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ABSTRACT
There is an ever-growing need for soil maps, since detailed soil information is directly related to agricultural activities, urbanization and 
environmental protection. However, there is a lack of large-scale soil maps in developing tropical countries such as Brazil. Albeit there 
are soil maps for small areas, large regions usually have undetailed maps. Considering the importance of finding low-cost alternatives to 
overcome the lack of detailed soil information, the main objective of this work was to manually create a local soil map and extrapolate it 
to similar larger areas that lack detailed soil information. The Anhumas River Basin, in the municipality of Itajubá, southeast Brazil, was 
manually mapped and this map was used to predict soils distribution for the entire municipality. First, the prediction model was tested 
in the same basin and provided sufficient results, achieving 67% global accuracy and 0.62 Kappa coefficient. Second, the resulting map 
was used together with the soil map of the larger José Pereira Basin to map the entire municipality, achieving 54% global accuracy and 
0.40 Kappa coefficient. Low resolution parent material information was found to confuse models; maps showed better results when this 
variable was removed. The Minas Gerais soil map presents general mapping units only for the Acrisol class and its associations with other 
soil classes in the area. The soil map predicted by this work identified more soil classes. Mapping representative areas and extrapolating 
these maps to larger similar areas constitute a promising alternative to overcome the lack of detailed soil maps.

Index terms: Soil classification; pedology; decision trees; spatial distribution.

RESUMO
Há uma crescente demanda por mapas de solo, já que informações detalhadas de solos estão diretamente relacionadas com agricultura, 
urbanização e conservação ambiental. Porém, há escassez de mapas de solo em grande escala em países tropicais em desenvolvimento como 
o Brasil. Apesar de existirem mapas para pequenas áreas, grandes regiões possuem mapas pouco detalhados. Considerando-se a importância 
de se buscarem alternativas para superar a falta de informações detalhadas de solo, o objetivo deste trabalho foi extrapolar mapas locais para 
áreas maiores semelhantes que necessitam de informações mais detalhadas. A bacia do rio Anhumas, no município de Itajubá, sudeste do 
Brasil, foi manualmente mapeada e este mapa foi utilizado para predizer a distribuição de solos para todo o município. Primeiro, o modelo 
de predição foi testado na mesma bacia e alcançou acurácia global de 67% e coeficiente Kappa de 0,62. Depois, os resultados foram usados 
conjuntamente com dados da bacia José Pereira para predizer as classes de solo de todo o município, alcançando acurácia global de 54% 
e coeficiente Kappa de 0,40. Dados de material de origem em baixa resolução confundiram os modelos; as predições obtiveram melhores 
resultados quando esta variável foi removida. O mapa de solos de Minas Gerais apresenta apenas a classe de solo Argissolo e suas associações 
com outros solos para a área. O mapa confeccionado por este trabalho, porém, identificou mais classes de solo. O mapeamento de áreas 
representativas e sua extrapolação para áreas maiores constitui alternativa promissora para superar a escassez de mapas detalhados de solo.

Termos para indexação: Classificação de solo; pedologia; árvores de decisão; distribuição espacial.

INTRODUCTION

In the last few decades, the disorganized urbanization 
process of Brazilian cities resulted in several problems 
regarding the quality of life of their residents, such as the 

progressive degradation of natural resources (Braga; Silva; 
Schaffrath, 2012). Problems related to erosion, sediments 
redeposition, soil degradation, biodiversity loss, water 
contamination, demand accurate and more detailed soil 
information to be properly managed (Zhang; Liu; Song, 
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2017). For adequate resource management, data about 
soil properties, their variability and spacialization through 
maps are crucial and can adequately be obtained by 
pedologic assessment. In Brazil, however, the generalized 
lack of more detailed soil data hinders environmental 
assessment and prevents the use of statistical techniques 
that can predict the distribution of soil classes and 
properties (Teske; Giasson; Bagatini, 2015).

Following the growing demand for information 
about the spatial distribution of soil classes and properties, 
modern computational techniques are being continuously 
developed and tested (Arruda et al., 2016; Camera et 
al., 2017; Minai; Libohova; Schulze, 2020; Silva et 
al., 2016; Peng et al., 2020). These newly developed 
digital methods improve soil mapping and are becoming 
powerful tools capable of providing detailed data in 
larger similar areas, which is key for the assessment of 
agronomical and environmental problems (Padarian; 
Minasny; McBratney, 2020; Piikki; Söderström; Stadig, 
2017; Vincent et al., 2018).

One way of applying such techniques is to use soil 
information from smaller areas and extrapolate them to 
larger areas with similar physiographic characteristics 
(Afshar; Ayoubi; Jafari, 2018; Angelini et al., 2020; Dias 
et al., 2016). If the soil forming factors are similar, the 
models built based on reference areas can be applied 
elsewhere (Malone et al., 2016). Mallavan, Minasny 
and McBratney (2010) called this concept “homosoil”, 
and argued that if the homology of soil-forming factors 
is assumed, soil information from different parts of the 
world can be used to infer data about soils in an area of 
interest (Scull; Franklin; Chadwick, 2005).

This concept can be useful for developing tropical 
countries like Brazil, where it is common to find soil 
maps for very specific locations, but more detailed 
soil classes distribution for larger areas is rare. As an 
example, the best available soil map for the area studied 
in this work (Itajubá, state of Minas Gerais) is at the 
scale of 1:650,000 (UFV-CETEC-UFLA-FEAM, 2010). 
This scale is considered too small to support adequate 
decisions regarding urbanization, agricultural activities 
and environmental management in the specific area of 
interest (Wolski et al., 2017). Hence, although most 
preexisting maps are useful for studies at smaller scales, 
municipalities that demand localized information and 
where detailed soil maps are not available could benefit 
from the application of these methods. This is the case 
of Itajubá, the municipality studied herein.

According to Höfig, Giasson and Vendrame (2014), 
the extrapolation of the soil-landscape relationships to 
similar adjacent areas based on smaller reference areas 

is scarce, even though this process can minimize the lack 
of large-scale soil maps for many countries, including 
Brazil. This process can use preexisting data from the 
literature, or data obtained from soil surveys in similar, 
but smaller areas, reducing cost. Hence, for countries 
that have insufficient resources to map large portions of 
their territory, the further exploration of extrapolation 
techniques would help to overcome the lack of financial 
resources and potentially provide low-cost alternatives 
to deliver the much needed detailed soil information for 
municipalities that require more adequate decision-making 
support, such as Itajubá.

Considering the necessity of more detailed soil data 
in order to support adequate land management, especially 
in Brazil and other development tropical countries, this 
work attempts to perform the extrapolation of existing 
soil maps from smaller reference areas to a larger area 
with physiographic similarities. The specific objectives 
of this work were to:

i) manually build a soil map for the Anhumas River 
Basin (a small basin within the municipality of Itajubá, 
Minas Gerais) based on 16 characterized soil profiles (4 
catenas), soil analyses and experience of pedologists;

ii) use the manually built soil map in tandem with 
data from the literature to create a prediction model in 
order to extrapolate the soil classes distribution for the 
entire municipality of Itajubá.

We hypothesize that the use of existing soil 
maps from smaller reference areas to infer soil classes 
distribution across larger neighboring areas will provide 
reliable data to support more adequate urban development 
and environmental planning.

MATERIAL AND METHODS
Study area

The study was conducted in Itajubá, a municipality 
located in the south of the state of Minas Gerais, Brazil, 
between the coordinates 45º32’30” W 22º20’00” S and 
45º14’30” W and 22º33’00” S (Figure 1). The region 
is situated at the meridional limits of the intertropical 
zone and influenced by high altitudes. The climate is 
Cwa – temperate humid with dry winter and hot summer 
– according to the Köppen classification system (Alvares 
et al., 2013). Mean annual precipitation is 1,409.5 mm, 
presenting more precipitation intensity from October to 
March, and the dry period ranges from April to September. 
The annual average temperature is 20.5 oC.

The Basin of the Anhumas River was used in this 
study as the reference area (Figure 1). A soil survey was 
conducted in this area, and the resulting map was used to 
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predict soil classes distribution for the entire municipality. 
The Anhumas River is 1.23 km long with a drainage area 
of approximately 23.53 km², corresponding to 8% of 
Itajubá’s total area.

The municipality of Itajubá is located in the 
Atlantic Forest biome. The Biological Reserve Serra dos 
Toledos (REBIO Serra dos Toledos) preserves its native 
rainforest. The rest of the municipality is occupied 
mainly by semiperennial tropical forest. The main land 
use in the region is grazing, occupying 42.22% of the 
territory.

Soil mapping methodology

This work was conducted in two main steps 
(Figure 2): i) the soil survey and the identification of 
catenas, followed by sampling and laboratory analyses to 
classify the studied soil profiles; and ii) the mapping of 
the Anhumas River Basin, followed by its extrapolation 
to create the map for the municipality of Itajubá. Each 
step of the mapping process will be further detailed in the 
following sections.

Soil sampling and laboratory analyses

Across the Anhumas River Basin 16 soil profiles were 
morphologically described, sampled and characterized in the 
laboratory, resulting in a sampling density of 0.68 samples/
km². Sampling was performed along four soil catenas 
(Figure 3) within the basin and, in each catena, four landscape 
positions were selected: interfluve, shoulder, midslope 
and footslope, in places with minimum anthropogenic 
interference. The criteria for selecting the soil catenas were 
based upon previous literature information and intensive field 
work, aiming to assess the maximum representativeness and 
variability of the environment as possible.

Samples were collected according to the Manual of 
Description and Sampling of Soils in the Field (Santos et 
al., 2015). 1.5 kg of disturbed soil was sampled for each 
identified horizon, along with undisturbed soil samples 
using an Uhland sampler for bulk density and porosity 
analyses. Soils were classified according to the Brazilian 
Soil Classification System, as described by (Santos et al., 
2018), and according to the World Reference Base for Soil 
resources (WRB) (IUSS, 2015).

Figure 1: Municipality of Itajubá and the Anhumas River Basin where the soil survey was conducted, situated in 
the state of Minas Gerais, Brazil.
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Disturbed samples were air-dried and passed 
through a 2-mm sieve. Next, they were submitted to the 
following analyses: pH in water at 1:2.5 (soil:water) ratio 
according to McLean (1982); exchangeable Ca2+, Mg2+ 
and Al3+ were extracted with 1 mol L-1 KCl (Teixeira 
et al., 2017); available P and K+ were extracted with 
Melich-1 extractant and determined by colorimetry 
and flame photometry, respectively (Teixeira et al., 
2017). Soil organic carbon was determined according 
to Walkley and Black (1934). Base saturation, sum of 
bases and aluminum saturation were calculated and their 
values interpreted in accordance with the Soil Fertility 
Committee of Minas Gerais (Ribeiro; Guimarães; 
Alvarez, 1999). Values for effective CEC (t) and CEC 
at pH 7.0 (T) were obtained indirectly from potential 
acidity, exchangeable bases and aluminum (Vettori, 
1969). Particle size distribution was determined by the 
hydrometer method (Gee; Bauder, 1986).

Soil mapping of the Anhumas River Basin

This work aimed to produce maps at the scale of 
1:25,000, to match the map created by Lima (2021), who 
studied and mapped the larger basin of José Pereira, in the 
same municipality. Lima (2021) used a sampling density of 
0.78 samples/km² to produce maps at the scale of 1:25,000; 
accordingly, this work defined a similar sampling density – 
0.68 samples/km² – in order to achieve the same map scale.

Soil data obtained from physical and chemical 
analyses, and morphological characterization were 
associated to the variables: lithology (Serviço Geológico 
do Brasil - CPRM, 2014), elevation, slope, profile 
curvature, and plan curvature obtained from the Shuttle 
Radar Topographic Mission (SRTM) using a Geographic 
Information System. Soil classes data and the mentioned 
variables were associated and spatialized across the entire 
basin using the software ArcGIS 10.2 in order to create a 
soil classes map for the Anhumas River Basin based on the 
experience of pedologists in correlating terrain attributes 

and soil classes distribution. The delimitation was done 
manually via geoprocessing. The variables were sliced 
in ArcGIS according to information from each sampled 
profile. Units with the same characteristics and position 
in the landscape receive the same classification as the soil.

The soil map of the Minas Gerais State (UFV-
CETEC-UFLA-FEAM, 2010) (Figure 4) was used to assist 
in the delimitation of soil mapping units. The Minas Gerais 
State soil map is available at the scale of 1:650,000 and 
justifies the need for more detailed soil maps to support 
sustainable agronomical and environmental policies.

Digital soil mapping

First, the digital mapping technique was tested 
within the basin before extrapolating to the whole 
municipality. Digital mapping was performed considering 
the fourth categorical level according to the Brazilian 
Soil Classification System (Santos et al., 2018). A dataset 
with eight geomorphometric variables obtained from 
the SRTM was created. Utilized variables were: parent 
material, elevation, slope, plan curvature, profile curvature, 
aspect, flow direction, and flow accumulation. Note that 
these variables are not the same as those used in the 
manual mapping process (section 2.4), as some variables 
are more useful for modeling algorithms than for human 
interpretation (i.e., flow direction and accumulation). A 
random sampling grid was created over the Anhumas 
River Basin comprising 4,706 points, representing 2 
points per hectare, from which the mentioned variables 
were extracted.

Next, the software Weka (Witten; Frank, 2005) 
was utilized to train decision trees via the J48 algorithm. 
The training process was done using cross-validation, 
where points were divided into 10 subsets: 9 were used 
to generate the trees and 1 was used to validate the model. 
This process was repeated 10 times with each different 
subset, and therefore every subset participated in modeling 
and validation processes until de best model was selected.

Figure 2: Illustration of the followed steps to create soil maps for the Riberão Anhumas Basin and the municipality 
of Itajubá, located in the state of Minas Gerais, Brazil.
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Figure 3: Lithology (a), Altitude (b), Relief (c), Curvature profile (d), Curvature plan (e), Floe direction (f) and Flow 
accumulation (g) of the 4 studied soil catenas at the Anhumas River Basin at the Itajubá municipality, Brazil.
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After generating the decision tree, the classification 
model created by the J48 algorithm was converted into 
conditional tests (classification rules that can be used by 
other software), so it could be loaded into ArcGIS. The 
conditional tests were then applied to each pixel and their 
respective geomorphometric variables across the mapped 
region, generating the digital soil map.

This methodology was first applied to the Anhumas 
River Basin and, subsequently, to the whole municipality 
of Itajubá. To apply the method to the entire municipality, 
the map generated for the Anhumas River Basin was 
used together with the map created by Lima (2021) for 
the neighboring larger basin of the José Pereira River, 
that covers an area of 39.74 km², corresponding to 14% 
of the municipality’s territory. Such use of literature data 
had the objective of improving prediction performance 
by increasing the amount of available data, considering 
that the neighboring basin studied by Lima (2021) has 
similar pedogenetic characteristics (Mallavan; Minasny; 
McBratney, 2010).

The mapping process was tested with and 
without parent material information, as the available 
parent material data are not detailed. Additionally, 
the municipality map was first created with mapping 
units containing soil classifications up to the fourth 
categorical level, but models were also tested with 
simplified mapping units up only to the second 
categorical level, to test if combining soils into larger 
groups and reducing the specificity of soil classes might 
improve prediction performance.

Both basins are within the municipality’s limits 
and comprise together around 22% of its territory. A 
random sampling grid of 12,654 points was created, 
also representing 2 points per hectare, and the same 
aforementioned method was performed to create a digital 
soil map extrapolating the soil information from both 
basins to the entire municipality. The total absence of 
soil profiles described and classified in other areas of 
the municipality prevented the possibility of external 
validation methods.

Figure 4: Soil classes map for the Itajubá municipality, Brazil, at the scale of 1:650,000 (UFV-CETEC-UFLA-
FEAM, 2010). PVAd2 – Haplic Acrisol (gently undulated relief); PVAd8 – Haplic Acrisol (undulated relief and 
strongly undulated relief) associated with the classes Ferralsol and Dystric/Eutric Cambisol; PVd – Rhodic 
Acrisol.
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Model validation

The validation of the prediction maps used as 
reference the manually-made soil map for the Anhumas 
Basin, as well as the map created by Lima (2021), as 
those are the most accurate references available for the 
studied area. The validation process was done using 
the Cohen’s Kappa coefficient (Equation 1) and global 
accuracy (number of correct predictions/total number 
of tested samples), both calculated from the confusion 
matrix generated by Weka through the modeling process. 
The Kappa coefficient evaluates the agreement or 
reproducibility between two datasets and can be described 
by the following equation:

Where Pe is the probability of random agreement and Po is 
the observed agreement (Landis; Koch, 1977). Results vary 
between -1 and 1, indicating more prediction reliability as 
the value approaches 1.

Additionally, the Producer’s and User’s accuracies 
were calculated (Story; Congalton, 1986) (Equations 2 and 
3). Both scores indicate the correlation between soil classes 
mapped via traditional soil map and digital soil map. 
Producer’s accuracy calculates how often each reference 
class (map of soil classes) is being correctly predicted, 
and the user’s accuracy indicates how often one predicted 
class (class from digital soil map) corresponds to the 
correct reference.Where xii and xjj represent the correctly 
predicted samples, xij indicates the sum of samples on a 
row or column, and L is the length of a row or column in 
the confusion matrix.
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RESULTS AND DISCUSSION

Soil catenas

Table 1 shows the physical aspects of each sampled 
point. After classifying all 16 soils in this study, many 
of the found soil classes were not represented in the 
available map for the state of Minas Gerais (Figure 5), 

which was expected due to its small scale (1:650,000). 
Soil classifications are presented at Table 2.

The soils of C1 were located near the urbanized 
region of the basin, between altitudes of 921 and 1,000 m. 
The main land use in this catena is grazing. According to 
the available soil map for the region (Figure 5), all soils in 
this catena would be included in the Acrisol class, but soil 
classification results here also showed the classes Lixisol 
and Cambisol (Table 2). The parent materials of these soils 
were migmatitic orthogneisses associated with ultramafic 
and granitoid rocks.

Soils found in C2 are situated in gentle relief, 
between altitudes of 887 and 996 m. Parent materials are 
mostly the same as C1, but includes influence of alluvial 
deposits for C2S3 and C2S4 (Figure 2). The available soil 
map indicated this region would be occupied by the class 
Acrisol (Figure 5). Results here also showed the presence 
of soil classes Rhodic Ferralsol and Haplic Ferralsol, as 
well as Rhodic Abruptic Lixisols (Table 2).

C3 was located south of the basin. Hilltops and 
springs are well-preserved despite the intense grazing 
activities in this area. Soils were situated at altitudes between 
1,157 and 1,263 m. Parent material is represented mainly 
by tonalite and granodiorite. According to the state’s soil 
map, this catena was occupied by the class Rhodic Acrisol 
under strongly undulated relief. Still, our results showed the 
presence of classes Haplic Acrisol and Gleysol, which were 
not present in the available soil map (Figure 5).

Soils of C4 were located at altitudes between 1,049 
and 1,185 m. This catena presents mountainous relief with 
slopes surpassing 45% (Table 1). Parent materials of these 
soils are represented by paragneiss, biotite, schists, and 
quartzite. The available soil map showed that this catena 
would be comprised of Rhodic Acrisols, but our classifications 
indicated Ferralsols and Abruptic Acrisols as well.

Albeit the Minas Gerais State soil map indicated 
major presence of Acrisols, our study showed that there 
was much more soil variability in different parts of the 
landscape. This emphasizes the importance and the need 
of finding ways to extrapolate this kind of more detailed 
soil information to larger similar areas.

Traditional soil mapping 

The map created manually using the data obtained 
from the soil classification showed a soil classes distribution 
in agreement with Ruhe (1956) (Figure 5), with shallower 
and less developed soils occurring at higher and steeper 
positions in the landscape, whilst thicker and more 
developed soils being found at lower and smoother portions 
of the landscape, with exception of the fluvial valley.
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The resulting map shows that Acrisol is the 
predominating class in the studied basin, which was expected, 
considering that it was present in all studied catenas. These 
findings are similar to those obtained by Lima (2021) when 
studying the neighboring larger basin of José Pereira. The 
author reported that in 8 studied catenas, 52% of soil profiles 
were classified as Acrisols, followed by the classes Cambisol 
(26%) and Gleysol (7%) – a soil classes distribution similar 
to that found in this work. The predominance of the Acrisol 
class in this region is also supported by maps at smaller 
scales such as the available map for the state of Minas Gerais 
(Figure 5), which similarly indicates that most mapping units 
include the referred soil class.

Rhodic Lixisols and Acrisols were mainly present 
at the highest parts of hillsides across the right margin of 
the Anhumas River, followed by the soil class Cambisol 
under strongly undulated and mountainous relief. At the 
left side of Anhumas River, where hilly relief predominates, 
the class Rhodic Lixisols and Acrisols were also found at 
hilltops. However, at lower portions of hillsides, Ferralsols 
predominated, especially Haplic Ferralsols under gently 

Table 1: Physical aspects of sampling sites of 4 soil catenas at the Anhumas River Basin, located at Itajubá, state 
of Minas Gerais, Brazil.

Site Coordinates (UTM) Position in the landscape Slope Altitude Land use Vegetation
Catena 1 (C1)

C1S1 453682.2 7517893 Interfluve 30.31% 1,000 m Grazing Grassland
C1S2 453616.6 7517831 Shoulder 55.40% 966 m Grazing Grassland
C1S3 453585.3 7517773 Midslope 39.37% 939 m Grazing Grassland
C1S4 453522.7 7517699 Footslope 35.98% 921 m Preservation area Grassland/Bushes

Catena 2 (C2)
C2S1 451217.2 7514620 Interfluve 58.03% 996 m Grazing Grassland/Bushes
C2S2 451380.1 7514614 Shoulder 27.19% 931 m Grazing Grassland
C2S3 451540.1 7514621 Midslope 12.83% 908 m Grazing Grassland
C2S4 451654.4 7514628 Footslope 25.28% 887 m Grazing Grassland

Catena 3 (C3)
C3S1 452983.5 7511726 Interfluve 28.18% 1,263 m Grazing Grassland
C3S2 452889.6 7511599 Shoulder 38.29% 1,212 m Grazing Grassland
C3S3 452818.5 7511495 Midslope 54.57% 1,181 m Grazing Bushes
C3S4 452684.3 7511364 Footslope 1.29% 1,157 m Preservation area Trees

Catena 4 (C4)
C4S1 453210.9 7512117 Interfluve 54.50% 1,185 m Grazing Grassland
C4S2 453190.6 7512234 Shoulder 69.25% 1,127 m Grazing Grassland
C4S3 453161.6 7512375 Midslope 57.74% 1,078 m Grazing Grassland
C4S4 453195.5 7512504 Footslope 9.07% 1,049 m Grazing Grassland

undulated relief. The valley of Anhumas River was 
characterized by the presence of Gleysols, classes that remain 
waterlogged during most part of the year. Reduction mottles 
could be observed in the studied Gleysol profiles, reflecting 
the redoximorphic conditions due to the perched water table.

Digital soil mapping

Part I - Basin soils map

The predicted map for the Anhumas River Basin 
derived from the manually created map (section 3.2) achieved 
a global accuracy value of 66.96% and a Kappa coefficient of 
0.62 (Table 3 and Figure 6). Obtained results were similar to 
those observed by Coelho and Giasson (2010) and Ten Caten 
et al. (2011). Coelho and Giasson (2010) obtained a global 
accuracy of 67.31% and a Kappa coefficient of 0.39 when 
using the J48 algorithm to evaluate the agreement between 
the map created via digital soil mapping and the preexisting 
soil map for their study area. Ten Caten et al. (2011) observed 
a global accuracy of 61.79% and a Kappa coefficient of 0.46 
using the same algorithm.
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Figure 5: Soil classes distribution at the Anhumas River Basin, state of Minas Gerais, Brazil, created manually.

Table 2: Soil classification according to the Brazilian Soil Classification System for soils of the 4 catenas in the 
municipality of Itajubá, state of Minas Gerais, Brazil.

  Catena 1 Catena 2 Catena 3 Catena 4
  Soil Classification

Site 1 Rhodic Lixisol Rhodic Abruptic Lixisol Rhodic Abruptic Acrisol Xanthic Ferralsol (Dystric)

Site 2 Abruptic Acrisol Haplic Ferralsol (Eutric) Haplic Acrisol Rhodic Abruptic Acrisol

Site 3 Eutric Cambisol Rhodic Ferralsol (Dystric) Haplic Acrisol Abruptic Acrisol

Site 4 Dystric Cambisol Rhodic Abruptic Acrisol Dystric Gleysol Haplic Ferralsol (Dystric)

Errors in prediction maps tend to occur between 
neighboring soil classes in the landscape (Ten Caten 
et al., 2011). Digital soil mapping groups available 
information during the machine learning phase and creates 
a classification model; however, classes that occupy only 
a small portion of the area, or classes that occupy areas 
with similar landscape attributes are more difficult to be 
correctly grouped, causing confusion for the algorithm. 

That can be observed, for instance, in classes PVAd1 and 
PVAd2, which presented low accuracy compared to other 
soil classes. These two classes are situated in very similar 
portions of the landscape (Table 3). This difficulty was 
noted by Láng et al. (2016), who mentioned that some soil 
classes may have been formed under similar environments, 
making them difficult to separate and consequently 
reducing the prediction efficiency of models.
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Conversely, the opposite behavior can be observed 
with the soil class GXd. This soil class occurs in the fluvial 
valleys, which have morphologic characteristics that are very 
specific. Therefore, GXd is easily identified by the algorithm, 
not creating the confusions seen between classes such as 
PVAd1 and PVAd2. The same occurs with the soil class CXd, 
which is usually formed under steeper slopes, and hence is 

Figure 6: Comparison between (a) a soil map created manually via geoprocessing and (b) by digital soil mapping 
created by decision trees algorithm for the Anhumas River Basin, Itajubá, state of Minas Gerais, Brazil.

Table 3: Confusion matrix scores of the soil classes prediction map created for the Anhumas River Basin, Itajubá, 
in the state of Minas Gerais, Brazil.

Mapping Unit Soil Classes User’s Accuracy (%) Producer’s Accuracy (%)
CXd Dystric Cambisol 78.75 87.26
GXd Dystric Gleysol 75.36 70.8
LAd Xanthic Ferralsol (Dystric) 51.56 50.11

LVAd Haplic Ferralsol (Dystric) 20.21 48.72
LVAe Haplic Ferralsol (Eutric) 32.7 57.5
LVd Rhodic Ferralsol (Dystric) 57.22 51.2

PVAd1 Abruptic Acrisol 21.1 43.86
PVAd2 Haplic Acrisol 71.01 56.07
PVAe Rhodic Abruptic Lixisol 73.48 73.48
PVd Rhodic Abruptic Acrisol 86.97 80.43
PVe Rhodic Lixisol 74.33 68.54

Kappa Coefficient 0.6205
Global Accuracy 0.6696

less prone to be mistaken with other soil classes. As a result, 
both of these classes how high producer’s accuracy values 
compared to the remaining ones: 87.26% (CXd) and 70.80% 
(GXd) (Table 3). It must be noted, however, that greater 
geographical expression also influences accuracy, raising 
the producer’s accuracy values of classes such as CXd and 
PVd (80.40%). Láng et al. (2016) have also observed better 
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validation scores for Acrisols predictions, as this class had the 
biggest number of samples in the authors’ dataset.

The soil classes PVAd1 and LVAd presented the 
lowest producer’s accuracy values, with results below 50%, 
indicating high omission error. This can be explained by 
the presence of both soil classes in very similar landscape 
positions, located under undulated relief with predominance 
of convex pedoforms. Both classes also present the lowest 
user’s accuracy values – 21.10% and 20.21%, respectively – 
indicating the difficulty of the algorithm in predicting them.

Part II - Municipality soils map

The map resulting from the extrapolation of the 
Anhumas River Basin soil map in tandem with data from 
Lima (2021) (Figure 7) using all variables, including parent 
material, showed that confusion occurred when predicting 
lithologic transitions. Soil classes abruptly changed, as could 

Figure 7: Soil maps used to train soil classes prediction models for the entire municipality of Itajubá, Brazil. The 
Anhumas River Basin map was created by this work and the José Pereira Basin map was adapted from Lima (2021).

be observed especially in the northern part of the map. This 
is not expected to happen because soil classes tend to occur 
as a continuum in the landscape. Also, the scale of the parent 
materials map is too small. 

A similar difficulty was reported by Chagas, Vieira 
and Fernandes Filho (2013) when trying to map soils 
digitally using neural networks. The authors stated that the 
lithologic heterogeneity and poor geologic map resolution 
were the main causes of the unsatisfactory soil maps. 
Parent materials dictate the substrate will be worked out by 
the other four soil forming factors and by the processes of 
soil formation, originating the current soil classes, and are 
therefore considered key variables for soil classification 
algorithms. Adhikari et al. (2014) reported that lithology 
was among the most important variables for their decision 
tree model when mapping Denmark, and Gray, Bishop 
and Wilford (2016) showed that lithology is often the 
most important variable to predict several soil attributes.
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Yet, the lack of detailed parent material maps 
is a recurring problem in Brazil (Mancini et al., 2019). 
The available parent material information for this area, 
as well for many regions of Brazil, is often not detailed 
enough for municipality soil maps. Höfig, Giasson and 
Vendrame (2014) mention this difficulty, reporting that 
the small scale of available lithological maps was not 
adequate to their work. 

Hence, another map was created without parent 
material information. The defined map units are specified 
in Table 4. The map without parent material data showed 
more coherent results (Figure 8). As expected, the soil 
class Acrisol predominated in areas of strongly undulated 
relief, and Gleysols were present in the fluvial valleys. 
Transitions between soil classes were smoother and 
considered more realistic. This map was considered 
representative and was therefore validated. The obtained 
global accuracy was 50.80%, and the Kappa coefficient 
was 0.38 (Table 4).

The trained model had difficulty separating PVA1, 
LA, and LVA1 (Table 4). These soil classes occur at the 
same landscape positions, and hence are more difficult 
to be accurately predicted. The lowest values for User’s 
accuracy were from PVA2 and CXd, 4.37% and 6.96%, 
respectively. These two soil classes also had the lowest 
results for producer’s accuracy: 23.88% and 34.10%, 
respectively. They were mainly mistaken by PV2. This 
might be explained by the high representativeness of 

PV2 in this area: the classes Rhodic Acrisol and Lixisol 
occupies great part of the area in the same landscape 
positions as PVA2 and CXd.

To minimize this confusion between soil classes, 
another attempt was done. Considering that the fourth 
categorical level (Subgroup) in the Brazilian Classification 
System is too specific and demands too much information 
to accurately extrapolate to a much larger similar area, 
a map was created using mapping units that combine 
classes into broader groups, with classifications only 
up to the second categorical level (Suborder) (Tables 4 
and 5). By reducing the specificity of soil classes, the 
algorithms might be less confused by soils occurring at 
similar landscape positions and therefore may provide 
more reliable predictions. The new soil classes prediction 
map is presented in Figure 9.

It must be noted that reducing the taxonomic 
levels does not incur losing the information gain when 
comparing the preexisting map for the area and the one 
produced by this work. The referred soil map for the 
region comprises three categorical levels, but is available 
at the scale of 1:650,000, a scale not sufficient to grasp 
the plurality of classes in the area and support localized 
decision-making. Despite including two categorical 
levels, the map generated by this work (Figure 9), at 
the scale of 1:25,000, illustrates a more accurate and 
realistic representation of the distribution of soil classes 
in the studied area.

Table 4: Confusion matrix scores of the soil classes prediction map created for the municipality of Itajubá, in the 
state of Minas Gerais, Brazil.

Mapping Unit Soil Classes User’s Accuracy 
(%)

Producer’s 
Accuracy (%)

CX Dystric/Eutric Cambisols, mountainous relief 6.96 30.16
GX Dystric Gleysols, floodplain flat relief 22.32 34.1
LA Xanthic Ferralsols, gently undulated relief 52.89 45.74
LV Rhodic Ferralsols, gently undulated relief 28.78 37.9

LVA1 Haplic Ferralsols (Eutric/Dystric), undulated relief 76.66 56.97
LVA2 Haplic Ferralsols (Eutric/Dystric), gently undulated relief 18.12 42.28
PV1 Rhodic Acrisols/Lixisols, undulated relief 73.27 65.4
PV2 Rhodic Acrisols/Lixisols, strongly undulated relief 28.95 70.97

PVA1 Haplic Acrisols, undulated relief 36.8 46.76

PVA2 Haplic Acrisols, strongly undulated relief 4.37 23.88

Kappa Coefficient 0.38
Global Accuracy 0.508

1 With addition of the relief phase.
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Figure 8: Digital soil mapping considering the fourth categorical level and relief.

Table 5: Confusion matrix of the soil classes prediction map created for the municipality of Itajubá, in the state 
of Minas Gerais, Brazil.

Mapping Unit Soil Classes User’s Accuracy (%) Producer’s Accuracy (%)
CX Cambisol 37.52 48.55
GX Gleysol 60.52 51.19
LA Xanthic Ferralsol 77.37 59.97
LV Rhodic Ferralsol 4.89 24

LVA Haplic Ferralsol 67.96 71.84
PV Rhodic Acrisol/Lixisol 20.74 38.68

PVA Haplic Acrisol 16.72 40.34
Kappa Coefficient 0.4038
Global Accuracy   0.5469

The new map (Figure 9) again shows remarkable 
presence of the soils pertaining to the class Acrisol, especially 
Haplic Acrisols, distributed across the whole Itajubá territory, 

where predominant relief varies from undulated to strongly 
undulated, along with the presence of Rhodic Acrisols/
Lixisols close to the water bodies, neighboring the GXd class. 
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This new soil map (Figure 9) achieved a global 
accuracy of 54.69% and a Kappa coefficient of 0.40 
(Table 5). Ten Caten et al. (2011), attempting a similar 
technique, built a soil map at the scale of 1:50,000 via 
logistic regression using soil classification up to the second 
categorical level. Validation scores observed by the authors 
were: 39.29% global accuracy and 0.21 Kappa coefficient. 
Wolski et al. (2017) increased accuracy by classifying soils 
using the second categorical level via the J48 algorithm, 
achieving global accuracy of 66.1% and Kappa coefficient 
of 0.36 when validating with points obtained from field 
observations in a work at the scale of 1:50,000.

Compared to the previously available soil map 
(1:650,000), which featured only Haplic Acrisols, Rhodic 
Acrisols and their association with classes Cambisol 
and Ferralsol (4 classes in 3 mapping units) (Figure 4), 
the map produced by this work identified 7 different 

Figure 9: Soil map with mapping units up to the second categorical level (Suborder) for the municipality of Itajubá, 
Brazil, created by extrapolating soil data from two basins within the territory of the municipality.

mapping units. The area occupied by each soil class is 
shown in Table 6.

The extrapolation of existing soil maps from small 
reference areas to larger similar target regions is an ongoing 
challenge (Krasilnikov; Targulian, 2019; Mello et al., 2021). 
The adoption of digital soil mapping techniques as a mean 
to improve existing soils mapping has been consolidating 
itself during the last few years, increasing its accuracy and 
reliability with time. Albeit validation scores may not be high 
(Table 5), the resulting maps are a significant improvement for 
areas where soil information is generalized. Maps produced 
by these methods make good use of available legacy data 
and are faster and inexpensive (Pásztor et al., 2018). Further 
studies on how to extrapolate soil data in developing tropical 
regions are needed and highly advised, as detailed soil data is 
a key factor for supporting decision-making in agricultural, 
environmental and urban endeavors.
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CONCLUSIONS
The best map obtained from the extrapolation of the 

existing soil maps to the entire municipality of Itajubá using 
two reference areas (Anhumas River Basin and José Pereira 
River Basin) achieved a 54% global accuracy and a 0.40 
Kappa coefficient. These validation scores are comparable 
to those found in the literature for similar methodologies. 
The resulting soil map was significantly more detailed than 
the state soil map for the area of interest. Parent material 
information and the use of very specific soil classes (up to 
the fourth categorical level - Subgroup -) confused models. 
Parent material information was not detailed enough and 
therefore could not help to infer soil classes distribution. The 
best prediction results were obtained by not using parent 
material data and reducing classification specificity to the 
second categorical level (Suborder). The main findings 
were: The state soils map (1:650,000) had only 3 pedological 
mapping units. Our soil map featured 7 pedological mapping 
units, resulting in more detailed soils information. Soil maps 
were built based on existing data from a neighboring larger 
basin and data obtained from a soil survey in a smaller 
area. This means reduced cost and time. This is important 
for every country, but is an important key especially for 
developing tropical countries like Brazil. Undetailed 
parent material information compromised results, yielding 
inaccurate maps. More detailed lithological information is 
needed in Brazil to assess its importance in soil prediction 
for tropical conditions. Reducing soil classes specificity 
(using second instead of fourth categorical level) avoids 
prediction errors and may result in more reliable maps.
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