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ABSTRACT: In regions where the irrigated area is increasing and water availability is reduced, such as the West 
of the Bahia state, Brazil, the use of techniques that contribute to improving water use efficiency is paramount. 
One of the ways to improve irrigation is by improving the calculation of actual evapotranspiration (ETa), 
which among other factors is influenced by soil drying, so it is important to understand this relationship, 
which is usually accounted for in irrigation management models through the water stress coefficient (Ks). This 
study aimed to estimate the water stress coefficient (Ks) through information obtained via remote sensing, 
combined with field data. For this, a study was carried out in the municipality of São Desidério, an area located 
in western Bahia, using images of the Landsat-8 satellite. Ks was calculated by the relationship between crop 
evapotranspiration and ETa, calculated by the Simple Algorithm for Evapotranspiration Retrieving (SAFER). 
The Ks estimated by remote sensing showed, for the development and medium stages, average errors on the 
order of 5.50%. In the final stage of maize development, the errors obtained were of 23.2%.
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Coeficiente de estresse hídrico determinado por técnicas
de sensoriamento remoto orbital

RESUMO: Em regiões onde a área irrigada é crescente e a disponibilidade hídrica é reduzida, como o 
Oeste do Estado da Bahia, Brasil, o emprego de técnicas que contribuam para melhorar a eficiência de uso 
de água é primordial. Uma das formas de melhor adequação da irrigação é através da melhoria do cálculo 
da evapotranspiração atual (ETa), que entre outros fatores, é influenciada pelo secamento do solo, sendo 
importante entender essa relação, que geralmente é contabilizada nos modelos de manejo de irrigação por meio 
do coeficiente de estresse hídrico (Ks). Este estudo objetivou estimar o coeficiente de estresse hídrico (Ks) por 
meio de informações obtidas via sensoriamento remoto, combinadas com informações de campo. Para isto, 
realizou-se um estudo no município de São Desidério, área localizada no Oeste da Bahia, utilizando imagens 
do satélite Landsat-8. O Ks foi calculado pela relação entre a evapotranspiração da cultura e a ETa, calculada 
pelo Simple Algorithm for Evapotranspiration Retrieving (SAFER). O Ks estimado por sensoriamento remoto 
apresentou para os estádios em desenvolvimento e médio, erros médios da ordem de 5,50%. No estádio final 
de desenvolvimento do milho os erros obtidos foram de 23,2%.
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Introduction

Agricultural activities have been responsible for the 
important economic growth of Brazil in recent decades 
(Abbade, 2014). Among the various crops that contributed 
to this growth, maize (Zea mays L.) is one of the main ones, 
being found in all regions of the country, so it is important to 
know the factors that influence its yield (Rodrigues et al., 2005; 
Rodrigues & Domingues, 2017).

Soil water availability is one of the attributes that most 
influence the yield of cultivated plants (Soares et al., 2011). 
Kresović et al. (2016) observed that water stress affected grain 
yield and also found the existence of a linear relationship 
between grain yield and actual crop evapotranspiration (ETa).

ETa is influenced, among other factors, by soil drying 
and can be calculated as a function of potential crop 
evapotranspiration (ETc) and water stress coefficient (Ks) 
(Rocha et al., 2014). 

Several authors have studied the behavior of Ks for 
different crops. Rocha et al. (2014) observed that irrigation 
management changed according to the methodology used 
in the Ks calculation. Sayago et al. (2017) highlighted the 
feasibility of determining Ks through remote sensing images 
in soybean crop.

With the emergence of remote sensing and the possibility 
of identifying changes in surface cover through orbital sensors, 
potential applications in agriculture have also emerged (Cattani 
et al., 2017; Khanal et al., 2017; Yang et al., 2017). In irrigated 
agriculture, good results have been obtained in the estimation 
of crop coefficient by remote sensing (Alface et al., 2019; Lima 
et al., 2019; Sales et al., 2016, 2017). 

Determination of reliable ETa values by means of orbital 
sensors makes it possible to obtain accurate Ks values. For 
Ks, little has been done so far in exploring the opportunities 
to estimate this parameter through remote sensing. Studies of 
this nature contribute to improving irrigation management 
because, in addition to providing direct information to feed 
the management models, they make it possible to capture the 
dynamics of the crop and correct the Ks values estimated by 
the models during crop development. Therefore, this study 
aimed to estimate Ks through information obtained via remote 
sensing, combined with field data.

Material and Methods

The study area is located in the municipality of São 
Desidério (Figure 1), which is in the mesoregion of the western 
Bahia state, belonging to the MATOPIBA (states of Maranhão, 
Tocantins, Piauí and Bahia, Brazil) agricultural frontier. In the 
center of the area, the geographic coordinates were recorded 
at 12º 27’ 14” S and 45º 41’ 16” W with altitude of 732 m. The 
coordinate reference system used was the Datum SIRGAS2000.

Ks was estimated in five center pivots (P1, P2, P3, P4 and 
P5) (Figure 1C) cultivated with maize crop. Harvest was carried 
out on September 24, 2015 in all center pivots. The other 
pieces of information on sowing date and cycle duration are 
presented in Table 1. Irrigation was conducted according to 
the recommendation of the IRRIGER® management program 
(http://irriger.com.br/pt-BR).

The water stress coefficient was calculated by Eq. 1, 
according to Allen et al. (1998).

Figure 1. Location of the study area in relation to the country 
and state (A), details of the study area (B) and the center 
pivots analyzed (C), in the municipality of São Desidério, 
Bahia, Brazil

Table 1. Information regarding the maize crop sowing date 
and cycle duration in the municipality of São Desidério, 
Bahia, Brazil

ETaKs
ETc

=

where: 
ETa 	 - actual evapotranspiration estimated by the SAFER 

model, mm d-1; and,
ETc 	 - maximum crop evapotranspiration, mm d-1.

ETa was calculated using the SAFER (Simple Algorithm 
For Evapotranspiration Retrieving) model (Teixeira, 2010). 
For this, images of the Landsat-8 satellite, Operational 
Land Imager (OLI) sensor, obtained in the interval between 
maize sowing and harvest, were used. In this period, seven 
images were obtained in total, six of which were used and 
one discarded, due to the presence of clouds. The spatial and 
temporal resolutions of the images are 30 m and 16 days, 
respectively. The images were obtained for free on the Earth 
Explorer platform, by the Land Processes Distributed Active 
Archive (USGS, 2018).

Prior to using the images to estimate ETa, digital numbers 
(DN) were converted to physical values and atmospheric 
correction was performed concomitantly using the DOS (Dark 
Object Subtraction) method (Chavez, 1988). In radiometric 
conversion, DN is transformed into values of radiance (Eq. 2) 
and subsequently to reflectance at the top of the atmosphere. 
All processes of correction and processing of images were 
carried out using the computational resource QGIS 2.14.9.

L cal LL M Q Aλ = +

where: 
Lλ 	 - radiance at the top of the atmosphere, Wm-2 sr-1 μm-1; 
ML 	 - band-specific multiplicative rescaling factor from 

the metadata file; 

(1)

(2)
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AL 	 - band-specific additive rescaling factor from the 
metadata (displacement); and,

Qcal 	 - spectral band pixel values (DN).

The values of gain offset are provided in the image metadata 
file.

The conversion from radiance to reflectance (ρλ) of the 
OLI instrument images (bands 1 to 7) was performed using 
the Eq. 3.

The Normalized Difference Vegetation Index (NDVI) 
was calculated by the ratio between the difference of the 
near infrared (NIR) and red (R) reflectances and their sum, 
according to Hanks (1974), using Eq. 9.

2L d
ESUN cos Z

λ
λ

λ

π
ρ =

where: 
ρλ 	 - reflectance at the top of the atmosphere, dimensionless; 
ESUNλ - average solar irradiance at the top of the 

atmosphere for each band, W m-2 μm-1; 
Z 	 - solar zenith angle (radians); and, 
d 	 - Earth-Sun distance in astronomical units. 

After atmospheric correction, the reflectance of the surface 
was obtained. The variables to estimate evapotranspiration, 
such as planetary albedo at the top of the atmosphere (Eq. 4) 
and brightness temperature (Eq. 5), were obtained adopting 
the procedures suggested by Teixeira et al. (2017).

( )top λ λα = ω ⋅ρ∑
where: 

αtop 	 - planetary albedo, dimensionless; and, 
ωλ 	 - proportion of the amount of shortwave radiation 

from the sun at the top of the atmosphere in a particular range 
of the spectrum and the sum for all bands. 

i

i

ESUN
ESUN

λ
λ

λ

ω =
∑

Thermal infrared images of band 10 (spectral range from 
10.6 to 11.19 μm) of the Landsat-8 satellite OLI sensor were 
used to estimate brightness temperature, according to Eq. 6.

bri
K2T
K1Ln 1
Lλ

=
 

+ 
 

where: 
Tbri 	 - brightness temperature, K; 
K1 	 - band-specific thermal conversion constant, W m-2 

μm-1; and, 
K2 	 - band-specific thermal conversion constant, K.

Band-specific thermal conversion constants can be found 
in the image metadata file.

The instantaneous values of surface albedo (α0) and surface 
temperature (T0) were estimated based on the regression 
equations suggested by Teixeira et al. (2009), according to 
Eqs. 7 and 8.

s top0.6054 0.08α = α +

briTs 1.0694T 20.173= −

B5 B4

B5 B4
NDVI

ρ −ρ
=
ρ +ρ

where: 
ρB5 	 - reflectance on the wavelength intervals referring to 

the near infrared region, dimensionless; and,
ρB4 	 - reflectance on the wavelength intervals referring to 

the red region of the electromagnetic spectrum, dimensionless. 

In the Landsat-8 satellite, these spectra refer to bands 5 and 
4, respectively. The instantaneous values of the R ratio were 
calculated by Eq. 10. 

s

TsR exp
NDVI

  
= α +β  α   

where: 
α 	 - is equal to 1.9 and β to -0.008; as suggested by Teixeira 

et al. (2013) for semi-arid conditions.

ETa was ca lculated by Eq.  11,  whi le  reference 
evapotranspiration (ETo) was estimated by the Penman-
Monteith FAO 56 method (Allen et al., 1998).

ETa R ETo=

Potential crop evapotranspiration was calculated by 
Eq.12.

ETc Kc ETo=

The Kc values used to estimate ETc were obtained from 
Allen et al. (1998) and corrected for the conditions of the 
region. The values of Kcmedium and Kcfinal were corrected using 
values of minimum air relative humidity (RHmin) and wind 
speed (U2) from an automatic weather station in the study 
area. Data from 05/01/2009 to 04/30/2017 were used, in which 
the mean values of RHmin and U2 were 46% and 1.26 m s-1, 
respectively. The average height of the crop was considered to 
be 1.80 m in the final stage of vegetative development and 1.60 
m in the final stage. Values of 1.20 and 0.60 (FAO 56) were 
adopted for Kcmedium and Kcfinal, respectively.

The sensitivity of each variable of the SAFER model in Ks 
estimation was evaluated. For this, a multiple linear regression 
equation was fitted, correlating Ks with the variables NDVI, 
Ts and αs, according to Eq. 13.

0 1 1 n nKs X ... X= β +β + +β

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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where: 
β0 	 - linear regression intercept; and, 
β1...βn - angular coefficients linked to the variables of the 

SAFER model; and,
X1... Xn - NDVI, Ts and αs variables.

Results and Discussion

The regression model, with R2 = 0.88 and F ≤ 0.05, was 
significant for the influence of the variables NDVI, Ts and 
αS, and NDVI (P-value = 0.000) was the predictor that most 
influenced the Ks value, followed by Ts (P-value = 0.002) and 
αS (P-value = 0.004). The prediction of Ks was explained in 
88% by Eq. 14.

for maize crop. Madugundu et al. (2017), in turn, found values 
of 0.82 in the full development stage (V12, V16 and R1) and 
0.78 in the final stage (R1).

In the period of vegetative development, from 56 to 95 days 
after emergence (DAE), the NDVI values tended to stabilize, 
and image saturation may have occurred. Although very 
dense and high-biomass vegetation can saturate the image 
(Jensen, 2009), which is the case of maize crop when it reaches 
maximum biomass increment, Bertolin et al. (2017) stated that 
it was not possible to confirm this behavior when working with 
maize crop in the same study area, based on the scatter plot. In 
the present study, the same behavior was observed.

ETa ranged from 0.05 to 5.94 mm d-1. The variation of ETa 
observed, especially on 06/10/2015, for P3, P4 and P5, can 
be attributed to the fact that maize sowing was performed on 
different dates. In the image of 05/25/2015, the crop was still 
in the process of emergence and stabilization, which justifies 
the absence of variation in Eta values (Figure 2B). From 
07/28/2015, it was possible to observe that the ETa values 
tended to become similar for the five center pivots studied. 
However, the last two images showed variations of 0.36 mm 
d-1 between P1 and P5 and 0.63 mm d-1 between P1 and the 
center pivots P3 and P4.

The lowest ETa values were observed at the beginning and 
end of the crop cycle. Low NDVI values, both at the beginning 
and at the end of the cycle, may explain part of this behavior, 
resulting from the predominance of bare soil. At the beginning 
of the cycle, the soil cover by the plant is small and, at the end, 
the leaves senescence, exposing the soil. In turn, the highest 
value (5.86 mm d-1) was found on 08/13/2015, when the crop 
reached maximum vegetative development. The same behavior 

sKs 5.23559 1.27908NDVI 0.08950Ts 0.25696= + − − α

The values of NDVI, ETa, ETc and Kc for the satellite image 
acquisition period are presented in Figures 2A, B, C and D, 
respectively. 

The NDVI showed a similar response among the center 
pivots analyzed for most of the days studied, with values 
ranging from 0.24 to 0.91. The largest difference (0.21) in NDVI 
values was observed on 06/10, beginning of the development 
stage, between center pivots P1 and P5, which can be attributed 
to the difference in the sowing time for the five center pivots, 
which was equal to 7 days between P1 and P5.

Similar NDVI values were obtained by Wang et al. (2018) 
for maize crop. Bertolin et al. (2017) in a study in the same 
region of the present study, between 2013 and 2014, found 
values ranging from 0.83 to 0.91 in the stage of full development 

Figure 2. Values of NDVI (A), actual evapotranspiration estimated by SAFER (ETa) (B), potential crop evapotranspiration (ETc) 
(C) and crop coefficient (Kc) (D) for the satellite image acquisition period in five center pivots (P1, ..., P5)

(14)

Kc used in each center pivot
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was observed by Sales et al. (2016, 2017) for bean crop in the 
Cerrado Region of the Federal District and for tomato crop in 
the municipality of Silvânia, GO, Brazil, using the Landsat-8 
satellite (OLI/TIRS) in both situations.

ETc ranged from 1.56 to 5.73 mm d-1 (Figure 2C). It can 
be observed that the ETc value was the same in the five center 
pivots, on the dates of 07/27 and 08/13. This may have occurred 
because ETc was calculated as the product of ETo by Kc and on 
those dates the Kc used was the same; in the development and 
final stages, the Kc varied according to the DAE (0.40 to 0.51 
on day 06/10; 1.05 to 1.15 on 08/29; and 0.83 to 0.93 on 09/14).

The Kc values in the stages in which it varies with time 
(rapid growth: 21 to 55 DAE and final: 96 to 140 DAE) were 
calculated using the following equations: Kc = 0.0214 DAE - 
0.0278, for the rapid growth stage, and Kc = -0.0136 DAE + 
2.4795, for the final stage (Figure 2D). 

With the ETa values for each image and the mean daily ETc 
for the same date of obtaining, the water stress coefficient was 
calculated (Figure 3).

Figure 4. Water stress coefficient, Ks_MD: determined by the ETa/ETc ratio and Ks_CP: in five center pivots (P1, ..., P5) and on six dates

Figure 3. Spatial and temporal distribution of the water stress 
coefficient (Ks) for the center pivots studied as a function of 
days after emergence (DAE)

The Ks values were extracted to obtain the mean values of 
the maps in Figure 3 and compared with the values used to 
perform irrigation management (Bernardo, 2019), as shown 
in Figure 4.

The low Ks values observed for the five center pivots in 
the image of the 05/25 can be explained by the low values of 
ETa, arising from low NDVI values in the initial period of the 
crop. However, at this stage the exploration by the roots occurs 
mainly in the surface layer. Allen et al. (1998) stated that the 
readily evaporable layer is up to 15 cm. Thus, it is assumed at 
this stage the soil could be with the dry surface, but the deeper 
layers, no, generating the great difference between the Ks_MD 
and Ks_CP.

In the image of 08/29, the Ks values estimated for the center 
pivots P1, P2, P3, P4 and P5 were 9, 12, 12, 12.6 and 16% lower 
than the Ks observed in the field, respectively. In the image of 
09/14, these values were on the order of 44.6, 30.8, 33.5, 28.5 
and 30.7%, respectively.

When comparing the mean ETa of the five center pivots 
calculated from the relationship between ETc and Ks, it was 
observed that the error resulting from Ks_MD originated lower 
ETa values for five of the six days studied, when compared with 
Ks_CP. On 05/25 (initial stage), the mean ETa calculated with 
Ks_MD was 1.46 mm d-1 lower and, on 06/10 (development), 
this value was 0.29 mm d-1 lower. When the plant was already 
in the full development stage (07/28 and 08/13), the ETa was 
0.33 mm d-1 lower and 0.18 mm d-1 higher, respectively. In the 
final stage of development, days 08/29 and 09/14, the values 
were 0.57 and 1.19 mm d-1 lower, respectively.

According to Figure 4, the Ks MD showed values close to 
those of Ks_CP in the stages in which the crop is beginning 
its development (06/10) and when it is in full development 
(07/28 and 08/13).

This demonstrates that, although the methodology needs 
to be better evaluated for the initial and final stages of crop 
development, it has potential for use in irrigation management 
in the intermediate stages.

It is essential that ETa be adequately estimated, since it has 
a direct influence on the estimation of Ks. Any model of ETa 
estimation by remote sensing can be used, such as: SEBAL 
(Bastiaanssen et al., 1998), METRIC (Allen et al., 2007), 
SSEBop (Senay et al., 2013). ETa estimates by SAFER can 
be improved with its calibration. SAFER calibration was not 
performed in the present study, because the main objective was 
to demonstrate the potential of application of the methodology.
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Conclusions

1. At the initial stage of the maize crop, the estimates of the 
water stress coefficient by means of remote sensing were not 
adequate, whereas for the development and medium stages, 
the estimates were close to observed value, with mean errors 
of 5.50%. In the final stage of maize development, the errors 
obtained were of 23.2%.

2. The methodology showed potential for application in 
irrigation management, so it needs to be better evaluated for 
other field situations and combined with other methods of 
estimating actual evapotranspiration by remote sensing.
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