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for establishment of yield mapping
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Miguel A. Uribe-Opazo2, Marcos Milan3 & Claudio L. Bazzi4

ABSTRACT
Yield mapping represents the spatial variability concerning the features of a productive area and allows
intervening on the next year production, for example, on a site-specific input application. The trial aimed
at verifying the influence of a sampling density and the type of interpolator on yield mapping precision to
be produced by a manual sampling of grains. This solution is usually adopted when a combine with
yield monitor can not be used. An yield map was developed using data obtained from a combine
equipped with yield monitor during corn harvesting. From this map, 84 sample grids were established
and through three interpolators: inverse of square distance, inverse of distance and ordinary kriging, 252
yield maps were created. Then they were compared with the original one using the coefficient of relative
deviation (CRD) and the kappa index. The loss regarding yield mapping information increased as the
sampling density decreased. Besides, it was also dependent on the interpolation method used. A multiple
regression model was adjusted to the variable CRD, according to the following variables: spatial variability
index and sampling density. This model aimed at aiding the farmer to define the sampling density, thus,
allowing to obtain the manual yield mapping, during eventual problems in the yield monitor.
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Estimativa de densidade amostral para elaboração
de mapas de produtividade

RESUMO
O mapa de produtividade representa a variabilidade espacial das características de uma área cultivada
e permite intervir na produção dos anos posteriores, na aplicação diferenciada de insumos. Este trabalho
teve por objetivo verificar a influência da densidade amostral e do tipo de interpolação na exatidão dos
mapas de produtividade, gerados a partir da amostragem manual de grãos, solução que pode ser
adotada quando um monitor não pode ser utilizado. Um mapa de produtividade foi obtido com monitor
de colheita comercial em lavoura de milho, a partir do qual foram estabelecidas 84 grades e, por meio
de três interpoladores, o inverso da distância ao quadrado, inverso da distância e krigagem geraram-se,
assim, 252 mapas de produtividade, que foram então comparados com o original, utilizando-se o
coeficiente de desvio relativo (CDR) e o índice kappa. A perda de informação do mapa de produtividade
aumentou à medida em que se diminuiu a densidade amostral e foi dependente do método de interpolação
utilizado. Um modelo de regressão múltipla foi ajustado à variável CDR, em função das variáveis: índice
de variabilidade espacial e densidade amostral. Este modelo teve a finalidade de auxiliar o agricultor na
definição da densidade amostral e permitir obter-se, manualmente, o mapa de produtividade, caso
ocorram problemas eventuais no monitor de colheita.

Palavras-chave: agricultura de precisão, mapas temáticos, variabilidade espacial
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INTRODUCTION

The spatial variability of soil properties in an agricultural
area is something already known by producers. With the advent
of precision agriculture (PA), spatial and temporal variability
can be considered at large scale aiming to improve the
implementation and use of inputs, increase productivity, reduce
production costs and environmental impact (Farias et al., 2003).
PA provides necessary accuracy and precision in its tools and
technologies, making it possible to increase productivity and
profitability of crop production while lowering environmental
impacts (Corwin & Plant, 2005; Koch et al., 2004). This variability
is observed through yield maps that provide parameters to
diagnose and correct the causes of lower yields in some areas
and study why yield is high in other areas.

However, when a combine is operating in a given area and
monitoring yield, problems may occur with the monitor, which
prevent the monitoring of the remaining area. In this case, one
solution would be to obtain the yield map from a manual
sampling. However, there are doubts concerning the sampling
density to be used and what would be the loss of information
regarding the map that hypothetically would be produced by
the monitor. This loss of information, however, can be measured
from the comparison of maps produced by both methodologies.
From a georeferenced database of yield and using a Geographic
Information System (GIS) it is possible to generate yield maps
through interpolation. However, one aspect still to be explored
is the influence of different types of interpolators in the
preparation of thematic maps. Jones et al. (2003) cites that many
articles have been published comparing different interpolation
methods in a variety of data types. Most of these studies
involved comparisons of two-dimensional interpolation
methods. The most studied methods were kriging and inverse
distance weighting (IDW). Eight studies showed kriging as
the best; even when kriging was better “on average”, IDW
was higher under certain circumstances. Two of the studies
showed IDW superior to kriging, and six studies showed little
difference between kriging and IDW.

There are algorithms available to construct maps but not
for comparison among maps (Lourenço & Landim, 2004). One
way is to compare maps by multiple linear regression analysis
as Brower & Merriam (2001) when comparing structural contour
maps in order to understand the geological history of a region.
According to EMBRAPA (2007), another way of comparing
maps is by using the kappa index of agreement, which tests the
association among maps. The analysis of accuracy is achieved
by confusion matrix or error matrix, and subsequently calculated
the kappa index of agreement (Congalton & Green, 1993).
According to Coelho et al. (2009), another parameter for
comparing two thematic maps is the coefficient of relative
deviation (CRD), which expresses the average difference, in
module, of interpolated values   in each map considering one
of them as standard map. The lower the percentage found, the
higher the similarity between them.

In this context, the objective was to determine the influence
of sample density and the type of interpolator on the accuracy
of yield maps to be produced from manual sampling of grains.

MATERIAL AND METHODS

Yield data used in this study were collected from a farm
located in Cascavel, Paraná, with geographic center under the
coordinates 24º 58' 44.4'’ S and 53º 31' 26.4'’ W, 650 m average
altitude. The maize crop with physiological cycle of about 120
days was planted between 25 to 30 January 2004 under no-
tillage system and 0.20 m plant spacing and 0.70 m row spacing.
The crop was harvested from June 30 to July 2, 2004, separating
from a 13.2 ha sub-area to be analyzed in this study. The whole
area was harvested with combine and harvest monitor and
data used to simulate a manual harvest. The yield monitor used
was AgLeader® PF 3000®, installed in a combine harvester
New Holland TC 57®, corn platform with six row. 14,760 points
were collected, which passed through filtration and removal of
inconsistent data following the methodology used by Bazzi et
al. (2008). In this analysis, spots with times of filling and
emptying the harvester less than six seconds and delay time of
less than twelve seconds were eliminated. It was also eliminated
points with incorrect platform width, failure to GPS differential
signal, outliers or zero water content of grains (below 12% and
above 40%), positioning error, and discrepant yield values
(through the box-plot graphs). When concluded the elimination
of data considered inconsistent, remained 13,473 points, which
originated the map (Figure 1A) of observed yield. From this,
maps were constructed performing the points interpolation,
resulting in contour maps which allowed a better analysis
(Figure 1B).

For convenience, the map was rotated 53° (Figure 2A) and
divided into three smaller and regular areas (Figure 2B), called
Area 1 (4.38 ha, 2,728 points), Area 2 (4.86 ha, 2,860 points) and
Area 3 (4.99 ha, 2,921 points) in order to obtain better local
control.

Maize yield maps using manual sampling are performed by
harvesting 1 to 2 linear meters of two adjacent rows. However,
in this work, no manual samplings were performed, which were
simulated using six grids (Figure 3) from the elimination of
points of maps corresponding to areas 1, 2 and 3. This estimate
considers that the manual sample (usually between 0.7 and 1.4
m2) has average productivity similar to the sample taken with
the yield monitor (15 to 20 m2). For more information sources,
four replications were performed in each area, taking care not
to repeat the same points in each repetition and that they stay
as far away as possible. Once four replications were performed
in each one of the seven grids and at three areas, it reached a
total of 84 data sets. The objective of this simulation was to
study the sampling density needed to produce maps of
productivity from manual sampling, when sampling for some
reason cannot be carried out with a harvest monitor.

Data normality was verified by tests of Anderson-Darling
and Kolmogorov-Smirnovs at 5% significance level. Data
showing normality in at least one of the tests were considered
as having normal probability. The outliers were checked
through the box-plot graphs. The coefficient of variation (CV)
was considered low when  10% (homoscedasticity), medium
when 10% < CV  20%, high when 20% < CV  30%, and very
high when > 30% (heteroscedasticity) according to Gomes &
Garcia (2002).
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Figura 2. Map rotated 53° with 13,473 points of data
collection and non-interpolated values (A); Map clipped
from the points map rotated 53°, remaining 8,509 points
and non-interpolated values (B)

Figure 3. Sampling grids of Area 1 and repetition 1

D. 61 points

A. 441 points

E. 30 points F. 15 points

B. 221 points C. 121 points

Figure 1. Yield Points Map (kg ha-1) with non-interpolated
values (A). Yield contour map (kg ha-1) with values
interpolated by the kriging method (B)

B.

A.
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In geostatistics analysis semivariograms were constructed
to verify the spatial dependence on the data. To estimate the
experimental semivariance function, the estimator proposed
by Cressie & Hawkins (1980) was used. Experimental
semivariograms were obtained by applying methods of ordinary
least squares adjustment (OLS), adopting the isotropic model
(unidirectional semivariogram) with 50% cut-off the maximum
distance. In this analysis, the computer program VESPER ® 1.6
Demo was used. Similarly to the spatial dependence index (SDI),
proposed by Cambardella et al. (1994), spatial variability index
(SVI) Eq. 1, was defined in order to define a proportional index
to the spatial variability and not inversely proportional as the
SDI. The SVI classification adopted was: very low for SVI <
20%; low for 20  SVI < 40%; medium for 40  SVI < 60%; high
for 60  SVI < 80%; and very high for SVI > 80%.
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where:
Co - nugget effect of the adjusted semivariogram
C1 - scale, C0 + C1: sill (variance estimate)

In generating thematic maps three types of interpolators
were used: inverse of distance (ID), inverse of square
distance (ISD), and ordinary kriging and, using the computer
program SURFER® 8.0 were  prepared the yield maps.  In
comparing the maps generated from each grid with the
original map were used the coefficient of relative deviation
(CRD) (Coelho et al., 2009) Eq. 3, which expresses the average
difference in module of interpolated values in each map,
considering one of them as a standard map and the kappa
index (Cohen, 1960) Eq. 4, which uses a confusion matrix for
further index calculation. The aim was to evaluate the quality
loss of yield maps when reducing the number of sampling
points.
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where:
r - number of rows in a cross-classification table
xii - number of combinations on the diagonal
xi+ - total observations in row i
x+i - total number of observations in column i
n - total number of observations

Landis & Koch  (1977) suggested the following
interpretation for kappa index values   (K): no agreement < 0,
poor agreement for 0  K  0.19, partial agreement for 0.20  K
 0.39, moderate agreement for 0.40  K  0.59, excellent
agreement for 0.60  K  0.79, perfect agreement for 0.80 d” K
d” 1.00. In practice, the kappa index represents the proportion
of pixels that were coincident beyond those that would be by
pure chance. To evaluate the behavior of similarity between
maps, as measured by the coefficient of deviation (CRD),
depending on the density and spatial variability, it was fitted
the multiple regression model to the CRD variable, depending
on the variables SDI (spatial dependence index) and SD
(sampling density). The variable selection method used was
the best subset. 0.05 significance for F distribution was used
to control entry and exit effects. The adjusted coefficient of
multiple determination (adjusted R2) was used as criterion for
selection of the best models.

RESULTS AND DISCUSSION

For space reasons, only data for Area 1 (chosen by lottery)
and those for the three areas together will be shown. The
maize’s average yield (second season) from Area 1 ranged from
5,795 to 6,082 kg ha-1, with a mean value of 5,919 kg ha-1, 38.7%
above the average for Paraná state (4,266 kg ha-1) and 94.6%
above the average for Brazil (3,041 kg ha-1) (SEAB, 2007). The
coefficients of variation (CV) ranged from 13.8% (medium) to
25.2% (high), with 16.7% average (medium), thus characterizing
relative data homogeneity (Pimentel-Gomes & Garcia, 2002).
Through the normality tests performed was found that 50%
yield data sets showed normal distribution at 5% significance
level (Table 1).

Regarding the three areas studied, the average yield ranged
from 4,491 to 6,082 kg ha-1 (Table 2), averaging 5,440 kg ha-1,
78.9% above the national average and 27.5% above the Paraná
average. CVs ranged from 11.8% (average) to 26.1% (high),
with 18.5% average (medium), thus characterizing relative data
homogeneity. Through the normality tests performed was found
that 64% yield data sets showed normal distribution at 5%
significance level.

Models and parameters adjusted to the semivariograms for
Area 1 are shown in Table 3.

The nugget effect (C0) for data set of the sampling scheme
61_A1_R1 (61-point grid of Area 1 and repetition 1) was 454,602,
which compared to other nugget effects for different purposes
sampling schemes showed the lowest value. However, the
sampling scheme with data set 15_A1_R3 had showed highest
C0, (1,969,444). The range was the greatest for 121_A1_R3,
(361.6 m) while the least range was 25.9 m for 61_A1_R1. The
sill ranged between 663,333 for the data set 30_A1_R2 and

(1)

(2)

(3)

(4)
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Table 1. Descriptive analysis of yield for data sets used in Area 1
Mean             SD Minimum    Median Maximum 

     Data sets 
Number of 
samples kg ha-1 

CV 
(%) kg ha-1 

Normality 

          Minimum 5795 0815 13.8 1827 5778 7082  
Total Area 1 Maxiumum 6082 1494 25.2 4112 6315 8527  

 Medium 5919 0985 16.7 2615 6068 7835  
         Original_A1_R1 2728 5974 0956 16.0 1827 6116 8527 No 

441_A1_R1 0441 5926 0988 16.7 1827 6100 8129 No 
221_A1_R1 0221 5902 0953 16.1 2630 6069 8055 No 
121_A1_R1 0121 5890 0956 16.2 2630 6021 8055 No 
61_A1_R1 0061 6014 0897 14.9 3851 6049 8055 Yes 
30_A1_R1 0030 5963 0851 14.3 3851 6004 7501 Yes 
15_A1_R1 0015 5844 0984 16.8 3851 5988 7501 Yes 

         Original_A1_R2 2728 5974 0956 16.0 1827 6116 8527 No 
441_A1_R2 0441 5935 0995 16.8 1827 6091 8129 No 
221_A1_R2 0221 5941 0932 15.7 3093 6108 7859 No 
121_A1_R2 0121 5947 0949 16.0 3348 6132 7859 Yes 
61_A1_R2 0061 5902 0951 16.1 3507 6044 7607 Yes 
30_A1_R2 0030 5906 0815 13.8 4112 6039 7501 Yes 
15_A1_R2 0015 5970 0893 15.0 4112 6044 7501 Yes 

         Original_A1_R3 2728 5974 0956 16.0 1827 6116 8527 No 
441_A1_R3 0441 5892 0991 16.8 1827 5999 8129 No 
221_A1_R3 0221 5887 1009 17.2 1827 5974 8129 No 
121_A1_R3 0121 5935 1009 17.0 1827 6019 8129 Yes 
61_A1_R3 0061 5808 1025 17.6 1827 5834 7607 Yes 
30_A1_R3 0030 5795 1129 19.5 1827 5778 7333 Yes 
15_A1_R3 0015 5935 1494 25.2 1827 6315 7333 Yes 

         Original_A1_R4 2728 5974 0956 16.0 1827 6116 8527 No 
441_A1_R4 0441 5903 0982 16.6 1827 6107 7894 No 
221_A1_R4 0221 5890 1017 17.3 1827 6114 7894 No 
121_A1_R4 0121 5887 1070 18.2 1827 6195 7677 No 
61_A1_R4 0061 5870 0888 15.1 3613 6043 7214 Yes 
30_A1_R4 0030 5820 0969 16.7 3613 6082 7082 Yes 
15_A1_R4 0015 6082 1024 16.8 3613 6280 7082 Yes 

 * Normality according to the test of Anderson-Darling and Kolmogorov-Smirnovs at 5% significance level.
Meaning of acronyms: XXX_YY_ZZ. Where: XX - Number of points per grid; YY - area to which the grid belongs to; ZZ - repetition to which the grid belongs to. Ex.441_A1_R1: 441-point grid from Area
1 of repetition 1, SD - standard deviation

Table 2. Global overview of the data descriptive analysis
used in the three areas studied

2,223,757 for 15_A1_R3. The spatial variability was between
very low (10.6%) and medium (45.0%) according to the
classification adopted for the spatial dependence index.

Regarding the three areas studied, 77% cases used the
spherical model while 23% used that exponential. The nugget
effect (C0) ranged between 434,977 and 1,969,444. The major
and minor ranges were 361.6 m and 17.0 m respectively. The sill
varied between 488,275 and 2,223,757. Spatial dependence
showed between very low (5.4%) and high (61.7%).

Based on the fitting parameters and models fitted to
individual semivariograms (Figure 4, Area 1 and repetition 1)
thematic maps were constructed by applying the interpolation
inverse of square distance, inverse of distance and kriging for
the study variable (maize yield in kg ha 1). With seven grids
made in each area (1, 2 and 3), four replicates per area, and

three interpolators, 252 maps were obtained. For similarity
analysis of thematic maps was calculated the average difference
in module, ie the coefficient of relative deviation (CRD). As
examples, Figure 5 shows yield maps generated by kriging
method corresponding to the semivariograms in Figure 4, where
one can observe the loss of information with decreased number
of points used.

Coefficients of relative deviations (CRD) derived from the
comparison between simulated and original grids show gradual
increase of deviation as the amount of points decreases in the
three interpolation methods, ie, CRD decreased with increasing
sampling density (division of the number of sampling data and
sampling area) (Figure 6). For the same sampling density, CRD,
deviation from the original map, was smaller for the interpolation
inverse of square distance (ISD), followed by the inverse of
distance (ID) and lastly by kriging (KRIG) (except for higher
density of points). This result is in agreement with Coelho et
al. (2009) and Bazzi et al. (2008), who found better performance
for interpolation using inverse distance weighting when
compared to kriging. Comparing the explanation of the
dependent variable CRD, R2 assumed values of 0.32 (Kriging),
0.61 (ID), and 0.79 (ISD), ie, explanations ranged from 32 to
79%.

Mean SD Minimum Median Maximum 
     Data sets Values 
kg ha-1 

CV 
(%) kg ha-1 

      Minimum 4491 0696 11.8 1767 4340 6278 
All Maximum 6082 1494 26.1 4559 6315 8527 

 Medium 5440 0984 18.5 2641 5584 7499 

 SD - standard deviation
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Table 3. Models and parameters adjusted to the semivariogram for yield data sets for Area 1
Nugget Effect Scale Range Sill Spatial variability index (%) 

Data sets Model 
C0 C1 a (m) (C0 + C1) SVI = (C1/C0 + C1) . 100 

       Total Área 1 Maximum 1969444 562092 361.6 2223757 45.0 
 Medium 0782942 268717 156.0 1051659 25.6 
       Original_A1_R1 Spherical 0606881 328514 036.9 0935395 35.1 

441_A1_R1 Spherical 0790750 214461 105.2 1005211 21.3 
221_A1_R1 Spherical 0767237 144835 045.6 0912072 15.9 
121_A1_R1 Spherical 0720145 194634 036.9 0914779 21.9 
61_A1_R1 Exponential 0454602 371811 025.9 0826413 45.0 
30_A1_R1 Spherical 0602933 079727 089.2 0682660 11.7 
15_A1_R1 Spherical 0760684 154662 045.3 0915346 16.9 

       Original_A1_R2 Spherical 0606881 328514 036.9 0935395 35.1 
441_A1_R2 Exponential 0726741 407337 084.3 1134078 35.9 
221_A1_R2 Spherical 0700387 285943 253.4 0986330 29.0 
121_A1_R2 Exponential 0756371 290705 109.8 1047076 27.8 
61_A1_R2 Spherical 0769462 220665 242.5 0990127 22.3 
30_A1_R2 Spherical 0555844 107489 252.5 0663333 16.2 
15_A1_R2 Spherical 0622591 079653 082.4 0702244 11.3 

       Original_A1_R3 Spherical 0606881 328514 036.9 0935395 35.1 
441_A1_R3 Spherical 0786200 439273 337.7 1225473 35.8 
221_A1_R3 Spherical 0852952 279297 260.5 1132249 24.7 
121_A1_R3 Spherical 0987020 117083 361.6 1104103 10.6 
61_A1_R3 Spherical 0947470 163414 234.9 1110884 14.7 
30_A1_R3 Exponential 1075067 158389 078.6 1233456 12.8 
15_A1_R3 Spherical 1969444 254313 100.0 2223757 11.4 

       Original_A1_R4 Spherical 0606881 328514 036.9 0935395 35.1 
441_A1_R4 Spherical 0783758 384415 306.8 1168173 32.9 
221_A1_R4 Spherical 0780668 511420 287.2 1292088 40.0 
121_A1_R4 Spherical 0908281 562092 339.7 1470373 38.2 
61_A1_R4 Exponential 0559228 413513 113.4 0972741 42.5 
30_A1_R4 Spherical 0811941 146416 218.3 0958357 15.3 
15_A1_R4 Spherical 0805082 228469 209.9 1033551 22.1 

 

Figura 4. Experimental semivariograms for yield (kg ha 1) of Area 1 and repetition 1
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A. 441 points

D. 61 points

C. 121 points

E. 30 points F. 15 points

B. 221 points

Figure 5. Yield map (kg ha-1) by kriging interpolation method based on the number of points used

y = 8.44E-04x2 - 0.138x + 11.88 (ISD)

y = -2.52E-04x2 - 0.047x + 11.75 (ID)

y = 6.94E-04x2 - 0.127x + 1.78 (KRIG)
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Figure 6. Coefficient of relative deviation (CRD,%) as
function of sampling density according to the interpolation
method: inverse of square distance (ISD), inverse of
distance (ID) and kriging (Krig)

Kappa indexes resulting from comparison between simulated
and original grids (Figure 7) decreased progressively as
sampling density for the three interpolation methods was
reduced. The highest index was found in the ID method, i.e.
ISD and Krig methods were more influenced by sampling point’s
elimination. As with the CRD, for the same sample density,
kappa index showed higher concordance with the original map
for the ISD interpolator; followed by ID and finally by Krig
(except for the highest density of points). This result is in
agreement with and Bazzi et al. (2008). Comparing the
explanation of the dependent variable kappa index, the R2

assumed values of 0.51 (Krig), 0.54 (ID) and 0.60 (ISD), ie the
explanation ranged between 51 and 60%.

The kappa index was associated linearly with CRD (Figure
8), with R2 between 0.95 and 0.97, ie, explanation of the kappa
index above 95%. This means that comparisons of thematic

y = -3.08E-05x2 + 0.007x + 0.034 (IQD)
y = -4.89E-06x2 + 0.004x + 0.103(ID)

y = -1.58E-05x2 + 0.004x + 0.068 (KRIG)
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Figure 7. Kappa index as function of sampling density
according to the interpolation method: inverse of square
distance (ISD), inverse of distance (ID) and kriging (Krig)

maps performed by both CRD and kappa methods lead to
similar results.

The choice for sampling grid depends on the degree of
similarity desired between the map that will build and the map
that would be produced by the combine equipped with yield
monitor. This similarity is estimated by the CRD and the lower
the CRD the more similar the maps. To better understand its
behavior, a model was developed to describe its dependence
as function of the spatial variability index (SVI) and the sampling
density (SD, points ha-1). For such an exploratory analysis was
carried out initially, which resulted in the following model

εe.SDd.SDc.SVIb.SVIaCDR 22 
where:

CRD - response variable

(5)
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from the monitor is estimated the spatial variability index (SVI)
through statistical and geostatistical analysis of these data; if
this is not possible, the SVI from previous years can be used or
even take the 100% maximum value; 2) Adopting the desired
degree of similarity map (CRD); 3) Choosing the method of
interpolation using the corresponding model in Table 4 (or
other developed for the property) and 4) Finding the sampling
density suggested.

CONCLUSIONS

1. The loss of information in yield map due to the decreased
sampling density depends on the interpolation method, being
less significant for the method of inverse of square distance
and more significant for ordinary kriging, among the three
methods evaluated;

2. The regression model developed to describe the
dependence of the coefficient of relative deviation on the spatial
variability index and sampling density, allowed explaining
between 87% (inverse of distance) and 93% (kriging);

3. This model serves to enable the farmer obtaining a yield
map, even when problems occur on the harvest monitor
preventing data storage; sampling density to be collected
depend on the accuracy desired by the farmer.
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Table 4 Estimated coefficients of multiple regression for
the coefficient of relative deviation (CRD) according to
the spatial variability index (SVI) and the sampling density
(SD, points ha-1)

Note: All estimators were significant by t test at 5% probability
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Applying the aforementioned model to the data collected,
an explanation between 87% (ID) and 93% (KRIG) was obtained
(Table 4).

In practice, these models serve to enable the farmer to obtain
the yield map, even when problems occur on the harvest
monitor preventing data storage. For such, the following
procedure is suggested: 1) With the data already collected
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