram indicativos de degradação 
química destes solos. Identificaram-se quatro zonas homogêneas que representam as primeiras áreas com excesso de acidez e de 
enxofre, com pH 4,54, 15,88 % de MO, 3,19 dS m-1 de EC, 2,47 meq 100g-1 de AL e 365,59 meq 100g-1 de S; em contraste, a segunda zona 
representa áreas com elevada capacidade de auto-neutralização, com um pH de 5,98, 4,22% de MO, 0,75 dS m-1 de CE, 0,20 meq 100g-1 de 

Al g e 44,64 meq 100g-1 de S. A zona três apresentou a maior similaridade com os dois primeitos parâmetros, exceto CE e S. Finalmente, a 
zona quatro mostrou semelhança com a zona um, exceto MO, CE e S. Portanto, conclui-se que as zonas de manejo foram influenciadas 
pelo enxofre e condutividade elétrica, e, portanto, os solos nesta área são denominados sulfatados ácidos.

Termos para indexação: Geoestatística; semivariograma; degradação do solo; Multispati-PCA; Distribuição espacial.

INTRODUCTION
The ability of soils to maintain plant growth and 

biological activity lies in their physical and chemical 
properties (Lal, 2002). These properties are the result 
of specific interactions among the five formation factors 
in a given place (McGraw, 1994) and of dozens of 
pedogenetic processes, thus generating spatial variability 
in their chemical, physical, biological, and mineralogical 
properties, among others (Jaramillo, 2014).

The study of the spatial variability of agricultural soil 
properties is important to make appropriate management 
decisions and to improve soil quality (Rosemary et al., 
2017). The variability has a strong relationship with 
the soil use (Wang; Shao, 2013), i.e., a soil without 
human intervention shows less variation than one under 
agricultural use. Moreover, in the latter, management 
practices affect the change of soil properties (Jaramillo, 
2012). Once the source of variation is known, a higher 
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efficiency in establishing homogeneous zones is achieved 
(Mzuku et al., 2005), allowing the implementation of 
differential management. This management improves 
efficiency and sustainability in production through 
fertilization, irrigation and tillage practices, among others, 
that are specific to each place (Jaramillo; Sadeghian; 
Lince, 2013).

The use of several statistical tools to study the 
spatial variability of soil properties has been recorded 
(Reichardt; Timm, 2008). Classical statistics is the 
discipline that started these studies. However, classical 
statistical evaluations only include generalizations 
regarding the magnitude of the variation and cannot 
be used to evaluate autocorrelated data (Stoyan et al., 
2000). As an alternative, Bachmeier and Bufa (1992) 
mention that the theory of regionalized variables allows 
the measurement of the spatial dependence of edaphic 
properties and that geostatistics provide a means to define 
an autocorrelation with semivariograms (Stoyan et al., 
2000; Díaz, 2002).

The use of geostatistics to establish the variability 
of the chemical properties of soils has been widely 
studied in various types of soils and production systems 
worldwide (Rahal, 2015; Aghasi et al., 2017). Within 
geostatistical techniques, interpolation with ordinary 
kriging (OK) is the most widely used method, and it 
assumes intrinsic stationarity. However, if the spatial 
stochastic process shows a tendency, the assumption is 
unsustainable, and a more robust model that can better 
explain the variation is needed (Li et al., 2015). As a 
solution, Matheron (1969) introduced so-called universal 
kriging (UK), where the trend is removed using surface 
models that turn out to be linear combinations of spatial 
coordinates (Díaz, 2002).

Principal component analysis (PCA) is commonly 
used at the multivariate level to construct linear 
combinations with study variables (Moral; Terrón; Da 
Silva, 2010); however, this method does not consider 
the dependency structures expected in spatial data. As an 
alternative to this analysis, a method called MULTISPATI-
PCA (Dray; Saïd; Débias, 2008) has been designed with 
good results in the study of soils. This method incorporates 
spatial information and uses the Moran index (MI) to 
measure the dependence or spatial correlation between 
observations at a site and the average in their neighborhood 
(Arrouays et al., 2011). Thus, this analysis considers spatial 
structure (autocorrelation) in the original variables to 
produce synthetic variables and the relationships between 
the variables is measured (covariability analysis) (Córdoba 
et al., 2013).

MULTISPATI-PCA has been used in the delineation 
of management zones based on soil and terrain variables 
(Peralta et al., 2015). In Córdoba, Argentina, this technique 
was used for multivariate zoning at the regional scale, 
involving edaphic and climatic data (Giannini et al., 2018). 
In France, it was used across the entire country to study 
the main soil characteristics of the topsoil and to assess 
their multivariate spatial patterns (Arrouays et al., 2011). 
Regarding the definition of management zones of the 
different cluster analyses, the fuzzy c-means algorithm 
has been widely used (Rodrigues; Corá, 2015; Tripathi et 
al., 2015; Gavioli et al., 2016). This algorithm has been 
determined to be preferable for grouping properties in the 
soil continuum (Odeh; McBratney; Chittleborough, 1992) 
and has been used in the grouping of similar points using 
the main spatial components as inputs for site classification 
(Córdoba et al., 2013).

Accordingly, the aim of this study was to observe 
the spatial distribution of some chemical properties of 
the soil, such as pH, organic matter (OM), electrical 
conductivity (EC), effective cation exchange capacity 
(ECEC), sulfur and aluminum contents. Furthermore, the 
study aims to establish zones with chemical homogeneous 
characteristics using the MULTISPATI-PCA technique and 
the fuzzy c-means algorithm in a soil of alluvial origin.

MATERIAL AND METHODS

Description and location of the study area

This study was carried out in an area of 8,017 ha in 
the department of Boyacá (Colombia), specifically in the 
region known as Valles del Tundama and Sugamuxi. These 
areas are located geographically between the parallels 5º 
43’ 28.8228” N and 5º 50’ 32.4162” N, and the meridians 
73º 6’ 38.4798” W and 72º 56’ 0.3264” W of Greenwich, 
at an average altitude of 2,500 m a.s.l. (Figure 1). Soils 
within the study area are mostly used for livestock grazing, 
and only approximately one thousand hectares are used for 
agricultural production, where potato, wheat, corn, beans, 
peas, beans, carrots, and bulb onions, among others, are 
the main crops produced (Forero; Castillo, 2016).

The study area remains flooded most of the time 
because it is located in a “valley” geomorphological 
position. These soils are characterized by continuous 
chemical degradation due to various forms of sulfur, high 
concentrations of soluble aluminum and iron, production 
of sulfuric acid, low availability of phosphorus and low 
base saturation. For this reason, they are known as acid 
sulfate soils (Bernal; Forero, 2014).
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Soil sampling and laboratory analyses

The data set used in this study was obtained under 
the Agreement 20110060 (Internal Code 1723) between 
Ministerio de Agricultura y Desarrollo Rural de Colombia 
(MADR) and Corporación Colombiana de Investigación 
Agropecuaria (Agrosavia). The sampling design was 
stratified according to the type of soil, land uses, origin 
and timing of floodwaters and ponding. Two hundred 
ninety-five observation points were sampled at a depth 
between zero (0) and 20 cm, and their allocation was 
randomized in each unit. The chemical soil properties 
measured were pH (soil:water ratio of 1:2.5 determined by 
potentiometry) and organic matter (OM) measured by the 
Walkley and Black method. Available phosphorus (P) was 
measured by Bray II through VIS spectrophotometry, and 
calcium (Ca), magnesium (Mg), potassium (K) and sodium 
(Na) were measured using 1N ammonium acetate at pH 
7.0, employing atomic absorption spectrophotometry. 
Exchangeable aluminum (Al) was measured by extraction 
with KCl when the pH was <5.5 through volumetry, 

available sulfur (S) was determined by calcium monobasic 
phosphate through spectrophotometry, and Fe, Mn, Cu 
and Zn contents were determined by the modified Olsen 
method through atomic absorption spectrophotometry. 
Available boron (B) was measured using calcium 
monobasic phosphate through VIS spectrophotometry, 
and electrical conductivity (EC) and effective cationic 
exchange capacity (ECEC) were calculated by the sum 
of the cations of Ca, Mg, Na and K.

Statistical analysis

Initially, a descriptive and exploratory analysis 
was carried out with all the study variables to calculate 
central tendency and dispersion measures (Rodríguez; 
Camacho; Rubiano, 2016). Additionally, the significance 
of Pearson’s product-moment correlation coefficients 
was evaluated using the Clifford, Richardson and Hémon 
(1989) procedure and Moran’s index to estimate the spatial 
autocorrelation. The coefficient of variation (CV) was 
analyzed using the Warrick and Nielsen (1980) criterion, 

Figure 1: Study area to establish the spatial distribution of chemical soil properties.
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in which values lower than 12% are considered to have low 
variability, those between 12% and 60% to have medium 
variability, and those higher than 60% to have high variability.

Subsequently, an exploratory analysis was carried 
out through visual diagnostic tests to evaluate the 
assumptions of normality using box diagrams, histograms 
and qq-plots. Stationarity was evaluated with scatter plots 
of the variable versus latitude and longitude.

Stationarity was verified with a spatial trend analysis 
estimating a polynomial model through a multiple regression. 
In this regression, the variable under study was the dependent 
variable, and the sampling point coordinates were the 
independent variables (Jaramillo; Sadeghian;  Lince, 2013). 
Once a significant regression model was obtained (p<0.05), 
residuals were extracted to carry out semivariance analysis.

A normality test was performed with the residuals 
employing the Shapiro-Wilks test at 5% significance; when 
this assumption was not met, the variable was transformed 
into a natural logarithm (Li; Webster; Shi, 2015). In this 
case, the analysis described above was performed again 
with respective trend removal according to each case 
(Jaramillo, 2009). Semivariograms were created, adjusting 
each one according to the model found for each variable. 
The first step was to determine the initial parameters with 
the eyefit function using the interactive Tcl-Tk interface. In 
these, different models were tested (exponential, spherical, 
Gaussian, Matern, among others).

The values obtained from the initial parameters 
were used to estimate the semivariance models, adjusting 
these according to the model found for each spatial 
stochastic process, establishing the sill (C), range (A) and 
nugget effect (C0) (Hernández et al., 2018). The estimated 
parameters were calculated through ordinary least squares, 
weighted “n pairs”, weighted “cressie”, maximum 
likelihood and maximum restricted likelihood (Cressie, 
1993; Selby; Kockelman, 2013; Li; Webster; Shi, 2015).

To establish the goodness of the predictions made 
by different methods, cross-validations were made, and the 
best model was selected by the highest cross-validation 
coefficient (CVC), the smallest root of the mean square 
error (RMSE), the reduced error (RE) value closer to zero, 
the value of the standard deviation of the reduced errors 
(SDRE) closer to one (Faraco et al., 2008; Johann et al., 
2010; Cortés; Camacho-Tamayo; Giraldo, 2016) and the 
best degree of spatial dependence (DSD) of each of the 
chemical soil properties, according to the classification 
proposed by Cambardella et al. (1994). These authors 
consider the degree of spatial dependence  as strong when 
DSD ≤ 25%, moderate when 25 < DSD ≤ 75%, and weak 
when DSD > 75%.

For interpolations, the polygon of the zone 
was used, and this was calculated from the sample 
size and total number of pixels with the equation of 
inspection density suggested by Hengl et al. (2006) used 
when predictions are created. Each map should have 
approximately an equal sample density per area. Therefore, 
an approximate pixel size (TP) of 40 was established for 
a total of 50,106 pixels used in the maps per variable, 
as well as the main interpolated spatial components. 
The predictions were carried out by implementing UK, 
and for variables transformed by natural logarithm, the 
inverse transformation was applied with the correction 
of Laurent (1963) to estimate the original scale. The 
correction consists of adding a value of 0.5 to the estimated 
regionalized variable and multiplying it by the estimated 
variance in the exponential function.

For the principal spatial components (sPC), the 
MULTISPATI-PCA method was used. A weighting matrix 
Wnxn, which is a mathematical representation of the 
geographical distribution of the study sites, was created. 
The neighborhood network was defined based on the 
Euclidean distance between adjacent neighboring points. 
Subsequently, sPCs were calculated, and the associated 
eigenvalues equivalent to the spatially structured variance 
were obtained. The presence of autocorrelation in sPCs was 
analyzed with the Moran index (MI). UK interpolation was 
applied based on the MULTISPATI-PCA sPC1 and sPC2 
semivariograms to obtain multivariate spatial variability 
maps. (Dray; Said; Debias, 2008, Córdoba et al., 2012).

The fuzzy c-means cluster algorithm was employed 
with the interpolations of the first two sPCs to classify 
the homogeneous zones using the Euclidean distance, a 
fuzziness exponent of 1.3 (Córdoba et al., 2016) and a 
maximum number of iterations of 500. To validate the 
results, internal measures of four indexes, partition density 
(PD), Xie and Beni (XB), Fukuyama and Sugeno (FS) 
and partition coefficient (PC) values were used. Between 
two and eight homogeneous zones were tested, which 
were compared using the lowest values of the first three 
indexes and the value closest to one for the PC (Meyer et 
al., 2017). The analyses described above were performed 
with the statistical package R version 3.4.4 (R Core Team, 
2018) and Pearson’s product-moment correlation with the 
software PASSaGE (v.2) (Rosenberg; Anderson, 2011).

RESULTS AND DISCUSSION	

Spatial analysis

In Table 1, descriptive statistics for the study 
properties can be observed. The CV showed a high 
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variability in all the evaluated properties, except for pH 
and Fe, which showed medium variability; for the latter, 
its interpretation agrees with Hernández et al. (2018). 
Regarding pH, studies have shown that its variability range 
fluctuates between 2 and 15% (Cox; Gerard; Abshire, 
2006); however, in the current study, a 21.43% range was 
found. This can be explained by the physical, mineralogical 
and biochemical changes in the acidity-related processes 
of this type of soil, which directly affect this property 
(Rosicky; Sullivan; Slavich, 2004).

Six chemical properties were selected: pH, OM, 
EC, S, Al and ECEC, for the univariate interpolation by 
UK, and their significant spatial correlation (p <0.001) 
was verified through the Moran index (MI) as follows: 
pH (MI = 0.295), OM (MI = 0.468), EC (MI = 0.311), S 
(MI = 0.281), Al (MI = 0.267) and ECEC (MI = 0.329). 
The above agrees with studies of the area where changes 
in these properties have been highlighted, establishing that 
pH, Al and S are important indicators in the diagnosis of 
acidity and sulfation status of this type of soil (Castro et 
al., 2006; Rincón; Castro; Gómez, 2008). pH showed a 
lower value of skewness (0.17) in comparison with the 
values between 1.53 and 2.91 that OM, EC, S, Al and 

ECEC presented; these last variables were transformed by 
natural logarithm. Regarding stationarity, all the variables 
presented a tendency, and it was necessary to remove it 
through a model as a function of the coordinates. The 
semivariograms obtained for the chemical properties 
studied were adjusted to exponential models, with ranges 
above 345.9 m, being higher for S with 1013.5 m (Table 2). 
The restricted maximum likelihood (REML) method was 
used to adjust the OM, S and ECEC, ordinary least squares 
(OLS) was used for pH and Al, and maximum likelihood 
(ML) for EC (Figure 2).

The degree of spatial dependence (DSD) was 
classified as strong (DSD ≤ 25%) for four properties (OM, 
EC, Al and ECEC) and moderate (25 < DSD ≤ 75%) for 
the two remaining properties; however, all of them were 
less than or equal to 37.0%. According to Cambardella et 
al. (1994), the variables with strong spatial dependence are 
more influenced by soil formation factors (Table 2). The 
evaluation of UK interpolation was intermediate, with a 
range of cross-validation coefficients between 0.53 and 0.73, 
i.e., lower than those found by Varón-Ramírez, Camacho-
Tamayo and González, (2018), and similar to those found 
by Cortés, Camacho-Tamayo and Giraldo (2016).

Table 1: Descriptive statistics of the chemical properties evaluated.

Soil parameter Mean Min Max CV Skewness
pH    5.42   3.00      7.90 22 0.17

OM (%)    7.79   1.02    36.08 72 1.59
EC (dS m-1)    1.53   0.16      6.57 87 1.53

S (meq 100 g-1)  144.50   2.41 1200.00 78 2.91
Al (meq 100 g-1)     1.11   0.00     9.40 164 1.94

ECEC (meq 100 g-1)   19.74   2.22   97.23 75 2.00
P (ppm)   13.84   0.52     56.50 87 1.64

K (meq 100 g-1)    0.94   0.04     4.81 75 2.15
Na (meq 100 g-1)    1.42   0.03   12.40 128 2.94
Ca (meq 100 g-1)  14.14   0.44   87.30 91 2.07
Mg (meq 100 g-1)    2.14   0.12   11.80 78 2.66
Fe (meq 100 g-1)  155.36 15.00   380.00 35 0.01
Cu (meq 100 g-1)    0.90   0.01     7.26 104 2.02
Mn (meq 100 g-1)  16.01   0.24   66.40 70 1.20
Zn (meq 100 g-1)   4.99   0.39   17.40 64 0.83
B (meq 100 g-1)   0.51   0.06     2.01 61 1.86

pH= Potential of hydrogen, OM= Organic matter, EC=Electrical conductivity, S= Sulfur, Al=Aluminum, ECEC= Effective cation 
exchange capacity, P=Phosphorus, K=Potassium, Na= Sodium, Ca= Calcium, Mg= Magnesium, Fe= Iron, Cu= Copper, Mn= 
Manganese, Zn= Zinc, B= Boron, CV= Coefficient of variation.
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Table 2: Estimated parameters of the semivariogram models of the soil properties studied.

Variable Model Method Co Range (m) Co + C DSD CVC RMSE RE SDRE
pH Exponential OLS 0.394 566.82 1.037 27.0 0.54 0.99  0.007 0.87
OM Exponential REML 0.051 608.11 0.401 11.0 0.73 0.19 -0.046 0.86
EC Exponential ML 0.113 406.42 0.449 20.0 0.57 0.02 -0.022 1.04
S Exponential REML 0.630 1013.50 1.089 37.0 0.54 19.0 -0.171 0.98
Al Exponential REML 0.055 759.21 0.568 9.0 0.57 0.59 -0.071 0.92

ECEC Exponential REML 0.059 345.90 0.310 16.0 0.62 0.15 -0.020 1.05
OM= Organic matter, EC= Electrical conductivity, ECEC=Effective cation exchange capacity, Co=nugget, Co+C1=Sill, DSD= Degree 
of spatial dependence, CVC= cross validation coefficient, RMSE: root mean square error, RE= mean reduced error, SDRE= 
standard deviation of the reduced error.

The pH interpolation range fluctuated between 3.5 
and 7.4, with a mean of 5.49 and a standard deviation of 
0.98. Figure 3A shows that some areas of the Tundama and 
Sugamuxi Valleys have soils with ultra-acidic to extremely 
acidic reactions (pH 3.1-4.0) (Castro et al., 2006). The 
Pearson’s product-moment correlations were significant, 
namely, low pH values are related to high levels of Al (r = 
-0.75, p-value= <0.0001) (Figure 3E), increases in OM (r = 
-0.52, p-value= 0.0002) (Figure 3B), increases in EC (r = 
-0.29, p-value= 0.0995) (Figure 3C) and excessive levels of 
S (r = -0.45, p-value=0.0079) (Figure 3D), which generate 
undesirable conditions for vegetative development.

In contrast, areas with pH > 5.5 and lower 
contents of Al, S, OM, EC and ECEC were observed. In 
these areas, according to Welch et al. (2009), corrections 

have generally been used with CaCO3, with the purpose 
of neutralizing the acidity caused by hydrogen, 
aluminum, manganese, iron and organic matter acids, 
to allow the normal growth of plants. This implies that 
as the CaCO3 doses increase, the pH stabilizes to 7.0, 
indicating that the high load of sulfates and iron exerts 
self-neutralization with joint formation of gypsum and 
Fe and Al hydroxides, a specific phenomenon of acid 
sulfate soils (Dent, 1986).

Homogeneous zones

A spatial principal component analysis (sPCA) 
was performed, which showed significant spatial 
autocorrelation values (p-values <0.001) and MI (0.49 
and 0.26) for the first and second spatial components, 

Figure 2: Semivariogram models of the chemical soil properties selected. a) pH, b) OM, c) EC, d) S, e) Al and f) 
ECEC.
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respectively. Figure 4A shows eigenvalues ​​that suggest 
two main structures. The eigenvalues ​​are the product 
between the variance and the spatial autocorrelation of 
the components. These first two axes collected 78.89% of 
the cumulative spatial variance. SPC1 includes properties 
related to soil acidity pH, showing pH, Cu, Zn and Mn 
opposed to OM, Al, S, Ca, B, EC and ECEC, which 
explains 61.68% of the cumulative spatial variance. SPC2 
is represented by the Al content of the soil, contrasted 
with pH, ​​Ca, Mg, ECEC, which explains the 17.21% 
value (Figure 4A). Finally, Figure 4B shows the sPC3 
that is explained by Mn, Fe and Mg as opposed to the pH, 
explaining the 8.37% value.

After carrying out the sPCA, the semivariograms 
obtained were adjusted to exponential models, with 
the maximum l ikel ihood (MV) and maximum 
restricted likelihood (REML) methods (Figures 
4C-D). The estimated parameters obtained and the 
validation measures are presented in Table 3. SPC1 
showed a strong DSD and a 0.74 CVC, in contrast 
to sPC2, which exhibited a moderate DSD and a 
0.46 CVC.

The spatial distribution of sPC1 (Figure 4E) 
showed that areas with low values (blue scale) have 
acidic pH, low levels of Cu, Mn and Zn and high values 
of OM, Al, S, Ca, B, EC and ECEC.

Figure 3. Spatial distribution of the chemical properties studied. a) pH, b) OM, c) EC, d) S, e) Al, and f) ECEC.
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Figure 4: Spatial principal component analysis. a) Graphical representation of the first two axes and eigenvalues 
associated with the sPC, b) Graphic representation of the first and third axes and eigenvalues associated with the 
sPC, c) sPC1 semivariogram, d) sPC2 Semivariogram, e) sPC1 spatial distribution, and f) sPC2 spatial distribution.
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Figure 5: Fuzzy c-means algorithm method indexes used to establish the optimal number of classes or groups. a) 
Partition density index, b) Xie and Beni index, c) Fukuyama and Sugeno index, and d) Partition coefficient index.

Table 3: Estimated parameters of the semivariogram models of the first two spatial principal components.

Variable Model Method Co Range (m) Co + C DSD CVC RMSE RE SDRE
sPC1 Exponential REML 0.436 810.81 4.317 0.09 0.74 1.49 0.024 0.69
sPC2 Exponential ML 0.861 353.68 1.295 0.40 0.46 1.39 0.001 0.74

Co=nugget, Co+C1=Sill, DSD= Degree of spatial dependence, CVC= cross validation coefficient, RMSE: root mean square error, 
RE= reduced error, SDRE= standard deviation of reduced error.

In these areas, the excessive Ca content makes the 
absorption of all metallic micronutrients (Mn, Zn) difficult 
due to a decrease in their solubility (Gómez et al., 2007). 
SPC2 (Figure 4F) recorded areas with negative values 
(blue scale) with slightly acidic pH, low Al content, and 
high Ca, Mg, ECEC values, contrary to areas with positive 
values (yellow and red scale) that showed high Al content, 
acidic pH, and low Ca, Mg and ECEC values.

Homogeneous zones for the Tundama and 
Sugamuxi valleys were defined through the fuzzy c-means 
cluster algorithm for the interpolations of the first two 
spatial principal components. The number of optimal 
homogeneous zones (HZ) was established according to 
the registered indexes for the algorithm, where a number 
of classes of four were selected due to the lowest values 
found in the first three indexes and the value closest to one 
of the partition coefficients (PC) (Figure 5).

From this point, four homogeneous zones (HZs) 
were established (Figure 6). Subsequently, the sampling 
points of the properties were located on the map of these 
areas, where the HZ1 concentrated 15%, HZ2 39%, HZ3 
22% and HZ4 concentrated 25%. Table 4 shows the main 
group characteristics. The chemical property with the highest 
discrimination among the HZs was S, which agrees with 
what was reported by Combatt, Palencia and Marin (2003).

HZ1 was named “Areas with excessive acidity 
and sulfur levels”. This type of area is characterized by 
having an acid pH (> 4.0), high Al content and excessive 
sulfur levels that appear neutralized by high Ca and ECEC 
concentrations. The highest limitations for this area are 
the high EC values and Na levels due to the effect of 
groundwater loaded with calcium and sodium sulfates 
in depressed areas (Castro et al., 2006). These zones are 
composed of materials rich in sulfides whose aeration 
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Figure 6: Homogeneous zones (HZ) defined by the fuzzy c-means algorithm in the first two axes of the spatial 
components of the study area.

Table 4: Chemical properties of the homogeneous zones defined by the fuzzy c-means algorithm in the first two 
spatial components of the study area.

Chemical soil 
properties

Homogeneous zones
1-2sPC 2-2sPC 3-2sPC 4-2sPC

Mean ± SE Mean ± SE Mean ± SE Mean ± SE
pH   4.54±0.15 5.98±0.08 6.11±0.13 4.47±0.09

OM (%) 15.88±0.99 4.22±0.21 6.17±0.44      10.02±0.51
EC (dS m-1)   3.19±0.21 0.75±0.07 1.78±0.15        1.54±0.12

S (meq 100 g-1)     365.59±44.2      44.64±4.38    124.31±14.62    183.98±18.50
Al (meq 100 g-1)   2.47±0.41        0.20±0.05 0.28±0.09 2.45±0.22

ECEC (meq 100 g-1)       41.29±3.06      11.99±0.57      22.50±1.21      16.77±1.26
P (ppm)       10.15±1.50      16.20±1.23      15.48±1.58      10.93±1.15

K (meq 100 g-1)   0.96±0.09        0.89±0.07 1.10±0.09 0.85±0.08
Na (meq 100 g-1)   3.39±0.44 0.69±0.07 1.72±0.22 1.13±0.15
Ca (meq 100 g-1) 31.81±2.75 8.05±0.47      16.85±1.14      10.89±1.20
Mg (meq 100 g-1)  2.66±0.37 2.16±0.12 2.54±0.24 1.46±0.12
Fe (meq 100 g-1) 153.50±6.71    164.11±5.69    142.09±6.58    154.42±5.47
Cu (meq 100 g-1)    0.27±0.08 1.37±0.09 1.12±0.09 0.37±0.08
Mn (meq 100 g-1)  10.87±1.08      23.34±1.09      16.11±1.19 7.61±0.55
Zn (meq 100 g-1)  3.38±0.42 6.27±0.28 5.50±0.39 3.51±0.31
B (meq 100 g-1)      0.84±0.05 0.37±0.01 0.52±0.03 0.53±0.04

pH= Potential of hydrogen, OM= Organic matter, EC=Electrical conductivity, S= Sulfur, Al=Aluminum, ECEC= Effective cation 
exchange capacity, P=Phosphorus, K=Potassium, Na= Sodium, Ca= Calcium, Mg= Magnesium, Fe= Iron, Cu= Copper, Mn= 
Manganese, Zn= Zinc, B= Boron, SE= Standard error.
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produces a decrease in the pH to levels not tolerable by 
plants. The extreme acidity has determinant implications 
for soil toxicity, including an increase in aluminum and 
iron solubility. For this reason, the nutritional quality of 
this soil can become severely deficient. Similarly, in the 
root zone, acidity causes a loss in plant productivity, and 
acid runoff causes adverse environmental impacts (Rincón; 
Castro; Gómez, 2008).

HZ2 was established as “Areas with a high capacity 
for self-neutralization”. This zone differed because its 
average pH was 5.98, that is, slightly acid, its sulfur levels 
were lower, as well as its contents of all variables, such 
as Al, Ca, Na and OM, in contrast with higher values in 
P, Zn, Mn, Cu and Fe.

HZ3 was designated as “Sulfated areas with 
slightly acidic pH”. Its main characteristics are high levels 
of S and an average pH of 6.11. Moreover, Ca levels are 
higher compared to those of HZ2, with a consequent 
decrease in Cu, Zn and Mn.

Finally, HZ4, “Areas with high acidity and sulfur 
levels” is characterized by having an average pH of 4.47, 
high sulfur levels, although lower compared to those of 
HZ1, high Al content and lower EC and ECEC values in 
relation to those of HZ1.

CONCLUSIONS
The homogeneous zones (HZs), considering 

the soil index of the two sPCs, were spatially related 
to the behavior of the chemical properties. The Moran 
index (MI) and the incorporation of a distance matrix 
determined the analysis of the spatial variability in the 
components generated. Because the soils in this area 
are called acid sulfate soils, the homogeneous zones 
were strongly influenced by S, as well as by properties 
associated with constant crop management, such as 
acidity (pH), Al contents, % OM and ECEC. In the case 
of the cultivable areas of HZs1 and HZs4, practices such 
as washing before liming, liming and green coverings 
are recommended.
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