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Exposures to airborne particulate matter and adverse perinatal
outcomes: a biologically plausible mechanistic framework

for exploring potential”®

Exposicdo a matéria particulada aérea e efeitos perinatais adversos:
referencial mecanistico biologicamente plausivel

para exploracdo de potenciais

Abstract This article has three objectives: to de-
scribe the biologically plausible mechanistic path-
ways by which exposure to particulate matter (PM)
may lead to adverse perinatal outcomes of low birth
weight (LBW), intrauterine growth retardation
(IUGR), and preterm delivery (PTD); review ev-
idence showing that nutrition affects biologic path-
ways; and explain mechanisms by which nutri-
tion may modify the impact of PM exposure on
perinatal outcomes. We propose an interdiscipli-
nary framework that brings together maternal
and infant nutrition, air pollution exposure as-
sessment, and cardiopulmonary and perinatal ep-
idemiology. Five possible biologic mechanisms have
been put forth in the emerging environmental sci-
ences literature and provide corollaries for the pro-
posed framework. The literature indicates that the
effects of PM on LBW, PTD, and IUGR may man-
ifest through the cardiovascular mechanisms of
oxidative stress, inflammation, coagulation, en-
dothelial function, and hemodynamic responses.
PM exposure studies relating mechanistic path-
ways to perinatal outcomes should consider the
likelihood that biologic responses and adverse birth
outcomes may be derived from both PM and non-
PM sources. We present strategies for empirically
testing the proposed model and developing future
research efforts.

Key words Air pollution, Biomarkers, Birth out-
comes, Cardiovascular disease, Nutrition

Resumo S&o trés os objetivos deste artigo: des-
crever rotas mecanisticas biologicamente plausi-
veis pelas quais a exposicdo a matéria particula-
da (MP) pode levar a efeitos perinatais adversos,
como baixo peso ao nascer (BPN), retardo do cres-
cimento intra-uterino (RCIU) e nascimentos pré-
termo (NPT); fazer uma revisao de evidéncias
mostrando que a nutricdo afeta rotas bioldgicas;
explicar os mecanismos através dos quais a nu-
tricdo pode modificar o impacto da exposi¢ao a
MP nos efeitos perinatais adversos. Propomos um
referencial interdisciplinar que aproxime nutri-
¢do materna e infantil, avaliagdo de poluicéo do
ar e epidemiologia cardiopulmonar e perinatal.
Destacaram-se cinco possiveis mecanismos bio-
I6gicos. A literatura indica que os efeitos da expo-
sicdo a MP sobre 0 BPN, 0 RCIU e 0s NPT podem
se manifestar através de mecanismos de estresse
oxidativo cardiovascular, coagulacao, inflamagao,
funcéo endotelial e respostas hemodinamicas. Es-
tudos de exposicdo a MP relatando rotas meca-
nisticas a efeitos perinatais devem considerar a
probabilidade de respostas bioldgicas e efeitos ad-
versos ao nascer serem derivadas da exposicdo a
MP e de outras fontes. Apresentamos estratégias
para testes empiricos do modelo proposto e para o
desenvolvimento de futuras pesquisas.
Palavras-chave Poluicdo do ar, Biomarcadores,
Doengas do nascimento, Doenga cardiovascular,
Nutricdo
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Low birth weight (LBW) affects 20 million in-
fants worldwide!. LBW is comprised of two over-
lapping etiologies: preterm delivery (PTD) and
intrauterine growth retardation (IUGR). LBW,
IUGR, and PTD are all significantly associated with
infant mortality and an array of infant morbidi-
ties that range from pulmonary to neurologic
outcomes?. These associations form the basis for
the“fetal origins” or the “Barker hypothesis” which
postulates that “fetal growth retardation conse-
quent to malnutrition has long-term structural
and physiologic impacts that predispose an indi-
vidual to chronic diseases in adulthood™.

Perinatal outcomes are influenced by a multi-
tude of factors including nutrition and health,
genetics, physiologic stressors, and environmen-
tal toxicants such as ambient air pollution®. In
terms of the human health effects, the airborne
particulate matter (PM) component has received
the greatest attention®, and is therefore the focus
for this review.

Current epidemiologic evidence suggests that
maternal PM exposure is correlated with several
adverse perinatal outcomes®67891011 - Although
these studies have become increasingly sophisti-
cated in their measurement of PM exposures, the
biologic roles of host factors that may function
as effect modifiers of their relationship with birth
outcomes have been less thoroughly examined.
In particular, the lack of attention to nutrition
factors should be considered. Nutrition can be
both confounder and effect modifier of the asso-
ciations between PM exposure and reproductive
effects. Given the modifiable nature of both nu-
trition and PM exposures, future PM research
and biomonitoring programs on young women
would benefit greatly from the inclusion of se-
lected nutrition factors. Itis likely that women of
childbearing age with nutritional risk factors (e.g.,
inadequate caloric intake, suboptimal protective
antioxidant micronutrient status) are more like-
ly to live in higher PM-exposed environments—
confounded through their relation to socioeco-
nomic status (SES)*2. Despite the considerable
effects of nutrition among women of childbear-
ing age, little is known about the nutrition inter-
actions with SES and physical environment, such
as PM exposure.

The specific objectives of this review are three-
fold: to describe the biologically plausible mech-
anistic pathways by which PM exposure may lead
to adverse perinatal outcomes (LBW, IUGR, and
PTD); review the evidence showing that nutri-
tion affects the biologic pathways; and describe
biologic markers that mediate the impact of nu-

trition and thereby explain the mechanisms by
which nutrition may serve as effect modifiers of
the association between PM exposure and perin-
atal outcomes.

Responses to PM exposures:
biologically plausible mechanisms

The specific biologic mechanisms whereby PM
influences perinatal outcomes remain to be fully
elucidated. However, epidemiologic, clinical, and
experimental evidence correlates current levels of
PM with both respiratory and cardiovascular
effects'®141516 and provide corollaries around
which we have developed biologically plausible
hypotheses linking PM exposures and birth out-
comes presented in Figure 1. Different particle
size ranges including ultrafine particles (with aero-
dynamic diameter < 0.1 um), fine particles (with
aerodynamic diameter < 2.5 um), and coarse par-
ticles (with aerodynamic diameter 2.5 - 10 um)
are of importance to this framework. Figure 1
illustrates both chronic and acute PM effects to-
gether. Five possible albeit not exclusive biologic
mechanisms have been put forth in the literature
to explain these effects. In the following text, we
describe these mechanisms. Although an increas-
ing number of studies support the notion that
PM is associated with cardiovascular effects, these
studies at present provide only a fragmentary and
somewhat inconclusive picture of the complex
biologic pathways involved.

Oxidative stress. PM exposure may contrib-
ute to systemic oxidative stress'* (Figure 1). Di-
rect effects from oxidative activities of combus-
tion-derived particles or by transition-metal con-
stituents (e.g., iron, copper, chromium, and va-
nadium)*”t® may adversely affect the embryo in
its earliest phase of growth®. In addition, oxida-
tive stressors resulting from PM exposure may
arise from organic compounds and from activa-
tion of inflammatory cells capable of generating
reactive oxygen species (ROS) and reactive nitro-
gen species (RNS)?. F2a (8-iso-PGF2a) isopros-
tane is one of the most promising biomarkers
for assessing oxidative injury? and has been stud-
ied the most extensively for PM exposures.

Oxidative stress—induced DNA damage ap-
pears to be a particularly important mechanism
of action of urban particulate air pollution?*?,
As theorized by Hartwig et al., metals such as
nickel in PM may inhibit DNA repair enzymes.
We hypothesize that transplacental exposures to
transition metals contained in PM could resultin



oxidative stress that may lead to DNA damage,
disrupting DNA transcription which in turn may
increase the number of placental DNA adducts.
This hypothesis is partially supported by obser-
vations from the Czech Teplice study that found
that maternal blood and placental DNA adducts
are more common in areas with higher levels of
air pollution®. One mechanism postulated to
mediate the effects is that PM absorbs and trans-
ports polycyclic aromatic hydrocarbons (PAHS),
exposure to which may lead to increased DNA
adducts®, thus resulting in LBW?2 and IUGR?®
21 Researchers suggest that DNA damage mea-
sured by oxidized DNA bases purines and pyri-
midines and protein and lipid peroxidation indi-
cated by plasma malondialdehyde may be more
sensitive than bulky DNA adducts as markers of
exposure to PM%., PAHs in PM can induce
biotransformation by cytochrome P450, expoxide
hydrolase, and dihydrodiol dehydrogenase® in
addition to the direct action of coal combustion
toxics on antioxidants/enzymes (e.g., superoxide
dismutase, catalase) that may adversely affect the
embryo in its earliest phase of growth?®. Alterna-

tively, PM may also bind receptors for placental
growth factors, resulting in decreased fetal- pla-
cental exchange of oxygen and nutrients?. Nutri-
ent and oxygen supply during gestation are key
factors regulating fetal growth?.

Pulmonary and placental inflammation.
PM exposure is associated with systemic inflam-
mation®®3323334 (Figure 1). We hypothesize that
inhalation of particles during pregnancy can in-
duce acute placental®and pulmonary inflamma-
tion. In contrast to the PM composition—induced
effects on oxidative stress that have been exten-
sively studied, specific components in particles
that elicit inflammation are less thoroughly in-
vestigated, although recent research points to the
contribution of compositional trace elements®
and bioavailable transition metals to cardiopul-
monary injury in healthy and compromised an-
imal models®. Based on cell culture methodolo-
gies, the up-regulation of pro-inflammatory
mediators in response to transition metals chro-
mium, aluminum, silicon, titanium, iron, and
copper within PM were found to contribute to
pulmonary inflammation®.

Figure 1. Proposed biologic framework for exploring possible effect modification of PM-birth outcomes by

maternal nutrition.
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The most widely studied biomarkers of in-
flammation are high-sensitive C-reactive protein,
oxidized low-density lipoproteins, proinflamma-
tory cytokines interleukin (IL)-1, IL-6, and tu-
mor necrosis factor-a, serum amyloid A%, the
acute phase marker fibrinogen, neutrophilcount
and blood platelet count, red blood cells and
white blood cells®*, and albumin®. With cell cul-
ture methods, PM exposure—induced trace ele-
mental markers of inflammatory response de-
noted by the release of cytokines and chemokines
were recently identified by Becker et al.**, who
showed that PM constituent iron and silicon cor-
related with the release of IL-6, whereas chromi-
um correlated with IL-8.

Inflammation could be associated with inad-
equate placental perfusion®, which can mediate
placental inflammatory responses and its biolog-
ic sequelae, resulting in impaired transplacental
nutrient exchange® (Figure 1). We hypothesize that
inadequate placental perfusion may cause growth
restriction in utero due to interference with some
process or processes such as affecting nutrition of
the fetus, reduced oxygenation of maternal blood,
or both. For example, a rapid decline in the pla-
cental delivery of essential fatty acids arachidonic
acid and docosahexanoic acid is expected*.

Independent of the cascade of events charac-
terized above, the biologic mechanisms that trig-
ger adverse perinatal outcomes may include ma-
ternal infections, especially during the last trimes-
ter of pregnancy, and may initiate premature con-
tractions and/or rupture of membranestt. Al-
though air pollution does not directly cause ma-
ternal infections, exposure to specific pollutants
may enhance allergic inflammation*? and increase
the maternal risk for adverse birth outcomes.

Coagulation. Systemic alterations in rheologic
factors, including blood coagulability and whole
blood viscosity as a result of exposure to PM,
represent other potential mechanisms of PM tox-
icity3#434445 |n response to PM exposures, increase
in any of the proteins of the clotting cascade
present a possibility forcoagulation*#3, Based on
a cross-sectional study conducted in London, Pe-
kkanen et al.*® found ambivalent results for the
association between PM10 (PM < 10 um in aero-
dynamic diameter) and plasma fibrinogen - this
association was significant only for the warm sea-
son. Other measurable biomarkers include fac-
tors VII-1X, fibrinD-dimer, and von Willebrand
factor.. PM exposures may also lead to changes
in hemoglobin, platelets, and white blood cells*,
which may potentially contribute to the associa-
tion between PM and adverse fetal growth.

Endothelial function. Exposure to PM may
influence endothelial functions and could be con-
sidered as an intervening pathway in subsequent
impact on fetal growth (Figure 1). Although this
pathway has been less extensively studied, the
impact of PM on vascular function has been the
subject of recent investigations®. Inhalation of
environmental tobacco smoke (ETS) [similar in
characteristics to PM2.5 (PM < 2.5 um in aero-
dynamic diameter)] causes rapid vasoconstric-
tion*, increases plasma endothelin levels®, and
triggers endothelial dysfunction®. Although the
specific chemical components of ETS responsi-
ble for the observed effect of vasoconstriction
have not been adequately characterized, it is like-
ly that the PM in ETS is primarily responsible, as
summarized by Brook et al.’s.

A recent animal-based study®! found that
PM2.5 exposure increased plasma concentrations
of asymmetric dimethyl arginine that is associat-
ed with impaired vascular function and increased
risk of cardiovascular events®. Circulating con-
centrations of soluble adhesion molecules E-se-
lectin, intracellular adhesion molecule (sICAM-
1), and vascular cellular adhesion molecule
(VCAM-1) are overexpressed when the endot-
helium encounters inflammatory stimuli®. The
inhalation of high urban levels of concentrated
ambient particles and ozone for 2 hr caused con-
duit arterial vasoconstriction in healthy adults®.
As summarized by Brook et al.’®, it is possible
that acute systemic inflammation and oxidative
stress following PM exposure?? are responsible
for triggering endothelial dysfunction leading to
vasoconstriction®. Endothelial dysfunction can
also be secondary to other cardiovascular dis-
ease (CVD) risk factors (e.g., metabolic syn-
drome)%. These pathophysiologic reactions in
response to PM exposures may result in impaired
fetal growth.

Hemodynamic responses. Biologic mea-
sures that assess hemodynamic changes in re-
sponse to PM exposure have typically included
systolic blood pressure (SBP) and diastolic blood
pressure (DBP). Panel studies conducted of
adults with preexisting CVD found an increase
in SBPassociated with elevated particulate expo-
sures®™%8% (Figure 1). In contrast, based on pop-
ulation exposures, an increase of a 5-day average
of ultrafine particles was associated with a small
decrease in SBP and DBP®. Specific biologic mech-
anisms for the observed PM-associated effects
on blood pressure (BP) have been suggested to
include an increase in sympathetic tone and/or
the modulation of basal systemic vascular tone®.



Another potential mechanism whereby pollut-
ant components can increase BP is superoxide-
mediated inhibition of the actions of nitrous ox-
ide in inducing vasodilatation®.

If PM exposure is also associated with BP ele-
vations in pregnant women, this could increase
the risk of adverse perinatal outcomes as a conse-
quence of preexisting hypertension or pregnan-
cy-induced hypertension. Elevation of BP to lev-
els that is defined as pregnancy-induced hyper-
tension has been associated with IJUGR (Misra
1996) and PTD®. Severely impaired fetal growth
is preceded by maternal hemodynamic maladap-
tation®3, These changes may force the fetus to
adapt, down-regulate growth, and prioritize the
development of essential tissues®. Hypertension
can also be secondary to oxidative stress and vas-
cular inflammation® or other risk factors, for low
maternal body weight, for example®, thus enhanc-
ing the susceptibility to adverse birth outcomes.

Exploring effect modification by nutrition

Although the specific underlying mechanisms
that contribute to normal or adverse birth out-
comes are not yet fully understood, an adequate
periconceptional nutrition status is considered a
key determinant®%, Given that both dietary com-
position and CVD risk are strongly socially pat-
terned, this suggests one way to approach the
possible interaction between air pollution and SES
(in affecting birth outcomes). As is described in
more detail below and illustrated in Figure 1, di-
etarycomposition has been demonstrated to re-
late to those same biologic mechanisms hypoth-
esized to explain the possible effects of PM expo-
sure on birth outcomes.

The nutrition aspects of the framework shown
in Figure 1 are not intended to include every pos-
sible parameter worthy of consideration. Explo-
rations about what to add to various layers of
the framework could be one of its most useful
applications in future work on this topic. Al-
though no previous studies of the perinatal ef-
fects of PM exposure have examined effect mod-
ification by nutrition, theoretical and empirical
evidence is growing. Researchers studying air
pollution and birth outcomes have suggested that
nutrition status may play a role in protecting the
fetus or magnifying the effects?”°. Other investi-
gators have cited the potential importance of
nutrition as a buffering or synergistic factor with
regard to PM-induced cardiovascular respons-
es’0™16 Using data from the Third National

Health and Nutrition Examination Survey
(NHANES 111), Schwartz considered the role of
nutrition in the association between PM expo-
sures and incident ischemic events. Considering
a limited set of dietary factors (saturated fat, fi-
ber, alcohol, caffeine, fish and shellfish),
Schwartz'® reported that the selected factors did
not modify the association. Furthermore, the
biomarkers were limited to fibrinogen, platelet
and white blood cell count, SBP, total cholesterol,
and high-density lipoprotein cholesterol. On the
other hand, we propose that researchers should
explore the potential effect-modifying roles us-
ing a more comprehensive list of dietary vari-
ables and biomarkers.

Consideration of a hypothesis
of nutritional susceptibility

The Institute of Medicine’ describes combina-
tions of environmental exposures and greater
susceptibility as a form of “double jeopardy.”
Maternal nutrition stressors such as micronu-
trient deprivation are likely to occur around the
world in subpopulations that experience dispar-
ate air pollution profiles. Considerable research
evidence supports the important role played by
nutrition, particularly micronutrients, in deter-
mining positive pregnancy outcomes™. In addi-
tion, gestational energy stress, a phenomenon
characterized by lower plasma volume expan-
sion™, protein-energy malnutrition, and preg-
nancy complications, may also co-occur. As de-
picted in Figure 1, we propose that maternal nu-
trition could be exacerbating or buffering in the
association between PM and birth outcomes for
a subgroup of women of childbearing age. In the
following section, we contextualize these biologic
pathways for nutrition: first based on intakes of
nutrients, next based on the consumption of
foods or of groups of foods, and finally based
on indices and dietary patterns that combine both
approaches’™.

Nutrients potentially contributing to bio-
logic pathways. In the past two decades, under-
standing of cardioprotective nutrients and foods
has grown substantially owing to studies of the
molecular mechanisms and the metabolic effects.
Investigators typically estimate nutrient intakes
using food frequency questionnaires™”" 8 food
records, and/or 24-hr dietary recalls. Nutrient
values may be derived using existing databases™
supplemented with information from manufac-
turers and biochemical analyses.
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Oxidative stress. Ingestion of particular mi-
cronutrients causes a shift in oxidative status. The
micronutrients most relevant to the pathways
shown in Figure 1 include the fat-soluble caro-
tenoids and vitamin E, water-soluble vitamin C¥,
and methyl nutrients including the B vitamins
pyridoxine (B6), cyanocobalamin (B12), and
folate. Carotenoids may protect against oxidant
damage®.. Dietary micronutrient trace minerals
zinc and manganese may display indirect antiox-
idant activity as constituents of enzymes includ-
ing superoxide dismutase.

Micronutrients may extend the gestational
period to full term or counteract the damage
caused to lipids and DNA triggered by PM expo-
sures®2. Methyl nutrients are involved in DNA
methylation®3, and the resulting methyl nutrient
status may modify PM-induced alterations in
oxidative stress through its impact on DNA sta-
bility, repair, and the different gene expression
processes. Suboptimal methyl nutrient status may
also increase the risk for PTD associated with
preeclampsia® and LBW®S,

Inflammation. Dietary macronutrient in-
takes may produce inflammatory responses.
Unlike micronutrients, some macronutrients
may show opposite effects. Reducing trans- and
saturated fatty acids and increasing omega-3
fatty acids are also associated with a reduced
inflammatory status. Food sources rich in n-6
polyunsaturated fatty acids are shown to en-
hance IL-1 production; n-3 fatty acids on the
other hand have been demonstrated to have the
opposite effect®.

Coagulation. A deficiency in any one of the
methyl nutrients could result in elevated ho-
mocysteine®. Homocysteine thiolactone can sub-
sequently influence vascular coagulation®. In ad-
dition, high total dietary fat may lead to fibrin
deposits and thrombus formation through acti-
vation of coagulation®,

Endothelial function. Micronutrient antiox-
idants representing 3-carotene subfractions de-
rived from vegetables and fruits are inversely re-
lated to E-selectin®. Polyphenols have been found
to inhibit expression of endothelial adhesion by
regulating gene transcription®. Micronutrient in-
takes such as arginine and folic acid have been
shown to improve endothelial function®. Unlike
the possible cardioprotective effects of micronu-
trients and polyphenols, macronutrients may be
beneficial or detrimental. Based on the Nurses
Health Study, Lopez-Garcia et al.®® reported a
positive relationship between trans-fats and en-
dothelial dysfunction, whereas n-3 fatty acids

were inversely associated with SICAM-1, sVCAM-
1, and E-selectin.

Hemodynamic responses. The favorable ef-
fects of fruits and vegetables, low-fat dairy prod-
ucts, and reduced sodium suggested by Dietary
Approaches to Stop Hypertension (DASH)® in-
dicate the possible role for micronutrients in re-
ducing the risk for prepregnancy hypertension.
Several mechanisms of polyphenols have been
researched, including their antioxidant functions.

Contributions of foods/food groups to bio-
logic pathways. There is a growing list of foods
and food groups consumption of which is asso-
ciated with the various biologic pathways depict-
ed in the present framework (Figure 1). Fruits
and vegetables contain a myriad of different com-
ponents of varying antioxidant capacity, thus
offering a range of possibilities for altering PM-
induced oxidative effects®. Based on the NHANES
111 findings, grain consumption is inversely asso-
ciated with an elevated CRP concentration®. Sim-
ilarly, fresh fruit, olive oil, mushrooms, crucifer-
ous vegetables, and nuts are associated with a
favorable homocysteine profile®. Adding vege-
tables may reverse the increases in ICAM-1 and
VCAM-1, whereas high intakes of refined grains,
and processed meat and low consumption of cru-
ciferous and yellow vegetables may exacerbate the
inflammatory processes®.

Dietary patterns as contributors to the bio-
logic pathways. Dietary pattern analysis serves
as a complementary approach to the nutrient-
focused and food-group analysis described
above. Dietary patterns are food intake patterns
over a referent period and consider the overall
dietary matrix®-%910 However, most of these
studies did not focus on the dietary patterns
among women of childbearing age.

Dietary patterns cannot be measured direct-
ly, and one must rely on statistical methods that
employ dimension-reduction techniques such as
factor analysis and cluster analysis®. The advan-
tage of novel statistical approaches such as the
reduced rank regression'® is that the derived pat-
tern incorporates the biologic pathways present-
ed in the current framework and thus is hypoth-
esis driven.

Gene-nutrient interactions and impact on
biologic pathways. Nutrigenomic researchers
have provided evidence for interactions among
dietary factors, genetic variants, and biochemical
markers of CVD¥2, Genetic background can in-
teract with habitual total dietary fat and fatty
acid composition, thereby affecting predisposi-
tion to the woman'’s responsiveness to PM expo-



sures. Similarly, genetic susceptibility related to
functional polymorphisms in genes coding for
antioxidant and DNA repair enzymes may be
expected to modify the levels of oxidative DNA
damage caused by exposure to PM. In addition,
there issignificant evidence that genes are involved
in determining enzymes, receptors, cofactors, and
structural components involved in regulation of
BP and inflammatory and coagulation factors'®.

Measurement indices for nutrients, foods,
and food groups and dietary patterns

Individual dietary constituents may have small
biologic effects that emerge only when the com-
ponents are integrated into a simple unidimen-
sional score. Appendix 1 lists candidate tools, and
we have classified them in three categories as a
function of their determination mode, based on a
now classical review™: a) indices based on intakes
of nutrients (or at least of certain nutrients); b)
indices based on the consumption of foods or of
groups of foods; and c) indices that combine both
approaches resulting in dietary patterns. In the
following section, we present examples of these
measurement indices that add quantitative ele-
ments to qualitative aspects, and some are based
on thresholds or recommendations. In a few cas-
es, the indices were studied to link to the biologic
parameters in the present framework.

Nutrient indices. Oxidative stress has been
described as a disturbance in the balance between
free radical production and antioxidant capaci-
ty®. Reflecting this definition, the dietary antiox-
idant index summarizes the combined intakes of
carotenoids, flavonoids, tocopherols, tocot-
rienols, selenium, and vitamin C'%, The integrat-
ed oxidative balance score reflects antioxidant
(e.g., vitamin C) and pro-oxidant (e.g., iron) in-
takes!®. The antioxidant scores for commonly
consumed fruits, fruit juices, and vegetables are
published as oxygen radical absorbance capacity
(ORAC) or ferric-reducing antioxidant power%:
106 More than 80% of the antioxidant capacity in
fruits and veggies may also be attributed to fla-
vonoids'” that have the ability to chelate metal
ions®and have particular relevance here.

Foods and food group indices. Dietary vari-
ety determined by Recommended Foods score
(simple count of consumed food items) and di-
versity measured as Dietary Diversity Score (count
of represented food groups)™ are both good can-
didates for measuring overall dietary quality. The
Healthy Eating Index based on the Dietary Guide-

lines for Americans is an additional measure of
quality®. The Mediterranean pattern now rec-
ommended for the secondary prevention of cor-
onary artery disease quantifies adherence to the
traditional Mediterranean diet using a 9 point
scale!®. Minor variants to these indices, the alter-
nate Healthy Eating Index*! and the alternate
Mediterranean dietary pattern** were found to
be associated with markers of inflammation.

Dietary pattern indices. The possibility that
dietary patterns may exert an effect on biologic
measures was first suggested through the find-
ings of the DASH clinical trial®? (Appendix 1). As
shown in Appendix 1, other population studies
conducted in the United States indicate two ma-
jor dietary patterns: “prudent” and “Western™%,
The prudent pattern was found to be inversely
associated with homocysteine and positively as-
sociated with folate® while also showing a bene-
ficial effect on the endothelium. The Western pat-
tern, on the other hand, was positively correlated
with homocysteine, high-sensitive C-reactive pro-
tein, and impaired endothelial function and neg-
atively associated with folate''’. Similarly, low-
glycemic load-based patterns in biomarkers of
exposure/effect and are informed of inflamma-
tion. Women of child-bearing age were associat-
ed with improved fibrinolysis''2. Glycemic load
may be determined using the updated table that
provides glycemic index scores for 1,300 interna-
tional food entries'® (Appendix 1).

Recommendations related
to the proposed framework

In appendix 2, we recommend strategies for de-
veloping future research efforts in three over-arch-
ing areas. Certainly many factors could function
as mediators of the association between PM and
birth outcomes. However, few studies are suffi-
ciently comprehensive to understand the multi-
factorial etiologies and pathways. In particular,
the confounding nature of SES and air pollution
should be explored in future work, Future stud-
ies that include biomarkers of exposure/affect and
informed by biologic pathways will help tease out
those aspects of SES that explain differences in
PM birth effects among population subgroups.

The current framework may be advanced by
biomonitoring women with unique circumstanc-
es (e.g., genetic polymorphisms). Further research
will help identify susceptible population sub-
groups, such as for the potential for genetic vari-
ation in metabolic pathways (e.g., detoxifying such
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as cytochrome P450) that could underlie differ-
ences in susceptibility toxicities related to PM ex-
posures® 114 Altered expressions of DNA repair
and other defense genes have yet to be studied for
up-regulation of the involved PM exposures®.
The available data are consistent with the oc-
currence of PM-related systemic oxidative, in-
flammatory, and hemodynamic responses, but
evidence on endothelial dysfunction and proco-
agulatory states is limited. In addition to these
pathways, other alternate mechanisms (e.g., dis-
ruption in iron homeostasis)** should be stud-
ied. Although mechanisms underlying the adverse

Appendix 1. Measurement indices assessing
nutrients, foods, food groups, and dietary patterns.

Dietary intakes of nutrients

. Dietary Antioxidant Index'%®: carotenoids, fla-
vonoids, tocopherols, tocotrienols, selenium, and vi-
tamin C

. Oxidative Balance Score*®: vitamin C, [3-carotene,
and iron

. Oxygen Radical Absorbance Capacity (ORAC)105.106
: ORACROO (peroxyl radical), ORAC-OH (hydroxyl
radical), and ORACCu (copper)

Dietary intakes of foods and food groups

. Dietary Diversity Score™: foods from dairy, meat,
grain, fruit, and vegetable groups

. Recommended Foods Score™: weekly consumption
of fruits, vegetables, lean poultry and alternates, low-
fat dairy, and whole grains

Combined dietary intakes of nutrients, foods, and
food groups

. Dietary Approaches to Stop Hypertension®?; 4-5
servings fruits; 4-5 servings vegetables; 2-3 servings
low-fat dairy products; 7-8 servings of grain products;
2 or less servings of meats, poultry, fish/day; 4-5 serv-
ings of nuts, seeds, legumes/week

. Alternate Healthy Eating Index*'*: protein source,
trans fat, PFA:SFA, cereal fiber, moderate alcohol,
and long-term multivitamin use

. Alternate Mediterranean Diet''': excludes potato
products from vegetable group, separates fruit and nuts
into two groups, eliminates dairy group, includes
“whole grain” products only, only red and processed
meats for meat group

. Prudent Pattern'®: fruits, vegetable, fish, whole
grains, and legumes

. Western Pattern'®: red and processed meat, high-fat
dairy products, sugar-containing

beverages, sweets, and desserts

. Glycemic Load": glycemic quality and quantity

effects of PM on the cardiopulmonary systems
remain a primary focus of research, additional
hypotheses suggest the involvement of neurogenic
processest®, Finally, researchers should also
consider the synergistic interactions among the
various biologic mechanistic pathways.

Appendix 2. Recommendations for advancing the
current framework.

Sampling, measurement, and characterization

of PM exposures

. Consider the roles of co-pollutants (e.g., ozone, car-
bon monoxide, nitrogen dioxide) with PM and use
multiple-influence chemical characterization models.
. Incorporate trace elements that are characteristic to
their specific source type and emissions through spe-
cific source “fingerprints.”

. Integrate personal PM exposures with fixed-site and
community-level assessment.

. Consider the geographical and seasonal toxicity pro-
files for PM and constituents.

. Collect continuous ambient PM exposure over and
beyond “daily” PM data.

. Explore the intracellular pathways by which PM and
constituent transition metals may modulate the gene
expression of biologic responses.

Assessing nutritional status, biologic pathways,
and biomarkers of response

. Explore the possible dietary influences by incorporat-
ing a priori approach, which builds on previous knowl-
edge concerning the cardiac and pulmonary effects,
and birth outcomes.

. Assess specific food features, depending on the con-
texts relevant to PM monitoring area, and construct
dietary indices accordingly.

. Enhance the reliability and validity of self-reported
nutrition measures by incorporating relevant biologic
measures.

Clarifying the temporal and spatial vulnerabilities
and unique circumstances

. Expand the proposed framework using the definition
of maternal health that fosters linkages with a wom-
an’s health during her reproductive years.

. Consider all gestational time windows of PM and in
utero nutrition exposures.

. Explore susceptibility resulting possibly from com-
promised maternal health, in addition to effects ex-
erted directly across the placenta.

. Clarify the roles of multiple determinants (SES and
other stressors) in causing adverse birth outcomes.

. Biomonitor women for gene polymorphisms (gene—
gene, gene—nutrient, gene—nutrient-environment) by
which PM and constituent transition metals may
modulate the gene expression of biological responses.




Conclusion

Several ongoing U.S. population-based research
projects funded through the National Institute
of Environmental Health Sciences (e.g., the
Health Disparities Initiative) provide unique
opportunities to apply and evaluate the cur-
rent framework. The resulting findings would
be relevant for PM regulation and primary
prevention of CVD and other diseases influ-
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