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A B S T R A C T
The aim of this study was to quantify and to map the spatial distribution and uncertainty 
of soil calcium (Ca) content in a sugarcane area by sequential Gaussian and simulated-
annealing simulation methods. The study was conducted in the municipality of Guariba, 
northeast of the São Paulo state. A sampling grid with 206 points separated by a distance of 
50 m was established, totaling approximately 42 ha. The calcium contents were evaluated in 
layer of 0-0.20 m. Techniques of geostatistical estimation, ordinary kriging and stochastic 
simulations were used. The technique of ordinary kriging does not reproduce satisfactorily 
the global statistics of the Ca contents. The use of simulation techniques allows reproducing 
the spatial variability pattern of Ca contents. The techniques of sequential Gaussian 
simulation and simulated annealing showed significant variations in the contents of Ca 
in the small scale.

Simulações estocásticas dos teores de cálcio
em área de cana-de-açúcar
R E S U M O
Objetivou-se, neste trabalho, quantificar e mapear a distribuição espacial e a incerteza do 
teor de cálcio (Ca) do solo, em área sob o cultivo de cana-de-açúcar por meio da simulação 
sequencial gaussiana e simulação do arrefecimento simulado. O estudo foi conduzido no 
município de Guariba, nordeste do estado de São Paulo. Foi estabelecida uma malha amostral 
contendo 206 pontos separados por uma distância de 50 m totalizando aproximadamente 
42 ha. Os teores de cálcio foram avaliados na profundidade de 0-0,20 m. Foram utilizadas 
técnicas geoestatísticas de estimação, krigagem ordinária e de simulações estocásticas: 
simulação sequencial gaussiana e a simulação de arrefecimento simulado. A técnica da 
krigagem ordinária não reproduz satisfatoriamente as estatísticas globais do teor de Ca. 
A utilização das técnicas da simulação permite a reprodução do padrão da variabilidade 
espacial do teor de Ca e as técnicas de simulação da sequencial gaussiana e a simulação do 
arrefecimento simulado mostraram variações significativas dos teores de Ca na pequena 
escala.
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Introduction

The spatial patterns of soil attributes, crop production or 
the distribution of pollutant contents are frequently obtained 
by geostatistical methods (Lin, 2008; Camargo et al., 2008; 
Siqueira et al., 2010). These methods are of great utility in 
the study of spatial variations of soil attributes for the most 
diverse purposes. In the agricultural area, these methods have 
been frequently applied in the characterization of soil physical, 
chemical and mineralogical attributes (Camargo et al., 2008), 
sampling optimization (Pereira et al., 2013), agricultural 
planning, implantation of sugarcane cultivation systems 
(Campos et al., 2008), studies on CO2 emissions (Teixeira et 
al., 2013), soil and nutrient losses through erosion (Sanchez 
et al., 2009), among others.

Geostatistical methods comprehend many interpolation 
techniques (Goovaerts, 1997). The ordinary kriging (OK) 
technique, the most used interpolator in agricultural sciences, 
stands out for being easily used and relatively simple in the 
interpretation of its results. This technique is based on a linear 
interpolation procedure, which provides the best unbiased 
estimate for properties that vary in space (Teixeira et al., 2012). 
However, its estimate is smoothed and its variance does not 
reflect the uncertainty associated with the estimate adequately, 
since it only depends on data configuration (sampling grid 
design) and not on the values of the observations (Deustch 
& Journel, 1998).

As alternatives for the smoothness promoted by OK and the 
incapacity to reproduce the uncertainties through its variance, 
stochastic simulations have been widely applied for the most 
diverse purposes in the last years, among which some stand 
out: simulation of distribution and spatial variability of heavy 
metals in the soil, for the identification of polluted areas (Lin, 
2008); evaluation of uncertainties of soil chemical (Oliveira et 
al., 2013) and mineralogical attributes (Silva Júnior et al., 2013), 
and soil classes (Silva et al., 2015); construction of different 
scenarios of estimates for soil CO2 (Teixeira et al., 2012) and 
demarcation of erosion-prone areas (Delbari et al., 2009).

Conditional stochastic simulations, such as sequential 
Gaussian simulation (SGS) and simulated-annealing 
simulation (SAS), generate a group of values with a specified 
mean and variance, and also reproduce the data in many sites 
(Goovaerts, 2000). In SGS, each simulated value is conditioned 
to the original data and to all the previously simulated values. 
SAS, on the other hand, consists of an exhaustive application of 
the Monte Carlo simulation method, which perturbs or updates 
a value of the smallest point forming a digital image, “pixel”, 
through various iterations, until the value of this smallest point 
honors the histogram and the proposed variogram model 
(Caers, 2001).

This study aimed to quantify and to map the spatial 
distribution and the uncertainty of calcium contents in a soil 
under sugarcane cultivation through sequential Gaussian 
simulation and simulated-annealing simulation.

Material and Methods

The study area is located in the municipality of Guariba, 
in the northeast region of the state of São Paulo, Brazil (21º 

19' S; 48º 13' W; 640 m). According to Köeppen, the climate 
of the region is mesothermal with dry winter (Cwa). The soil 
of the area was classified as eutroferric Red Latosol, with very 
clayey texture (LVef) (Pereira et al., 2013).

The experimental area has been cultivated with sugarcane 
for more than thirty years and, during the experiment, the 
crop was in its fifth year, in the harvest period. The area, with 
approximately 42 ha, was sampled in the layer of 0-0.20 m, in 
a regular grid, with georeferenced points at each 50 m, totaling 
206 points of soil sampling. The content of calcium (Ca) was 
determined using the ion exchange resin method, proposed 
by Raij et al. (2001).

The variability of the Ca contents was previously described 
through descriptive statistics by calculating mean, median, 
standard deviation, maximum and minimum values, first 
quartile, third quartile and the coefficients of asymmetry, 
kurtosis and variation (CV). For the geostatistical analyses, it 
is necessary to obtain the data variogram. These variograms 
determine the spatial structure and are defined as the variance 
between the difference of pairs of regionalized random 
variables, Z(x) and Z(x+h), separated by the distance vector 
h (Eq. 1).
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where: 
γ(h) 	- variogram for the distance class h;
N(h) - represents the number of pairs of regionalized 

variables separated by the distance h; and
Z 	 - values measured at the points x and xi.

Among the permissible variogram models adjusted by the 
least square method, the variograms with the lowest residual 
sum of squares were adopted.

After modeling the variogram, the values were interpolated 
in the non-sampled sites using ordinary kriging (OK), 
sequential Gaussian simulation (SGS) and simulated-annealing 
simulation (SAS). OK is a non-stationary algorithm whose 
estimates are weighted sums of the values of neighboring 
samples, in which the weights applied to the neighbor value 
depend on the correlation structure modeled in the variogram 
(Deutsch & Journel, 1998).

The SGS algorithm assumes a random Gaussian field. 
Thus, the accumulated density function is totally characterized 
by the mean and the covariance (Goovaerts, 2001). In this 
process, the simulation is performed through a Gaussian 
transformation of the observed data (data normalization), so 
that each simulated value is conditioned to the original data 
and to all the previously simulated values.

For the SAS, a stochastic image is formulated as an 
optimization problem without any specific reference to a 
random function model. In this study, initial random images, 
which reproduce the variogram, were disturbed by the change 
of Z values in two randomly selected sites. The preestablished 
contrast was the reproduction of the variogram, and the 
correspondent function was minimized using a standard 
annealing procedure (Deutsch & Cockerham, 1994).

(1)
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For each simulation technique, 10 realizations were 
performed in each cell, from which three were randomly 
selected for the analyses. The analyses were performed using 
the modules LOCMAP, GAMV, VMODEL, KB2D, SGSIM and 
SASIM of the software WinGslib v. 1.03 (Deutsch & Journel, 
1998). The generated spatial patterns were edited using the 
software SURFER v. 9.0 (Golden Software Inc., 2010).

Results and Discussion

The mean Ca content (38.4 mmolc dm-3) and its standard 
deviation (11.89 mmolc dm-3) were similar to those observed 
by other authors for the same types of soil and crop (Mello et 
al., 2006; Souza et al., 2007). The CV value (31.00%) indicates 
moderate data variability. However, even for low and moderate 
variabilities, the use of geostatistical techniques is advised for 
the comprehension of data spatial distribution and possible 
identification of regions with more similar Ca contents. 
The Anderson Darling data normality test indicated that 
Ca contents do not have normal distribution at 5%, a fact 
commonly reported in evaluations of soil attributes (Souza 
et al., 2007). However, due to the low values of asymmetry 
(0.53) and kurtosis (0.53), it was not necessary the use of 
any procedure of data transformation for the geostatistical 
analyses (variogram modeling and estimation through OK), 
since transformations like logarithmic are indicated only for 
variables with intensities of asymmetry values higher than the 
unity (Kerry & Oliver, 2007). On the other hand, due to the 
need for normal distribution in the data for the simulation 
procedures, data normalization was opportune before 
variogram modeling. Thus, two variograms were calculated: 
one with non-transformed data for the estimation through OK 
and another with normalized data for the estimation through 
the simulation techniques.

For the non-transformed Ca data, the best adjusted model 
was the exponential, with nugget effect (C0) = 0.0, sill (C0 + 
C1) = 150.85 and range (a) = 418.62 m. These results indicate 
that the model adjusted to the experimental variogram is 
isotropic, with a null value for the nugget effect, which can be 
attributed to the fact that all the variability in large and small 
scales was captured without measurement errors. The best 
model adjusted to the normalized Ca data was the spherical, 
with nugget effect (C0) = 0.32, sill (C0 + C1) = 1.030 and range 
(a) = 377.06 m. The degree of spatial dependence, obtained by 
the ratio C0/(C0 + C1), indicates that both adopted variograms 

had strong spatial dependence (Cambardella et al., 1994), 
showing that the normalization necessary for the geostatistical 
simulation methods preserved the structure of dependence of 
the evaluated attribute (Oliveira et al., 2013).

The comparison of the estimations through each 
geostatistical technique reveals differences between the 
estimates of soil Ca contents, especially regarding the 
reproduction of the data sampled in the study area (Table 1). 
The estimates of the three selected realizations of SGS and SAS 
are closer to the descriptive statistics of the sample data than 
the estimations through OK. Similar results were obtained 
in the comparison between these same techniques for the 
determination of the spatial pattern of the soil contents of 
arsenic (Lin, 2008) and lead (Lin et al., 2001) in study areas 
in Taiwan.

The mean values of Ca contents for SGS (36.71 to 36.83 
mmolc dm-3) and SAS (38.66 to 39.07 mmolc dm-3) are much 
closer to the mean Ca content of the sample data (38.4 mmolc 
dm-3) than the mean obtained through OK (36.60 mmolc dm-3) 
(Table 1). All the mean estimates of SGS realizations are below 
the mean of the data, while mean estimates of SAS realizations 
are slightly above it. The same tendency was observed for the 
values of Median and First quartile (Q1).

The values of standard deviation (SD) for SGS (11.54 to 
11.61 mmolc dm-3) are much closer to the SD of the sample 
data (11.9 mmolc dm-3) than the SD of SAS realizations (9.04 
to 9.42 mmolc dm-3). The SD value provided by OK (10.47 
mmolc dm-3) is closer to the SD of the data (11.9 mmolc dm-3) 
compared with SAS, but lower than the SD of SGS.

These results illustrate that SGS reproduces the SD of the 
sample data better than OK values and SAS realizations; also, 
the results shown in Table 1 indicate that the kriging process 
and the SAS realization may not preserve data variability and 
asymmetry, while SGS realizations reproduce the empirical 
statistics of Ca contents and provide results much closer to the 
global statistics of the measurements of Ca contents than the 
ones provided by OK and SAS realizations. These results agree 
with those obtained by Delbari et al. (2009), when studying 
the uncertainties of soil water content, who observed that SGS 
maintains the variability of the observed data.

The reproduction of the data histogram through the 
realizations of the simulations and OK can be verified through 
Quantile-Quantile plots or simply Q-Q plots (Figure 1). In the 
graphs, the quantile of the estimated and/or simulated values 
are plotted against the correspondent quantiles of the sample 

1Median; 2Standard deviation; 3Coefficient of variation (%); 4Minimum value; 5First quartile; 6Third quartile; 7Maximum value; 8Coefficient of asymmetry; 9Coefficient of kurtosis; 10p < 0.05 
significant at 5%; p < 0.01 significant at 1%; p > 0.05 not significant at 5%, by Anderson-Darling test; 11Estimates through ordinary kriging; 12Mean value of the 10 observations through 
sequential Gaussian simulation (SGS); 13Mean value of the 10 observations through simulated-annealing simulation (SAS)

Table 1. Descriptive statistics for the data and calcium estimates (mmolc dm-3) in the layer of 0-0.20 m
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data (Deustch & Journel, 1998). A perfect reproduction of the 
quantiles of the sample data must ensure that the quantiles of 
both distributions are identical, i.e., all the points in the graph 
must fall on the 1:1 line.

Both the histogram and the Q-Q plot indicate a better 
performance of SGS in the reproduction of the empirical data 
of soil Ca contents, especially in the upper and lower tails of the 
distribution. On the other hand, SAS shows a lower variability 
and a weak performance, especially in the reproduction of the 
Ca data in the upper tail. In the OK graphs, its smoothness 
effect is evident, i.e., low values are overestimated while 
high values are underestimated (Teixeira et al., 2012). The 
distribution of the OK estimates does not reproduce the lower 
and upper tails of the empirical distribution of Ca data.

The maps estimated by OK indicate that the areas with 
higher Ca contents are located to the southwest of the 
study area (Figure 2). These maps visually confirmed the 

characteristic of smoothness of OK, that is, they smoothed 
the local details of the spatial variation of the Ca contents in 
the area. This smoothing of the results is due to the criterion 
of least squares of the kriging algorithm, which overestimates 
low values and underestimates relevant values of Ca contents 
(Lin et al., 2001; Oliveira et al., 2013; Silva Júnior et al., 2013).

In the map generated by OK estimates, since the maps of the 
simulations also show an area with high spatial continuity of 
high Ca contents to the southwest of the study area (Figure 2), 
the maps of the simulations emphasize the significant variation 
for short distances and provide a measurement of the spatial 
uncertainty. The maps of the simulated values seem more 
realistic than the maps of OK estimates, since they reproduce 
the modeled spatial variability of the sampled grid. Therefore, 
the stochastic simulation is preferred over kriging for all the 
applications in which the spatial variability of the studied 
attributes must be preserved (Goovaerts, 2000).

Figure 1.  Histograms and Q-Q plots of the calcium content (mmolc dm-3) distributions generated by the techniques of 
ordinary kriging (OK), sequential Gaussian simulation (SGS) and simulated-annealing simulation (SAS)

Figure 2.  Spatial patterns of calcium contents (mmolc dm-3) generated by the techniques of ordinary kriging (OK), 
sequential Gaussian simulation (SGS) and simulated-annealing simulation (SAS)
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Each one of the three realizations is considered as an 
equally probable representation of the Ca contents in the 
studied area (Figure 2). Thus, they honor the 206 observations 
and reproduce approximately the sample histogram and the 
variogram model. The differences between the maps of the 
realizations provide a measurement of the uncertainty (Teixeira 
et al., 2012). Thus, the points with high Ca contents can be 
considered exact, if they appear in most realizations. The 
knowledge on the uncertainty allows a more precise evaluation 
and delimitation of areas with high or low contents of the 
studied attribute (Delbari et al., 2009).

The impact of a decision, such as the application of certain 
amount of fertilizer, can be investigated using a simulated map 
that reproduces aspects of the spatial dependence pattern or 
other statistics considered important for the problem, such as 
the connection between high values and the correlation with 
other secondary attributes. Furthermore, the viability of many 
equally probable realizations allows accessing the uncertainty 
of the consequences of the decision, such as the leaching of a 
fertilizer and the contamination of groundwater, which can be 
a result of the imperfect knowledge on the spatial distribution 
of Ca contents.

Conclusions

1. The technique of ordinary kriging does not reproduces 
satisfactorily the global statistics of calcium contents in the soil.

2. The use of simulation techniques allows the reproduction 
of the spatial variability pattern of calcium contents.

3. The techniques of sequential Gaussian simulation and 
simulated-annealing simulation showed significant variations 
of calcium contents in the small scale.
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