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A B S T R A C T
The aim of this study was to estimate and compare the respiratory rate (breath min-1) of broiler 
chicks subjected to different heat intensities and exposure durations for the first week of life 
using a Fuzzy Inference System and a Genetic Fuzzy Rule Based System. The experiment was 
conducted in four environmentally controlled wind tunnels and using 210 chicks. The Fuzzy 
Inference System was structured based on two input variables: duration of thermal exposure 
(in days) and dry bulb temperature (°C), and the output variable was respiratory rate. The 
Genetic Fuzzy Rule Based System set the parameters of input and output variables of the 
Fuzzy Inference System model in order to increase the prediction accuracy of the respiratory 
rate values. The two systems (Fuzzy Inference System and Genetic Fuzzy Rule Based System) 
proved to be able to predict the respiratory rate of chicks. The Genetic Fuzzy Rule Based 
System interacted well with the Fuzzy Inference System model previously developed showing 
an improvement in the respiratory rate prediction accuracy. The Fuzzy Inference System 
had mean percentage error of 2.77, and for Fuzzy Inference System and Genetic Fuzzy Rule 
Based System it was 0.87, thus indicating an improvement in the accuracy of prediction of 
respiratory rate when using the tool of genetic algorithms.

Sistema genético difuso para a predição da frequência
respiratória de pintinhos sujeitos a desafios térmicos
R E S U M O
Objetivou-se neste trabalho estimar e comparar as frequências respiratórias (respirações min-1) 
de pintinhos submetidos a diferentes intensidades e durações de exposição térmica durante a 
primeira semana de vida utilizando um Sistema de Inferência Fuzzy e um Sistema Genético 
Difuso Baseado em Regras Fuzzy. O experimento foi conduzido em quatro túneis de vento 
climatizados e utilizou-se 210 pintinhos.  O Sistema de Inferência Fuzzy foi estruturado com 
base em duas variáveis de entrada: duração da exposição térmica (dias) e a temperatura do 
bulbo seco (°C), e a variável de saída foi frequências respiratórias. O Sistema Genético Difuso 
Baseado em Regras Fuzzy ajustou os parâmetros das variáveis de entrada e saída do modelo 
Sistema de Inferência Fuzzy com o propósito de aumentar a precisão da predição dos valores 
das frequências respiratórias. Os dois sistemas (Sistema de Inferência Fuzzy e Sistema Genético 
Difuso Baseado em Regras Fuzzy) mostraram-se capazes de predizer as frequências respiratórias 
de pintinhos. O Sistema Genético Difuso Baseado em Regras Fuzzy interagiu satisfatoriamente 
com o modelo Sistema de Inferência Fuzzy previamente desenvolvido, apresentando uma 
melhora na precisão da predição das frequências respiratórias. O Sistema de Inferência Fuzzy 
apresentou erro percentual médio de 2,77 e para o Sistema Genético Difuso Baseado em Regras 
Fuzzy o erro foi de 0,87, o que indica uma melhora na acurácia da predição da frequência 
respiratória quando utiliza a ferramenta de algoritmos genéticos.

Key words:
broiler
computational intelligence
physiological responses

Palavras-chave:
frango de corte
inteligência computacional
respostas fisiológicas

1 Universidade Federal de Lavras/Departamento de Engenharia. Lavras, MG. E-mail: patricia.ponciano@deg.ufla.br - ORCID: 0000-0002-9708-
0259 (Corresponding author); yanagi@deg.ufla.br - ORCID: 0000-0001-9653-205X; gabriel.ferraz@deg.ufla.br - ORCID: 0000-0001-6403-2210; 
alicejunqueira.6@gmail.com - ORCID: 0000-0001-7872-7283; flavio.damasceno@deg.ufla.br - ORCID: 0000-0002-8284-7496

2 Universidad del Sinú Elías Bechara Zainúm/Facultad de Ciencias Económicas, Administrativas y Contables. Montería, Córdoba, Colombia. E-mail: 
yamidhernandezj@unisinu.edu.co - ORCID: 0000-0002-0129-1837

Ref. 182528 – Received 10 Jul, 2017 • Accepted 24 Jan, 2018 • Published 30 Apr, 2018



413Genetic fuzzy system for prediction of respiratory rate of chicks subject to thermal challenges

R. Bras. Eng. Agríc. Ambiental, v.22, n.6, p.412-417, 2018.

Introduction

For the poultry industry to reach levels of excellence it has 
sought to improve productivity, without, however, increasing 
production costs (Ponciano et al., 2011). It is known that when 
the thermal conditions are inadequate, this can affect their 
well-being and negatively impacting production performance 
(Schiassi et al., 2015). 

The respiratory rate (RR) is the first physiological 
response that the birds use in order to maintain and control 
homeothermy, releasing internal heat by evaporation to the 
environment, which is the most efficient mechanism when 
animals are subjected to temperatures above the comfort 
temperatures (Saraiva et al., 2011). 

When considering the various possibilities of thermal 
environment associations and the estimation of animal welfare, 
the application of the fuzzy inference system can be presented 
as a favorable methodology (Nascimento et al., 2016). The 
genetic algorithms techniques arose in order to improve and 
refine the modeling of Fuzzy Systems (FIS). Their use stands 
out because of the possibility of sorting data for a purpose 
(Fogel et al., 2004). 

A Genetic Fuzzy Rule-Based System (GFRBS) is basically a 
Fuzzy Inference System application that has been augmented 
by a learning process based on evolutionary computation, such 
as genetic algorithms, genetic programming, and evolutionary 
strategies, among other algorithms (Eiben & Smith, 2003). 
According to Georgieva (2016), genetic algorithms provide 
a high degree of flexibility, which makes them suitable for 
optimization of fuzzy inference systems and development 
and implementation of systems that can assist in decision 
making related to the diagnosis, monitoring and management 
of systems. 

Thus the aim of the present work was to estimate and 
compare the respiratory rate (RR) of chicks under different 
intensities and durations of thermal exposure during the 
first week of life through a Fuzzy Inference System (FIS) and 
Genetic Fuzzy Rule-Based System (GFRBS). 

Material and Methods

The experiment was conducted in four air-conditioned 
wind tunnels installed in the laboratory. The procedures used 
in this experiment were approved by the Ethics Committee on 
Animal Use (CEUA) of the Federal University of Lavras (Minas 
Gerais, Brazil), according to Protocol 001/12.

Thirteen treatments were performed in which the duration 
and intensity of the thermal challenge to which chicks were 
subjected during the first week of life was varied. Due to the 
amount of space available in the cages, 210 mixed-sex chicks 
of the Cobb breed were used for the entire experiment. The 
chicks were randomly distributed among the treatments. 
Each trial, with four treatments, began with 60 birds, 15 per 
treatment, distributed in three replicates of five birds each. 
Each treatment was conducted in a wind tunnel, and in each 
tunnel, 15 Cobb® chicks were housed, divided into batches of 
mixed sex, with three replicates for each treatment, for a total 
of 210 birds. Different numbers of replicates (unbalanced) were 

used for the control treatment. Specifically, the ninth treatment 
had 30 birds, whereas the other treatments had 60 animals per 
treatment (Table 1). This is the reason why the total number of 
birds for all the treatments was 210 instead of the expected 240.

Within the wind tunnel, the birds were housed in cages with 
dimensions of 0.40 x 0.60 m, divided into three compartments 
with identical dimensions of 0.08 m². The cages were built with 
steel bars and wire netting mesh of 1 x 1 cm. 

During the experiment, water and commercial pre-starter 
feed was given to the birds ad libitum in order to meet their 
nutritional requirements. The feed used was the same for all 
the chicks throughout the experiment with no change in its 
formulation. During the experimental period, a continuous 
lighting program was adopted (Abreu et al., 2011).

On the first day of life, the chicks arriving from the 
incubator were housed inside the environmentally controlled 
wind tunnels and submitted to the comfort temperature of 33 
°C during the first week of life (Menegali et al., 2013). However, 
from day 2 of life, each group of 15 chicks was subjected to 
one of the 13 treatments described in Table 1, varying the 
intensity and duration of the dry bulb temperature (tdb) of the 
heat challenge.

After the period of thermal exposure, when the chicks were 
submitted to each treatment, they were returned to the tdb for 
the comfort temperature for the first week of life (33 ºC). 

Every day, one chick from each repetition of each treatment 
was captured at random to have its respiratory rate (RR) 
evaluated with the aid of a digital timer (± 0.01 s), totaling 
three animals in each treatment. Respiratory movements of 
the bird were monitored for 15 s and then multiplied by 4 to 
give breaths per minute. 

A Fuzzy Inference System was developed for the prediction 
of RR of broiler chicks exposed to different intensities and 
durations of thermal challenges. Thermal challenge duration 
(D, days) and dry bulb temperature (tdb, °C) were used as input 
variables (Table 2). 

The basis of experimental data was composed of 114 
experimental observations for each of the two system input 
variables. Triangular membership function (MF) curves were 
used for best representing the input data according Ponciano 
et al. (2012) and Schiassi et al. (2012).

* The comfort temperature (treatment 9) was 33 oC and used for chicks except as noted

Treatments
Dry- bulb

temperature (t db,°C)

Relative humidity

(RH, %)

Age when in thermal

stress (day)

1 27 ± 0.2 60 ± 0.3 2 days of life

2 27 ± 0.3 60 ± 0.3 2 and 3
3 27 ± 0.2 60 ± 0.6 2, 3 and 4

4 30 ± 0.3 60 ± 0.3 2, 3, 4 and 5
5 30 ± 0.3 60 ± 0.4 2

6 30 ± 0.3 60 ± 0.1 2 and 3
7 30 ± 0.3 60 ± 0.7 2, 3 and 4

8 30 ± 0.2 60 ± 0.3 2, 3, 4 and 5
9 (control)* 33 ± 0.2 60 ± 0.5 None

10 36 ± 0.6 60 ± 0.3 2

11 36 ± 0.5 60 ± 1.0 2 and 3
12 36 ± 0.6 60 ± 0.5 2, 3 and 4

13 36 ± 0.5 60 ± 0.4 2, 3, 4 and 5

Table 1. Dry- bulb temperature (tdb,°C), relative humidity 
(RH, %), and age when in thermal stress (day) used in the 
study
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The membership function used for the RR output variable 
was the trapezoidal type for best representing the data set 
under study. The experimental values that formed the basis for 
the definition of the membership curves have an amplitude of 
40-88 breath min-1. 

For RR prediction, the inference method applied was 
that of Mamdani type, which brings as answers a fuzzy set 
by combining the input values with their relative degrees of 
membership using the minimum operator and, in sequence, 
the definitions of the rules by the maximum operator (Leite 
et al., 2010). The defuzzification was made using the center of 
gravity method, which allows all output options, converting 
the fuzzy set into a numerical value.

The basic rules were defined from experimental data and 
with the help of experts in the field, presented as IF-and-
THEN 16 rules for each variable response and, for each rule, 
a weighting factor was assigned equal to 1. 

In order to further improve the fuzzy inference model, 
the technique of genetic algorithms was used. To do the 
necessary analysis for the development of a GFRBS, the 114 
observations for each response variable were divided randomly 
into three subsets distributed as follows: training (70% of the 
data), validation (15% of the data) and test (15% of the data), 
according to the methodology proposed by  Ferraz et al. (2014)  
and Hernández-Julio et al. (2014). In addition to these subsets, 
another subset for the overall validation of system performance 
was used, formed by the average values of the observations 
made in experiments, totaling 16 means. 

The methodology used for genetic adjustment of the fuzzy 
system was proposed by, Pires (2004), Valdez et al. (2011), 
Starczewski et al. (2014), Georgieva (2016) and Tan et al. 
(2016). In this methodology, there is a knowledge base to 
which a genetic tuning process is applied to improve system 
performance without changing the basis of existing rules. 
This is done in order to adjust the fuzzy system parameters 
to improve their performance by adjusting the relevance 
functions and output variables. The method consists of two 
steps. The first is the generation of rules by a method driven 
by data for the rapid construction of the rule base, focusing on 
simplicity and transparency of the rules. The second relates to 
the genetic optimization of system performance by tuning the 
membership functions.

According to Pires (2004), after the construction of the 
rule base, it is necessary to find a database that best suits it 
by a genetic learning process. This is done by adjusting the 
parameters of the membership functions that define the fuzzy 
sets associated with each linguistic variable of the data set in 
question. Genetic operators must respect the range of variables, 
so that values outside the domain are not assigned to them.

For the development of GFRBS it was necessary to use a 
decimal vector in the form of a chromosome, used to represent 
the actual values of the relevance functions of the RR output 
variable. The array size depends on the desired accuracy, 

in this case 14 decimal places, which is the default value of 
Matlab (MathWorks, 2016) software working with this type 
of numbers.

The RR variable ranged between 40 and 88 breath min-1 
and was divided into five fuzzy sets. The relevance function 
used was the trapezoidal; therefore, this means that 20 bits are 
needed to conform the chromosome. The initial population 
of chromosomes was created by setting the lower and upper 
limits of output variables obtained experimentally (40 and 88 
breath min-1). Therefore, the boundaries of the proposed sets 
respect the restriction of values, according to the methodology 
proposed by Pires (2004).

Each chromosome is represented by a decimal vector of 
20 bits. The first two bits of chromosome belong to the values 
of the MF1 set and were intended to store the values of the 
lower limit of the set in mention. The following 16 bits of 
each chromosome were randomly initialized and generated 
decimal values with values intermediate to the previously 
established range for the RR output variable. The last two bits 
of chromosomes store the upper limit values of the MF5 set. To 
avoid violation of the above restrictions, at the time of making 
the population, it is programmed that this condition was 
respected in both the first and last values of the chromosome. 
Coding was of the real type (with real values) and it was not 
necessary to decode any variable. 

For the implementation of GFRBS, it was done the 
loading in memory of the input and output observed data for 
making a permutation of them to test their performance. The 
percentages of training, validation and test data were requested. 
These values can be chosen for the user. After this, the initial 
population was generated (four chromosomes with 20 genes 
each), three randomized chromosomes and one with the output 
variable data (RR) obtained from the original fuzzy logic data. 
The lower limit (40) were inserted in the first two genes and 
the upper limit (88) were inserted in the last two genes. The 
other genes’ values were randomly generated between the 
lower and upper limits. After the population began, fuzzy 
sets were established representing each of the four values of 
the trapezoidal membership functions. After this, the sets of 
the input variables and the rules of the original fuzzy logic 
were added. Once this process was carried out, each of the 
files was saved with the name of each one of the chromosomes 
randomly generated and with the chromosome who saved 
the original fuzzy set output data, usually identified with the 
number 4. Then, these files were loaded in memory one by 
one and with the use of the Evalfis function were tested with 
each of the subsets previously created to train, validate, and 
test the GFRBS performance. Thus, the correlation coefficient 
value of each one of the subsets (training, validation and 
test) was calculated. The average of those three values (R2 was 
calculated and chose the one with greater R2 (elitism). Then, 
this obtained value with the reached R2 by the original Fuzzy 
logic was compared. If the calculated value was higher than this 

Table 2. Fuzzy sets for the input variables
Input variables

Thermal challenge duration (D, days) Dry bulb temperature (t db,
oC)

D1 D2 D3 D4 T1 T2 T3 T4

[0, 1, 2] [1, 2, 3] [2, 3, 4] [3, 4, 5] [27, 27, 30] [27, 30, 33] [30, 33, 36] [33, 36, 36]
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value, then it was saved with the name placed at the beginning, 
concatenated with the obtained R2. After this, the genetic 
algorithms were applied trying to improve the performance 
by changing the output set values of the FIS-winning file. In 
this case, the genetic algorithm systems selection and crossing 
methods were applied.

According to Pires (2004), the evaluation function E(Ci) (Eq. 
1) is based on the performance of the rule base or parameter 
values of the relevance functions that were generated from the 
information contained in the chromosomes, calculated by the 
number of patterns correctly classified using the method of 
fuzzy reasoning. 

The results of the performance of the GFRBS system in 
relation to the predicted output variable, RR, are listed in 
Table 5.

Once the process of analysis, design and programming of 
GFRBS was completed, descriptive statistics were computed 
to evaluate its effectiveness in improving the FIS proposed to 
predict RR of birds. The performance results of FIS and GFRBS 
for the subset of the test data averages are listed in Table 6.

The functional relationships between the RR values 
predicted by FIS and GFRBS and values observed during the 
experiment period were done and the equations found for 
the FIS system (Eq. 2) and GFRBS (Eq. 3), respectively, were:

Bold values mean the difference between original Fuzzy Inference System (FIS) and the modified by Genetic Fuzzy Rule-Based System (GFRBS)

Parameters

Respiration rate (RR, breath min-1)

Fuzzy inference system (FIS) Genetic Fuzzy Rule-Based System (GFRBS)

A B C D A B C D
MF1 40.0 40.0 46.0 50.1 40.0 40.0 46.0 50.1
MF2 44.6 46.9 53.3 55.5 44.6 46.6 53.3 55.5
MF3 53.6 54.6 67.1 68.7 50.5 53.6 67.1 68.7
MF4 58.5 67.3 75.8 78.8 58.5 67.3 75.8 78.8
MF5 69.0 76.1 88.0 88.0 69.0 76.1 88.0 88.0

Table 4. Comparison between the pertinence functions of the output variable, Respiratory Rate (RR, breath min-1), 
created by the Fuzzy Inference System (FIS) and Genetic Fuzzy Rule-Based System (GFRBS)

E C NPC Ci i( ) = ( )

Parameter Values for RR

Maximum number of generations 1000
Population size 4 chromosomes

Mutation probability 0.06
Probability of crossing 0.7

Selection Method Random or by turn
Crossing methods 1 point, 2 points or even

Percentage of elitism 10%

Table 3. Genetic algorithms parameters for the output 
variables, respiratory rate (RR, breath min-1)

in which NPC (Ci) is the number of patterns correctly classified 
by the database for the relevance functions generated by 
chromosome Ci (Cordón et al., 2001). The parameters of the 
genetic algorithm such as maximum number of generations, 
population size, the mutation and crossing probabilities and 
percentage of elitism were defined empirically and are listed 
in Table 3 (Pires, 2004). 

For the development of GFRBS, the software tool Matlab 
(MathWorks, 2016) was used. The script was done using the 
original programming of genetic algorithms.

Results and Discussion 

According to Georgieva (2016), the main objective of 
GFRBS is to adjust the parameters of input and output variables 
of the fuzzy model for the purpose of increasing or not, the 
accuracy of prediction of the output variable values (RR) and 
reduce the prediction error. In this work, the parameters of 
the input variables had been experimentally defined and the 
FIS followed these parameters. Thus, GFRBS acted in the 
change only in the ranges of the relevance curves of the output 
variables, in order to try to optimize the model. Table 4 is a 
comparison of the intervals of the relevance curves for the 
output for FIS and GFRBS.

D

(days)

tdb

(°C)

RR

observed

RR

GFRBS

Absolute

deviation

Standard

deviation

Percentage

error

2 27 43 44.0 1.49 1.05 2.47

2 30 45 44.0 0.51 0.36 0.81
2 33 51 50.1 1.12 0.79 1.54

2 36 46 44.0 1.51 1.07 2.35
3 27 62 61.0 0.59 0.42 0.68

3 30 61 61.0 0.32 0.23 0.37
3 33 51 50.1 0.58 0.41 0.82

3 36 46 44.0 2.01 1.42 3.09
4 27 73 69.9 3.10 2.19 3.00
4 30 61 61.0 0.01 0.01 0.01

4 33 61 61.0 0.32 0.23 0.37
4 36 62 61.0 1.39 0.98 1.58

5 27 81 80.3 1.06 0.75 0.92
5 30 68 69.9 1.90 1.34 1.97

5 33 64 61.0 2.99 2.11 3.30
5 36 71 69.9 0.77 0.54 0.77

Table 5. Statistical results of the Genetic Fuzzy Rule-Based 
System (GFRBS) for output respiratory rate (RR, breath.
min-1) of chicks

RR RRobservedsimulated by FIS

Standard error
= −

= ±
0 9832 0 2683. .

11 4802.( )

RR RRobservedsimulated by GFRBS

Standard error
= −0 9948 0 5547. .

== ±( )1 3497.

The approximate values of RR for both models were 
similar to those observed experimentally. In addition, 
when comparing the relationship between RR observed and 
simulated by the models it is clear that both models showed 
similar performance. However, it can be observed that in 
all parameters, the prediction of GFRBS showed better 
results than the FIS prepared, as can be seen in Table 6. The 
statistical indices indicate the importance of computational 
tools to improve the development of the models made by 

(1)
(2)

(3)
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the specialists. It can be observed that modifying a simple 
parameter can influence the performance of the developed 
model, for example, the minimum and maximum values of 
the absolute and standard deviations and percentage error had 
visible differences. The FIS had mean percentage error of 2.77 
and for GFRBS it was 0.87, thus indicating an improvement in 
the accuracy of prediction of RR when using the tool of genetic 
algorithms, as the statistical indices demonstrate. 

RR is one of the variables widely used and considered the 
simplest ones for the evaluation of physiological conditions 
of animals (Bianca & Kunz, 1978). RR is a variable of 
easy measurement, which can be through visual analysis 
(Damasceno et al., 2010). The RR of birds is an important 
parameter for evaluation of their comfort and well-being, 
because as tdb increases, the RR also increases to enhance heat 
dissipation (Altan et al., 2003). This increase is the primary, 
and most efficient method, to dissipate heat in birds subjected 
to high temperatures (Oliveira Neto et al., 2000). 

According to Marchini et al. (2007) in the first week of life 
RR of birds submitted to tdb within the comfort range features 
RR ranging from 48.4 ± 4.8 to 56.8 ± 9.9 breaths min-1. By 
observing the values found in the trial period it is evident 
that in some situations the birds were in a thermal discomfort 
situation, as presented by RR with values above those found 
in the literature. Furthermore, with increasing duration of the 
thermal challenge at higher temperatures, RR also increased, 
showing the influence of the thermal environment on this bird's 
physiological response.

The application of hybrid models that combine FIS 
and genetic algorithms allows the improvement of models 
reducing simulation errors, making the results more realistic. 
Specifically, in relation to FISs, it is emphasized that the genetic 
algorithms allow the improvement of the relevance curves that 
depend directly on the behavior of the data and experiences 
of experts. Furthermore, genetic algorithms are characterized 
as techniques that allow simplicity of operations, ease of 
implementation, and effectiveness in the pursuit of maximum 
or minimum and overall good performance in execution 
(Tumuluru & McCulloch, 2016).

Conclusions 

1. The Fuzzy Inference System (FIS) and the Genetic 
Fuzzy Rule-Based System - GFRBS were shown to predict the 
respiratory rate of chicks under different thermal challenges 
in the first week of life through simple models and with high 
precision.

2. The GFRBS interacted well with the FIS model previously 
developed showing an improvement in the precision of 
respiratory rate prediction, with the potential to be applied 
in models of prediction of animal physiological responses in 
research on the ambient area.
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Root Mean Square Error 1.87 1.53
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