MANEJO DA IRRIGAÇÃO, DENSIDADE POPULACIONAL E ADUBAÇÃO MINERAL PARA A CULTURA DO INHAME¹

Elson Soares dos Santos² e Ladilson de Souza Macêdo³

RESUMO

Estudaram-se os efeitos da irrigação, densidade de plantas e adubação mineral sobre a produtividade, peso médio, comprimento e diâmetro de túberas de inhame (*Dioscorea cayennensis* L.). No Experimento 1 testaram-se três regimes de irrigação (lâminas equivalentes a 50, 75 e 100% de evaporação do tanque classe "A", a intervalos de 3, 4 e 5 dias, respectivamente), duas densidades de planta (13.889 e 10.417 plantas.ha⁻¹) e quatro níveis de nitrogênio (0, 50, 100 e 150 kg.ha⁻¹), no arranjo parcelas subsubdivididas. No Experimento 2 testaram-se os mesmos regimes de irrigação, porém a intervalos de 3, 5 e 7 dias, e 10 formulações de NPK (50-60-60, 50-120-60, 50-180-60, 100-60-60, 100-120-60, 100-180-60, 150-60-60, 150-120-60, 150-180-60 e 100-120-0 kg.ha⁻¹), no arranjo parcelas subdivididas. A densidade populacional de 13.889 plantas ha⁻¹ (1,20m x 0,60m) associada a 100 kg.ha⁻¹ de N + 120 kg.ha⁻¹ de P₂O₅ + 12.500 kg.ha⁻¹ de esterco de bovinos, pode ser recomendada para o cultivo do inhame irrigado; a irrigação com uma lâmina de água equivalente a 75% de evaporação do tanque classe "A", a intervalos de cinco dias, proporciona resultados satisfatórios de produtividade, peso médio, comprimento e diâmetro do inhame.

Palavras-chave: Dioscorea cayennensis, densidade de plantas, evaporação do tanque, lâmina de água

IRRIGATION MANAGEMENT, PLANT DENSITY AND INORGANIC FERTILIZATION FOR THE YAM CROP

ABSTRACT

The effects of irrigation, plant density and inorganic fertilization on the yield, mean weight, length and diameter of yam (*Dioscorea cayennensis* L.) tubers were studied. In Experiment 1 three irrigation regimes (levels equivalents to 50, 75 and 100% of class A pan evaporation, at irrigation intervals of 3, 4 and 5 days, respectively) were tested, two plant densities (13.889 and 10.417 plants ha¹) and four nitrogen levels (0, 50, 100 and 150 kg.ha¹ of N) in split-split plot design. In Experiment 2 the same irrigation levels, but in intervals of 3, 5 and 7 days, were tested in ten treatments NPK (50-60-60, 50-120-60, 50-180-60, 100-60-60, 100-120-60, 100-180-60, 150-60-60, 150-120-60, 150-180-60 and 100-120-0 kg.ha¹) in the split plot design. The density of 13.889 plants.ha¹ (1.20m x 0.60m) associated to 100 kg.ha¹ of N + 120 kg.ha¹ of P₂O₅ + 12,500 kg.ha¹ of farm yard manure may be recommended for the irrigated yam crop; the irrigation with a water level equivalent to 75% of class A pan evaporation, at five day intervals, promoted satisfactory results of productivity, mean weight, length and diameter of the yam.

Key words: *Dioscorea cayennensis*, plant density, pan evaporation, water level

¹ Pesquisa realizada com recursos financeiros da EMBRAPA-CNPHortaliças

² Eng. Agr., M.Sc., Empresa Estadual de Pesquisa Agropecuária da Paraíba S.A (EMEPA-PB), CP 275, CEP 58013-290 João Pessoa, PB

³ Eng. Agr., M.Sc., Área de Irrigação e Drenagem. EMBRAPA/ EMEPA-PB

INTRODUÇÃO

Apesar da cultura do inhame (*Dioscorea cayennensis* L.) encontrar-se com relativa importância econômica na região Nordeste, particularmente nos Estados da Paraíba e Pernambuco, a maioria das áreas produtoras apresenta baixa produtividade em razão, principalmente, da falta de uma tecnologia adequada e, neste aspecto, estudos referentes à irrigação e adubação são de grande relevância do ponto de vista hídrico e de fertilidade do solo.

Dentre os fatores da produção, a água é o que limita os rendimentos das plantas cultivadas, com maior intensidade, motivo pelo qual o controle eficiente da umidade do solo é prática fundamental para a obtenção de uma agricultura bem sucedida. Segundo Macêdo (1990) os cultivos irrigados de inhame, no Estado da Paraíba, são conduzidos sem nenhum conhecimento da relação solo-água-planta e sem manejo de irrigação, o que, por certo, tem provocado diminuição na fertilidade dos solos cultivados e na produtividade da cultura.

Nas microrregiões produtoras do inhame na Paraíba, o cultivo irrigado é feito no período de setembro a março, quando as precipitações pluviais são pouco freqüentes, sendo impraticável a exploração da cultura sem irrigação. Neste período, a precipitação média mensal nessas regiões é em torno de 40 mm, sendo novembro-fevereiro a época mais seca do ano. Na literatura brasileira trabalhos sobre irrigação na cultura do inhame são restritos, porém alguns estudos foram desenvolvidos por Macêdo (1990), Pereira (1997) e Metri (1997).

A presente pesquisa teve como objetivo avaliar o efeito de regimes de irrigação, densidades de planta e adubação mineral sobre a produtividade e componentes de produção da cultura do inhame, em um solo Podzólico Vermelho-Amarelo, de textura arenosa, da mesorregião da Mata Paraibana.

MATERIAL E MÉTODOS

Dois experimentos de campo foram conduzidos na Estação Experimental de Mangabeira, da Empresa Estadual de Pesquisa Agropecuária da Paraíba (EMEPA-PB) na cidade de João Pessoa, PB, nos períodos de setembro de 1991 a junho de 1992 e de setembro de 1992 a junho de 1993. As coordenadas geográficas são: 7º 06' 57" S e 34º 53' 14" W.Gr. e altitude de 30m.

A área onde os experimentos foram instalados apresenta topografia plana. A análise química do solo (Podzólico Vermelho-Amarelo, profundo, com textura arenosa, boa drenagem) apresentou as seguintes características: pH em água = 5,3 (acidez fraca), P disponível = 22,3mg.dm⁻³ (alto), K⁺ disponível = 33,0 mg.dm⁻³ (baixo), Ca²⁺ trocável = 1,1cmol_c.kg⁻¹ TFSA (baixo) e A³⁺ trocável = 0,25 cmol_c.kg⁻¹ TFSA (baixo). O clima é tropical quente e úmido, com temperatura média mensal de 29°C e umidade relativa do ar de 76%. A distribuição da precipitação pluviométrica (mm) ocorrida no período experimental está apresentada na Tabela 1.

O preparo do solo foi efetivado através de duas gradagens, usando-se grade de disco tracionada a trator. Foram aplicados ao solo 2.000 kg.ha⁻¹ de calcário dolomítico com PRNT de 60%, para efeito de calagem.

Tabela 1. Distribuição da precipitação pluviométrica ocorrida no local do experimento, por decêndios, nos períodos de 1991/92 e 1992/93

Meses		Decêndios (1991/92)			Decêndios (1992/93))
	I	II	III	Total	I	II	III	Total
Agosto	86,7	115,5	134,8	337,0	63,2	24,0	30,6	117,8
Setembro	1,4	10,2	92,6	104,2	25,8	7,4	3,4	36,6
Outubro	47,6	2,2	0,2	50,0	3,6	3,4	9,0	16,0
Novembro	7,2	18,2	1,4	26,8	1,9	1,7	4,5	8,1
Dezembro	0,5	17,9	7,2	25,6	0,1	0,0	0,0	0,1
Janeiro	2,0	0,2	16,0	18,2	0,0	2,2	5,4	7,6
Fevereiro	18,8	45,9	2,8	67,5	1,4	1,6	0,0	3,0
Março	25,8	15,2	64,0	105,0	12,0	1,0	57,0	70,0
Abril	5,6	194,3	152,8	352,7	9,2	85,4	28,6	123,2
Maio	186,8	55,7	103,9	346,4	8,7	69,1	63,8	141,6
Junho	46,1	7,2	80,0	133,3	8,2	52,8	99,0	160,0
Julho	65,3	61,2	51,6	178,1	49,2	31,4	0,0	80,6

Experimento 1

Cada parcela constou de quatro fileiras de 4,80m de comprimento, distanciadas de 1,20m com uma área total de 23,04 m² (4,80m x 4,80m) a qual foi considerada área útil, com 32 plantas no espaçamento mais denso e 24 plantas no espaçamento menos denso. O delineamento experimental foi o de blocos ao acaso, com arranjo de parcelas subsubdivididas, com quatro repetições. Os tratamentos consistiram na combinação de três regimes de irrigação testados nas parcelas principais (lâminas equivalentes a 50, 75 e 100% de evaporação do tanque classe "A", a intervalos de 3, 4 e 5 dias, respectivamente), duas densidades populacionais (10.417 e 13.889 plantas.ha¹) testadas nas subparcelas e quatro níveis de nitrogênio (0, 50, 100 e 150 kg.ha⁻¹) testados nas subsubparcelas. As parcelas principais foram distanciadas em 10m, para evitar interferência de água entre os tratamentos de irrigação.

Realizou-se uma adubação básica e uniforme para todos os tratamentos com 120 kg.ha $^{-1}$ de P_2O_5 (superfosfato triplo), 40 kg.ha $^{-1}$ de K_2O (cloreto de potássio) e 10.000 kg.ha $^{-1}$ de matéria orgânica (esterco de bovinos). O fósforo e o esterco de bovinos foram aplicados totalmente em fundação. As doses de nitrogênio e potássio foram parceladas em duas aplicações iguais, em cobertura, aos 90 e 120 dias do plantio. Foi admitida uma dose máxima de enxofre de 60 kg.ha $^{-1}$, implicando no balanceamento dos tratamentos referentes às doses de N, com sulfato de amônio (20% N e 22% S) e uréia (44% N).

O plantio foi realizado no dia 4 de setembro de 1991, sendo utilizada a cultivar Da Costa, em sistema de camalhões (leirões) nos espaçamentos de 1,20m x 0,60m e 1,20m x 0,80m. As túberas-semente foram tratadas por imersão em uma calda fungicida à base de Benomyl, na dosagem de 150g do produto comercial para 100 litros de água.

Foi utilizado o método de irrigação por aspersão, com três ramais e distribuição de água na forma quadrática 12m x 12m; antecedentemente ao plantio, foi aplicada uma lâmina de irrigação suplementar, estimando-se a quantidade de água necessária para elevar a umidade do solo à capacidade de campo. Nos primeiros trinta dias do plantio foi aplicada uma lâmina de irrigação de aproximadamente 16mm, duas vezes por semana, para todos os tratamentos, com a finalidade de se promover melhor uniformidade de germinação. A partir do mês de outubro foi iniciada a fase experimental propriamente dita, com o estabelecimento da aplicação de água diferenciada em cada parcela principal.

A precipitação dos aspersores em mm.h- $^{-1}$ (Ia) foi determinada através da expressão Ia = $[Q/(E_1 \times E_2)] \times 3.600$, sendo Q a

vazão do aspersor (l.s¹), E_1 o espaçamento entre aspersor (m) e E_2 o espaçamento entre linhas de aspersor (m); a vazão dos aspersores foi calculada pela relação entre o volume de água estabelecido (litros) e o tempo (s) para sua obtenção e o tempo de irrigação foi determinado pela relação entre a percentagem da evaporação do tanque classe "A" e a precipitação do aspersor, enquanto a evaporação do tanque classe "A" foi obtida através de leitura da régua invertida, usando-se a expressão: sen $30^\circ = E_{_{\rm V}} (L_{_2} - L_{_1})$, sendo $E_{_{\rm V}}$ a evaporação (mm), L_1 e L_2 as leituras anterior e atual da régua invertida (mm).

O crescimento das plantas foi orientado através do tutoramento com varas de aproximadamente 1,80m de comprimento e 2,5cm de diâmetro. Os tratos culturais foram realizados com enxada manual, efetuando-se a remoção das plantas daninhas. No dia dez de janeiro de 1992 foi detectada a ocorrência de algumas plantas infectadas pela queima da folhagem ou pinta preta, causada pelo fungo *Curvularia eragrostidis* e, em virtude do nível de infecção ter sido insignificante, evitou-se o uso de produtos químicos na lavoura.

A colheita foi efetuada de 12 a 15 de maio de 1992 e, na ocasião, foram determinadas as seguintes variáveis: produtividade, peso médio, comprimento e diâmetro das túberas produzidas; também foram computados os números de túberas atacadas pelo nematóide da casca preta (*Scutellonema bradys*) e os de túberas com acúmulo de raízes ou atacadas pela meloidoginose. Para análise estatística dessas variáveis, utilizou-se o programa de computação NTIA da EMBRAPA, descrito por Paniago et al. (1995); a comparação entre médias foi realizada pelo teste de Tukey, a nível de 5% de probabilidade.

Experimento 2

Cada parcela principal constou de quatro fileiras de 5,0m de comprimento, distanciadas em 1,30m, com uma área de 26,00m² (5,20m x 5,00m) com 40 plantas, 16 consideradas úteis para avaliação dos parâmetros avaliados.

O delineamento experimental foi o de blocos ao acaso, com arranjo de parcelas subdivididas, com quatro repetições; os tratamentos constaram de três regimes de irrigação testados nas parcelas principais (lâminas equivalentes a 50, 75 e 100% de evaporação do tanque classe "A", a intervalos de 3, 5 e 7 dias, respectivamente) e 10 formulações de NPK (50-60-60, 50-120-60, 50-180-60, 100-60-60, 100-120-60, 100-180-60, 150-60-60, 150-120-60, 150-120-60, 150-120-60 e 100-120-0 kg.ha⁻¹) testadas nas subparcelas; as parcelas principais foram distanciadas em 10m para evitar interferência de água entre os tratamentos de irrigação; além desses tratamentos, avaliou-se a eficiência do nematicida Nemacur na dosagem de 50 kg.ha⁻¹, no controle de meloidoginoses e do nematóide da casca preta, em oitenta parcelas experimentais (presença e ausência).

Nos tratamentos de adubação as doses de fósforo e potássio foram aplicadas totalmente por ocasião do plantio; as doses de nitrogênio foram fracionadas em três aplicações iguais, em cobertura aos 40, 60 e 90 dias pós-plantio, admitindo-se uma dose máxima de enxofre de 60 kg.ha⁻¹, razão pela qual os tratamentos foram balanceados, usando-se sulfato de amônio (20% N e 22% S) e uréia (44% N).

O plantio foi efetuado no dia 8 de setembro de 1992, com a cultivar Da Costa, em sistema de camalhões, no espaçamento

de 1,30m x 0,50m. As túberas-semente foram tratadas por imersão em uma calda fungicida à base de Benomyl, na dosagem de 150g do produto comercial para 100 litros de água, durante 10 min. Os tratamentos de irrigação foram os mesmos no Experimento 1 e o crescimento das plantas foi orientado de maneira a conduzi-las em um barbante até o arame da espaldeira, a 1,40m de altura; a espaldeira do tipo vertical com um fio de arame foi construída com estacas de 2,20m de comprimento, enterrando-se 0,50m no solo; por outro lado, as estacas foram distanciadas em 8,30m em linhas que não ultrapassaram 50m, evitando-se o tombamento das plantas pela ação do vento; cada linha de arame foi localizada entre duas linhas de plantio da cultura, tornando o sistema mais prático e econômico; foi utilizado o arame nº 12 liso galvanizado.

Os tratos culturais constaram de duas capinas químicas com herbicida TOPEZE SC (Simazine + Ametrine) pré e pós-emergência usando a dose de 5 l.ha⁻¹ (300ml do produto comercial para 100 litros de água) a intervalo de 60 dias e duas capinas manuais, com enxada, intercaladas de 30 dias; neste experimento não se observou a ocorrência de pragas e doenças na folhagem da cultura, sendo assim dispensado o uso de pulverizações com produtos químicos.

Por ocasião da colheita, realizada de 26 a 29 de abril de 1993, foram mensuradas as seguintes variáveis: produtividade, peso médio, comprimento e diâmetro de túberas produzidas; foram mensurados, também, os números de túberas atacadas pelo nematóide da casca preta (*Scutellonema bradys*) e o número de túberas atacadas pela meloidoginose. Para análise estatística dessas variáveis utilizou-se o programa de computação NTIA da EMBRAPA, descrito por Paniago et al. (1995); a comparação entre médias foi realizada pelo teste de Tukey, a nível de 5% de probabilidade.

RESULTADOS E DISCUSSÃO

Experimento 1

Os resultados das análises de variância apresentados na Tabela 2 não indicaram efeito significativo (P>0,05) do regime de irrigação sobre a produtividade, peso médio, comprimento e diâmetro das túberas de inhame; entretanto, houve efeito significativo (P<0,05) da densidade populacional (espaçamento de plantio) sobre a produtividade e o diâmetro das túberas; do

Tabela 2. Análises de variância da produtividade (t.ha⁻¹), peso médio (kg), comprimento e diâmetro (cm) de túberas de inhame produzidas sob regime de irrigação.

Fontes de variação	GL	Quadrados médios			
		Produtividade	Peso médio	Comprimento	Diâmetro
Blocos	3	49,1315 ns	0,4208 ns	23,6493 ns	0,7809 ns
Regime de irrigação=L	2	37,1002 ns	0,4989 ns	16,6979 ns	1,8864 ns
Resíduo (a)	6	13,1975	0,1708	11,6285	0,4843
Densidade de plantas=D	1	388,6057 *	0,3641 ns	3,0104 ns	2,0709 *
L x D	2	10,9384 ns	0,0664 ns	3,6354 ns	1,3597 *
Resíduo (b)	9	15,5359	0,1170	6,1771	0,2362
Níveis de nitrogênio=N	3	181,7883 **	1,8598 **	10,3993 ns	1,9837 **
Linear	1	518,1244 **	5,4213 **	18,0188 ns	3,2505 **
Quadrático	1	13,5165 ns	0,0677 ns	10,0104 ns	2,3751 *
Cúbico	1	13,7242 ns	0,0904 ns	3,1688 ns	0,3255 ns
D x N	3	9,8556 ns	0,1764 ns	10,3715 ns	0,7535 ns
LxN	6	20,9105 ns	0,1989 ns	9,2118 ns	0,5120 ns
LxDxL	6	21,0382 ns	0,1393 ns	14,6215 ns	0,9518 *
Resíduo (c)	54	26,2282	0,2531	6,8785	0,3557
CV (a) %		15,55	17,11	13,98	7,21
CV (b) %		16,87	14,16	10,19	5,04
CV (c) %		21,92	20,82	10,75	6,18

^{*} e ** Significativo a níveis de 5 e 1%, respectivamente (teste F)

(ns) Não significativo

mesmo modo, níveis de nitrogênio apresentaram efeitos significativos (P<0,01) sobre as variáveis estudadas, exceto sobre o comprimento das túberas; foi observada interação significativa (P<0,05) entre regime de irrigação e densidade populacional apenas sobre o diâmetro das túberas; as demais interações entre os fatores estudados não foram significativas (P>0,05), exceto a interação de terceira ordem, regime de irrigação x densidade populacional x níveis de nitrogênio, que foi significativa (P<0,05) sobre o diâmetro das túberas de inhame.

A Tabela 3 apresenta os valores médios de produtividade, peso, comprimento e diâmetro de túberas de inhame, em função dos regimes de irrigação e das densidades de planta; observa-se que não houve diferenças significativas (P>0,05) entre regimes de irrigação sobre a produtividade e os componentes de produção avaliados. A inexistência de diferença significativa entre os tratamentos de irrigação pode ser atribuída à ocorrência de chuvas antes da colheita, que afetou os resultados esperados igualando os regimes de água. As médias gerais de produtividade, peso médio, comprimento e diâmetro das túberas foram de 23,361 t.ha⁻¹, 2,416kg, 24,39cm e 9,65cm, respectivamente, resultados estes considerados razoáveis para a cultura do inhame conduzida sob condições de irrigação.

Tabela 3. Médias de produtividade, peso, comprimento e diâmetro de túberas de inhame, em função do regime de irrigação e da densidade de plantas¹.

Fatores	Produtividade (t ha ⁻¹)	Peso médio (kg)	Comprimento (cm)	Diâmetro (cm)
Regimes de irrigação				
50 % da EVTA ² a intervalos de 3	22,203 a	2,335 a	24,00 a	9,42 a
dias				
75 % da EVTA a intervalos de 4 dias	23,546 a	2,353 a	23,94 a	9,63 a
100 % da EVTA a intervalos de 5 dias	24,333 a	2,560 a	25,22 a	9,90 a
Densidade de plantas				
13.889 plantas.ha ⁻¹ (1,20m x 0,60m)	25,373 a	2,354 a	24,21 a	9,50 b
10.417 plantas.ha ⁻¹ (1,20m x 0,80m)	21,349 b	2,478 a	24,56 a	9,80 a

¹ Nas colunas, médias seguidas da mesma letra, não diferem significativamente entre si, pelo teste de

Embora não tenha sido constatado efeito significativo dos tratamentos de irrigação sobre a produtividade e os componentes de produção, verifica-se que o tratamento equivalente à lâmina de 75% de evaporação do tanque classe "A ", a intervalos de cinco dias, proporcionou resultado satisfatório de produtividade (23,546 t.ha⁻¹), peso médio (2,35kg), comprimento (23,94cm) e diâmetro (9,63cm) do inhame. Este resultado está de acordo com o registrado por Metri (1997) que, estudando as necessidades hídricas do inhame, obteve elevada produtividade com a lâmina de água correspondente a 15mm, a intervalos de aplicação de cinco dias.

A maior produtividade do inhame (25,37 t.ha⁻¹) ocorreu no espaçamento mais denso (1,20m x 0,60m) com 13.889 plantas.ha⁻¹, superando significativamente (P<0,05) em 4,02 t.ha⁻¹ a produtividade obtida no espaçamento menos denso (1,20m x 0,80m) com 10.417 plantas.ha⁻¹; esta observação indica que a produtividade aumentou na proporção direta do incremento populacional, o que concorda com a afirmação de Janick (1968), Silva (1983) e Santos (1996); no referente a peso médio e comprimento das túberas, não houve diferença significativa (P>0,05) entre densidades populacionais; já para diâmetro de túberas, as diferenças foram significativas, sendo a média diametral 3,2% maior no tratamento com menor densidade (9,80cm).

A análise de regressão polinomial indica que a produtividade de inhame apresentou resposta linear com o aumento dos níveis de nitrogênio aplicados ao solo, expresso pela seguinte equação: Y=20,243 + 0,04156 X (R² = 95%) onde Y representa a produtividade média (t.ha¹) e X os níveis de N aplicados (kg.ha¹). Pelo coeficiente de regressão determinou-se que o aumento da produtividade de inhame foi de 41,56 kg.ha¹ para cada unidade de nitrogênio adicionada ao solo.

A relação entre peso médio de túberas de inhame e níveis de nitrogênio aplicados ao solo foi estabelecida por uma análise de regressão polinomial linear; a equação encontrada, Y = 2,0972 + 0,004251X ($R^2 = 97\%$) sendo Y o peso médio em kg e X os níveis de N em kg.ha⁻¹, revela que o peso médio das túberas aumentou linearmente em função dos níveis crescentes de nitrogênio adicionados ao solo e o coeficiente de regressão angular

indica que o incremento do peso médio das túberas foi de 4,251g para cada unidade de nitrogênio adicionada ao solo.

Houve efeito significativo (P<0,01) de níveis de nitrogênio sobre o diâmetro das túberas de inhame. O modelo quadrático descreve a relação entre níveis de N e o diâmetro das túberas de inhame produzidas, expresso pela seguinte equação: Y = 9,2472 + 0,01273X - 0,00006292X² (R² = 94%) onde Y representa o diâmetro médio das túberas (cm) e X os níveis de N aplicados (kg.ha¹); o diâmetro máximo (9,89cm) dessas túberas ocorreu com a aplicação de 101 kg.ha¹ de N; avaliando-se os resultados do ponto de vista econômico, recomenda-se o emprego da quantidade 100 kg.ha¹ de N como dose adequada para a cultura do inhame, quando conduzida sob irrigação.

Neste experimento, observou-se alta ocorrência de nematóide da casca preta (Scutellonema bradys) e meloidoginose (Meloigogyne incognita) afetando drasticamente o valor comercial do inhame. Suspeita-se que a ocorrência dessas doenças esteja relacionada à utilização de túberas-semente parasitadas, de solo infestado por nematóides causadores dessas enfermidades, de adubação após o sexto mês e colheita após o nono mês de cultivo, uma vez que o nematóide da casca preta ocorre, geralmente, entre o sétimo e o décimo mês do plantio; enfim, doses elevadas de matéria orgânica e excesso de umidade do solo induzem a um crescimento maior de raízes nas túberas. As espécies de nematóide Pratylenchus coffeae, Scutellonema bradys, Meloidogyne incognita e Rotylenchulus reniformis foram encontradas por Acosta & Ayala (1971) em túberas de Dioscorea rotundata cv., Guinea e túberas de Dioscorea cayennensis cv. Da Costa infestadas por nematóide formador de galhas (*Meloidogyne arenaria*) foram observadas por Moura & Freitas (1983); recomendações sobre o controle fitossanitário do inhame foram feitas por Veiga & Moura (1971) & Santos (1996).

Experimento 2

Os resultados das análises de variância e os valores médios de produtividade e peso de túberas de inhame, em função de regimes de irrigação e adubação NPK, estão apresentados na Tabela 4, cujos valores revelam que não houve efeito significativo (P>0,05) do regime de irrigação nem da adubação NPK sobre a produtividade e o peso médio das túberas; também não foi observada interação significativa (P>0,05) entre regime de irrigação e adubação NPK. A inexistência de diferença significativa entre os tratamentos de irrigação pode ser explicada

Tukey a 5%, considerando-se um mesmo fator ² EVTA - Evaporação do tanque classe "A"

Tabela 4. Médias de produtividade e do peso de túberas de inhame, em função do regime de irrigação e da adubação NPK¹.

Tratamentos	Produtividade	Peso médio
	(t ha ⁻¹)	(kg)
Regimes de irrigação		
50% da EVTA ²	16,35 a	2,02 a
75 % da EVTA	15,02 a	1,93 a
100 % da EVTA	14,18 a	1,81 a
Adubação NPK (kg.ha ⁻¹	¹)	
50 - 60 - 60	16,67 a	2,11 a
50 - 120 - 60	14,26 a	1,69 a
50 - 180 - 60	12,66 a	1,64 a
100 - 60 - 60	14,42 a	1,86 a
100 - 120 - 60	15,14 a	2,01 a
100 - 180 - 60	11,38 a	1,41 a
150 - 60 - 60	15,63 a	1,90 a
150 - 120 - 60	16,75 a	2,01 a
150 - 180 - 60	16,67 a	2,19 a
100 - 120 - 0	18,27 a	2,39 a
Média geral	15,18	1,92
CV (%)	38,45	37,34
F (Regime irrigação)	3,15 ns	0,45 ns
F (Adubação NPK)	1,51 ns	1,91 ns
F (Interação)	0,68 ns	0,50 ns

¹ Nas colunas, médias seguidas da mesma letra não diferem significativamente entre si, pelo teste de Tukey a 5%

pela ocorrência de chuvas antes da colheita, afetando o resultados esperados e igualando os regimes de irrigação.

Mesmo sem haver diferença significativa entre os tratamentos de irrigação, observa-se que o tratamento equivalente à lâmina correspondente a 50% de evaporação do tanque classe "A" (EVTA), a intervalos de três dias, proporcionou a mais elevada produtividade (16,35 t.ha⁻¹) e peso médio (2,02kg) do inhame, seguida da lâmina correspondente a 75% de EVTA, a intervalos de cinco dias, com médias de produtividade e peso médio de 15,02 t.ha⁻¹ e 1,93kg, respectivamente. Resultado concordante com este foi relatado por Metri (1997) que, pesquisando as necessidades hídricas do inhame, obteve elevada produtividade com a lâmina correspondente a 15mm, aplicada a intervalos de cinco dias. Embora não tenha sido constatado efeito significativo da adubação NPK, a aplicação de 100 kg.ha⁻¹ de N mais 120 kg.ha⁻¹ de P₂O₅, na ausência de potássio, proporcionou a mais elevada produtividade e peso médio das túberas (18,27 t.ha⁻¹ e 2,39kg, respectivamente) resultado este que concorda com as recomendações de adubação mineral feitas por Santos (1996) para a cultura do inhame.

Constatou-se que o nematicida Nemacur (Fernamiphos) na dose de 50kg do produto comercial por hectare, exerceu algum efeito no controle à infestação de meloidoginose e do nematóide da casca preta (*Scutellonema bradys*); entretanto, este tratamento apresenta suas limitações econômicas e parece ser mais viável recomendá-lo para plantios irrigados, que proporcionam colheitas em épocas mais favoráveis à comercialização; enfim, estudo nematológico mais específico deve ser realizado com a cultura do inhame.

CONCLUSÕES

- 1. A densidade populacional de 13.889 plantas.ha⁻¹ (1,20 m x 0,60m) associada à adubação com 100 kg.ha⁻¹ de N + 120 kg.ha⁻¹ de P₂O₅ + 12.500 kg.ha⁻¹ de esterco de bovinos, representa uma indicação satisfatória para o cultivo do inhame irrigado.
- 2. A irrigação com uma lâmina equivalente a 75% de evaporação do tanque classe "A", a intervalos de cinco dias, promove resultados satisfatórios de produtividade, peso médio, comprimento e diâmetro do inhame.
- 3. Torna-se necessário estudo para se conhecer a eficiência e a viabilidade econômica do uso de nematicidas no controle de meloidoginose e do nematóide da casca preta.
- 4. Pesquisas com irrigação, utilizando-se equipamentos precisos (sonda de nêutrons e tensiômetros) para determinação exata da fração de água disponível no solo, visando ao reinicio das regas, assim como metodologia de balanço hídrico para determinação do coeficiente de cultivo (K_c), são imprescindíveis para se obter parâmetros de irrigação nos locais de produção, evitando-se déficits ou excesso de água nas diferentes fases fenológicas do inhame.

REFERÊNCIAS BIBLIOGRÁFICAS

- ACOSTA, N.; AYALA, A. Pathogenicity of *Pratylenchus coffeae*, *Scutellonema bradys*, *Meloidogyne incognita* and *Rotylenchulus reniformis* on *Dioscorea rotundata*. **Journal of Nematology**, v.7, n.1, p.1-6, 1975.
- JANICK, J. **A ciência da horticultura**. São Paulo: Freitas Bastos, 1968. p.277-286.
- MACÊDO, L. de S. **Fatores que afetam a produtividade do** cará-da-costa (*Dioscorea cayennensis* Lam.) irrigado na **Paraíba**. João Pessoa: EMEPA-PB, 1990. 12p. (Relatório de Pesquisa).
- METRI, J.E. da C. Estimativas preliminares das necessidades hídricas do inhame (*Dioscorea cayennensis* Lam.).
 Campina Grande: CCT/UFPB, 1997. 113p. Tese de Doutorado.
- MOURA, R.M. de; FREITAS, O.M.B.L. de. Observações sintomatológicas sobre a Meloidoginose do inhame (*Dioscorea cayennensis*). **Revista Fitopatologia Brasileira**, Brasília, v.8, n.2, p.243-249, jan. 1983.
- PANIAGO, C.F.A.; ANDRADE, D.P. de; TSURUTA, J.H.; CAMARGO NETO, J.; MOURA, M.F. **Software Científico-NTIA.** versão 2.0. Campinas: EMBRAPA-NTIA, 1995, 8 disquetes 3 1/2".
- PEREIRA, J.R.B. Estudo da umidade do solo na fase de germinação do cará-da-costa (*Dioscorea cayennensis* Lam.). Coeficientes hídricos. Campina Grande: CPGEAG/CCT/UFPB, 1997. 89p. Dissertação de Mestrado.
- SANTOS, E.S. dos. **Inhame** (*Dioscorea* spp.); aspectos básicos da cultura. João Pessoa: EMEPA-PB, SEBRAE, 1996. 158p. il.
- SILVA, A.A. de. **Cultura do cará-da-costa**: *Dioscorea cayenensis* **Lam.Var.** *Rotundata* **Poir**. 2 ed. Fortaleza: BNB-ETENE, 1983. 73p. il.
- VEIGA, A.F. de S.L.; MOURA, R.M. de. Aspectos fitossanitários do cará inhame, variedade da Costa (*Dioscorea cayennensis* Lam.), no Nordeste do Brasil. Recife: IPA/EMATER-PE, 1971. 19p. (IPA.Articulação Pesquisa Extensão, 8).

 $^{^2\,\}rm EVTA$ - Evaporação do tanque classe "A" correspondendo a intervalos de irrigação de 3, 5 e 7 dias, respectivamente pela ocorrência de chuvas antes da colheita, afetando os