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Estimativa de variáveis biométricas, fisiológicos e nutricionais
em mudas de alface usando câmara multiespectral

George D. Martins2 , Onésio F. da Silva Neto3 , Glecia J. dos S. Carmo4 ,
Renata Castoldi4* , Ludymilla C. S. Santos3  & Hamilton C. de O. Charlo3

ABSTRACT: The formation of seedlings is one of the most important phases of lettuce cultivation. Therefore, any 
strategy that aims to obtain high-quality seedlings can increase productivity. One of these strategies is the prediction 
of morphophysiological attributes based on optical properties. The objective of this study was to quantitatively 
estimate the biometric variables of lettuce from parametric and non-parametric models based on the response of 
multispectral camera images. The experiment was conducted in a greenhouse in the municipality of Uberaba, Minas 
Gerais State, Brazil. Twenty days after sowing, multispectral images of the plants were captured using a MAPIR 
Survey 3 camera. To compose the estimation models, along with the original bands of the camera, the multispectral 
vegetation indices were calculated using the calibrated original camera bands. Bands B550, B660, and B850 and the 
near-infrared indices contributed significantly to estimating the physiological variable models, with B850 contributing 
the most to the biometric and nutritional variables. From the near-infrared band (B850) and derived indices, it was 
possible to estimate all the agronomic variables from the models generated by the M5 algorithm, with an accuracy 
of up to 1.6% for the maximum quantum yield. Thus, it is possible to quantify the biometric, physiological, and 
nutritional variables of lettuce using a multispectral camera. Among the Mapir camera bands, B660 exhibited the 
greatest variability, showing that the red range was the most sensitive.
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RESUMO: A formação de mudas é umas das fases mais importantes da cultura da alface. Desta forma, qualquer 
estratégia que vise obtenção de mudas de alta qualidade pode representar aumento de produtividade. Uma dessas 
formas tem sido a estimativa de atributos morfofisiológicos baseados nas propriedades ópticas. Com este estudo, 
o objetivo foi estimar quantitativamente variáveis biométricas da alface a partir de modelos paramétricos e não 
paramétricos baseados na resposta de imagens multiespectrais tomadas por câmara multiespectral. O experimento 
foi conduzido em casa de vegetação, no município de Uberaba, MG, Brasil. Aos 20 dias após a semeadura foram 
capturadas imagens multiespectrais das plantas, utilizando-se para isto a câmara Survey 3 da MAPIR. Para compor 
os modelos de estimativa, juntamente com as bandas originais da câmara, foram calculados os índices de vegetação 
multiespectrais, a partir das bandas originais calibradas da câmara. As bandas B550, B660, and B850 e os índices derivados 
do infravermelho próximo contribuiram ao máximo para estimar os modelos das variáveis fisiológicas. Já a banda B850 foi a que mais contribuiu para as variáveis biométricas e nutricionais. A partir da banda do infravermelho próximo 
(B850) e índices derivados, foi possível estimar quase todas as variaveis agronômicas a partir de modelos gerados pelo 
algoritmo M5, com precisão de até 1,6% para rendimento quântico máximo. Conclui-se que é possível quantificar 
as variaveis biométricas, fisiológicas e nutricionais da alface por meio de câmara multiespectral. Dentre as bandas 
de câmeras Mapir, a B660 exibiu a maior variabilidade, mostrando que a faixa do vermelho foi a mais sensível.

Palavras-chave: Lactuca sativa, variáveis morfofisiológicas, modelos de predição

HIGHLIGHTS:
Multispectral imaging, using a low-cost camera, makes it possible to assess the agronomic characteristics of lettuce.
Predictive models can be obtained using parametric and non-parametric algorithms based on machine-learning approaches.
Specific wavelengths of the reflective spectrum of lettuce are important plant quality indicators.
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Introduction

The development of seedlings is one of the most critical 
phases of the crop cycle because it directly influences final 
plant performance from both a nutritional and productive 
perspective (Gusatt et al., 2019; Desai et al., 2020).

The purchase price of lettuce seeds represents 8% of the 
input cost and 4.15% of the total production cost of this 
vegetable (Oliva et al., 2016). Thus, any strategy aimed at 
obtaining high-quality seedlings may represent an increase 
in productivity and, consequently, higher profitability for the 
producer.

However, one of the limitations is the lack of rapid and 
efficient technologies to select high-vigor seedlings that result 
in more productive plants. 

Remote sensing has several agricultural applications (Weiss 
et al., 2020) and uses leaf or canopy reflectance to calculate 
vegetation indices to assess agronomic variables such as 
nutritional status, biomass, leaf area, and drought resistance 
(Gogoi et al., 2018).

The use of optical sensors has been found to be efficient 
for the assessment of several plant species (Picoli et al., 2013; 
Makanza et al., 2018; Maciel et al., 2019); however, there are 
few reports on Lactuca sativa seedlings. These sensors can 
cover an extensive area in a very short time, providing rapid 
assessment of all the seedlings and minimizing the effect of 
rapidly changing environmental conditions, such as wind 
speed, cloud cover, and solar radiation. 

Thus, the present study aimed to quantitatively estimate the 
biometric, physiological, and nutritional variables of lettuce, 
using parametric and non-parametric models (machine 
learning) based on images taken using a multispectral camera. 

Material and Methods

The study was conducted in the municipality of Uberaba, 
MG, Brazil, which is in the mesoregion of Triângulo Mineiro 
and Alto Paranaíba, during December 8 and 28, 2019, with a 
cultivar adapted to tropical conditions in late spring and early 
summer, when there is an increasing market demand for lettuce 
and seedling production.

The arch-type greenhouse where the study was conducted 
was conducted in double-span plastic and measured 14 m wide 
and 51 m long, with eaves and arc heights of 3.00 and 1.5 m, 
respectively, in the east-west direction and lies at coordinates 
19° 39’ 44” S and 47° 58’ 02” W, at an altitude of 790 m. It was 
covered with a 150-µm light-diffusing plastic film with closed 
sides and 50% shade cloth (Figure 1). 

Temperature and relative air humidity data were collected 
daily in the greenhouse using a thermohygrometer (Testo 174 
H data logger) installed 1.20 m above ground level to assess 
the environmental conditions just above the plants. 

Data variability was achieved by producing lettuce 
seedlings with variations in the fertigation start time and 
application intervals. Two experiments were performed. For 
both experiments, a randomized block design was used with 
six repetitions. Each experimental unit consisted of 140 plants.

The treatments in the first experiment consisted of six 
fertigation starting times (T1 = 0, T2 = 3, T3 = 6, T4 = 9, T5 = 12, 

and T6 = 15 days after emergence). After the first application of 
each treatment, fertigation was repeated at five-day intervals. 
Thus, depending on the starting time of the first application, 
the number of applications differed between treatments, with 
four applications for T1, three for T2 and T3, two for T4 and T5, 
and one for T6.

The treatments in the second experiment consisted of five 
fertigation application intervals (T1 = 3, T2 = 4, T3 = 5, T4 = 6, and 
T5 = 7 days). In this experiment, the first application occurred 
three days after plant emergence, with five applications in T1, 
four in T2, three in T3 and T4, and three in T5.

Fertigation depth varied as a function of seedling 
development stage. More advanced stages required increased 
fertigation depths. Nutrient solution was applied as follows: 
0.4 L from emergence to 3 days after emergence (DAE); 0.5 L 
from 4 to 7 DAE; 0.6 L from 8 to 11 DAE; 0.7 L from 12 to 14 
DAE and 0.8 L from 15 to 18 DAE.

The lettuce cultivar used to produce seedlings was Vanda 
(from Sakata®). The seeds were sown in polyethylene trays, with 
12.5 cm³ cells filled with Bioplant Plus® substrate. The experiment 
was conducted on wire benches, 90 cm above the ground. 

The seedlings were irrigated four times a day (8:00 a.m., 
12:00 p.m., 2:00 p.m., and 4:30 p.m.) using an automated 
sprinkler irrigation system without drainage to maintain the 
substrate in the containers. From sowing to emergence (3 days 
after sowing), all treatments were irrigated with water only. 
Emergence was considered to be established when at least 
90% of the tray cells contained emerged seedlings. Fertigation 
was then initiated within the time frames proposed in the 
experimental design and performed only once a day (8:00 a.m.).

The sprinkler irrigation system installed inside the 
greenhouse provides an average depth of 3.98 mm h-1, which 
corresponds to 3.98 L of water for each m² of greenhouse in 
1 h. Water depth was measured every 3 days by weighing the 
trays. The trays were irrigated until the water began to drain, 
that is, until the container capacity was reached, when they 
were weighed. They were weighed again after 2.5 h and the 
procedure was repeated four times throughout the day. The 
difference between weight measurements was attributed to crop 
evapotranspiration (ETc), which was subsequently converted 

Figure 1. Greenhouse view where the experiments were 
conducted
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into the amount of water to be applied daily via irrigation or 
fertigation. 

The irrigation depth varied as a function of the seedling 
development stage. More advanced stages required greater 
irrigation depth. The depth applied up to 3 days after emergence 
was 4.98 mm day-1, from 4 to 7 DAE, 5.24 mm day-1, from 8 
to 11 DAE, 5.44 mm day-1, from 12 to 14 DAE, 5.70 mm day-1 
and from 15 to 18 DAE, 5.97 mm day-1. 

Each day, all treatments received the same amount of water. 
However, when fertigation was applied, the water was replaced 
with the same volume of nutrient solution for the first irrigation 
of the day (8:00 a.m.). Fertigation was applied using a backpack 
sprayer with a capacity of 20 L and flow rate of 0.8 L h-1. After 
this application, a small volume of water was sprayed on the 
seedlings to prevent the nutrient solution from accumulating 
on the leaves. The other irrigations (12:00, 2:00, and 4:30 p.m.) 
were performed with water only for all treatments.

At 15 DAE, the number of leaves (NF15) was evaluated by 
counting the fully developed leaves of 10 plants from each plot. 

At 17 DAE, the physiological variables of the seedlings 
were evaluated through the OJIP transient fluorescence of 
chlorophyll a, including the initial fluorescence (F0), variable 
fluorescence (Fv), maximum fluorescence (Fm), maximum 
quantum yield (Fv/Fm), number of photons absorbed by 
the antenna complex (ABS/RC), amount of energy flowing 
through the antenna complex and captured by the PSII 
reaction center (TRo/RC), forward electron flow from the 
reaction center (ETo/RC), and amount of energy dissipated 
by non-photochemical dissipation (DIo/RC). These variables 
were measured using PSI’s (Photon Systems Instruments) 
Fluorometer FP100 model, performing readings on the second 
true leaf of five plants in each plot between 12:00 and 3:00 a.m. 
so that the plants were adapted to the dark. The chlorophyll a 
index was evaluated on the same day using Falker’s CFL1030 
Clorofilog model, taking five readings per plot on the second 
true leaf from 11:00 a.m. to 3:00 p.m.

At 21 days after sowing, or 18 days after the beginning of the 
treatments, when the seedlings reached the commercial point 
of transplanting, the following variables were assessed in 40 
plants from each experimental plot: leaf area (Area), expressed 
in cm² plant-1; shoot dry mass (SDM), expressed in g plant-1; 
and root dry mass (RDM), expressed in g plant-1.

Shoot N, P, K, Ca, Mg, and S (g kg-1) concentrations were 
also determined in 40 seedlings from each experimental plot.

After obtaining the data, dispersion analysis was performed, 
and the variables were subjected to descriptive statistical 
analysis to obtain the mean, standard deviation, and coefficient 
of variation.

At 20 days after sowing, multispectral images of the plants 
were captured using a MAPIR Survey 3 camera, which has a 
12-bit resolution, 19 mm focal length, 2.3 cm ground sample 
distance (GSD), and green (550 nm), red (660 nm), and near-
infrared (850 nm) bands. 

Images of six plants from each experimental plot were 
captured for each experiment, totaling 66 images. The camera 
was installed on a horizontally and vertically leveled support 
(1.20 m) from the ground in the nadir position. The plants were 
placed under a black nonwoven fabric to mitigate the effects 
of reflectance from neighboring targets.

To ensure maximum absorption and reflection conditions 
of solar electromagnetic radiation, the images were taken 
from 11:30 a.m. to 12:30 p.m. without shading, which could 
be caused by clouds or anthropic features near the frame of 
the capture area.

Radiometric calibration of the images was performed using 
the Mapir Camera Control software. This process was possible 
because the images were calibrated with the reflected radiance 
of the calibration plate, provided by the Survey 3 camera 
manufacturer, at the same time as the images were taken. 

After calibration, radiometric normalization of all the 
images was performed to compensate for the lighting effects 
from the first to the last shot, where the image taken at 12:00 
p.m. was set as the reference. Normalization was performed 
using ENVI 5.1 software, according to the methodology 
proposed by Jensen (2009). 

During the normalization process, in the reference image, 
as well as the images to be normalized, the radiance values were 
manually extracted from the set of light and dark pixels in all 
the bands of the camera. In all cases, the pixels were extracted 
from the calibration plate. 

The following equation was used to determine the 
coefficients of linear transformation: 

Ti mi xi bi= +

where: 
mi 	 - (Bri - Dri)/(Bsi - Dsi); 	
bi 	 - (Dri × Bsi - Dsi × Bri)/(Bsi - Dsi); 
Ti 	 - radiance of the reference image 
Xi 	 - radiance of the image to be normalized. 
Bri 	 - mean of the light reference set; 
Dri 	 - mean of the dark reference set; 
Bsi 	 - mean of the light set to be normalized; 
Dsi 	 - mean of the dark set to be normalized; and, 
i 	 - bands of the sensor under study. 

The multispectral vegetation indices were calculated using 
Eqs. 2, 3, and 4 to compose the estimation models, along with 
the original camera bands, from the original calibrated Survey 
3 camera bands (Table 1), using ENVI 5.1 software.

The individual mean brightness values of the original bands 
and the derived multispectral indices were extracted for all 
plants. The average brightness values were extracted from the 
irregular polygons surrounding the plant crowns using the 
regions of interest tool created in the ENVI 5.1 software. The 
mean zonal method was used for data extraction.

Table 1. Equations and references for calculations of vegetation indices derived from the original bands of the Survey 3 Camera

(1)
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The estimation process used in this study is based on 
parametric and non-parametric regression methods. The 
non-parametric multilayer perceptron (neural network) and 
parametric multiple linear regression (MLR) algorithms were 
used as estimators, and the results were compared. 

Neural network implementation was used to estimate 
and validate the lettuce variables (biometric, physiological, 
and nutritional), in Weka software (Weka 3.9.4, University 
of Waikato). 

The neural network variables were set to their default values 
(two neurons and one layer). It is important to emphasize that 
several tests were conducted to optimize the network variables, 
but the standard architecture of the software always exhibited 
more accurate estimates. 

This study used the MLR method, which attempts 
to estimate the variables of the model and describe the 
relationship between two or more independent variables and 
a response variable by fitting a linear equation to the observed 
data, often using the least squares method in Weka (Weka 
3.9.4, University of Waikato). In Weka, the selection of the 
features model was completed using a backward elimination 
method called “M5,” wherein the attribute with the smallest 
standardized coefficient is removed until no improvements 
are observed in the Akaike information criterion (Akaike, 
1974).

All estimation models were created from the combination 
of the original bands and the derived multispectral indices. For 
model training, the radiometric values of 53 randomly defined 
plants (80% of the sample set) were considered. The root mean 
squared error (RMSE) (Eq. 5), and the normalized RMSE 
(RMSE%) (Eq. 6) were calculated to validate the accuracy of 
the models, considering the residue of the difference between 
the estimated and measured agronomic variables for 13 plants 
(20% of the sample set). 

The standard deviation varied from 0.006 (RDM) to 
4,184.01 (Fm). This shows that the higher the value, the greater 
is the data dispersion (Table 2).

The coefficients of variation (CV) ranged from 0.81% (B550) 
to 62.19% (ETo/RC), which represents low data dispersion for 
all the evaluated variables (Cantelli et al., 2016), except for 
ETo/RC and Area (Table 2).

For the data extracted from the image, the highest CV 
was for B660 (5.35%), indicating that the red spectrum is 
the best region for discriminating between the different 
types of treatment. For this experiment, the greater spectral 
variability in this range is associated with the high variability 
of the biometric and physiological variables of lettuce, given 
that reflected energy in the 630-680 nm spectral range is 
influenced by photosynthesis-related variables, such as NF15 
and chlorophyll a (Jensen, 2009).

The low CV values for the B550 (0.81%) and B850 (2.26%) bands 
show spectral regions with less potential for discriminating 
between the different treatments applied to the lettuce samples. 
The low variability of the B550 band is associated with the 
condition that all the samples exhibited the typical appearance 
of healthy green vegetation, that is, the same phycocyanin 
concentrations.

The variability of the B850 band, which was slightly higher 
than that of B550, was directly influenced by the low variability 
of the nutritional variables of lettuce (Jensen, 2009), which had 
a maximum CV for N (17.47%). In this case, in addition to the 
influence of nutritional variables, a low CV was associated with 
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where:
xo 	 - observed value;
xe 	 - estimated value; and,
n 	 - number of samples.

Results and Discussion

The average temperature and relative air humidity during 
the experiment were 27.51 °C and 67.16%, respectively. 
Maximum and minimum temperatures of 46.10 and 18.10 °C 
were recorded on December 22 and 24, 2019, respectively, and 
maximum (94.6%) and minimum relative air humidity (27.9%) 
on December 19 and 24, 2019, respectively.

NF15 - Number of leaves at 15 DAE; SDM - Shoot dry mass (g plant-1); RDM - Root 
dry mass (g·plant-1); Chlorophyll a - Chlorophyll a index; Area - Leaf area (cm2 plant-1); 
F0 - Initial fluorescence; Fm - Maximum fluorescence; Fv - Variable fluorescence; Fv/
Fm - Maximum quantum yield; ABS/RC - Absorption flow/center of reaction; TRo/RC 
- Aaptured energy flow/center of reaction; ETo/RC - Electron transport flow/center of 
reaction; Dio/RC - Non-photochemical energy flow/center of reaction; N, P, K, Ca, Mg, 
and S - Leaf concentrations (g kg-1); CV - Coefficient of variation, n = 66

Table 2. Means, standard deviations, and coefficients of 
variation (CV) of biometric, physiological, and nutritional 
variables evaluated in lettuce seedlings

(5)

(6)
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the calibration process and radiometric normalization, which 
contributed significantly to the lower range and adherence of 
the values as a function of the mean. 

The multiple linear models presented higher coefficients 
of determination (R2) because they incorporated more index 
bands in the regression equations, as verified for the variables 
Fv/Fm (43%), DIo/RC (34%), and P (58%) (Table 3). However, it 
is evident that the greater number of predictor variables did not 
guarantee that these models were the most accurate (Table 4).

As in Oliveira et al. (2020), the models that estimate 
agricultural variables, when composed of a single predictive 
variable, tend to have a low coefficient of determination, as 
shown in Table 3. However, this does not necessarily result in 
an inaccurate estimate of the variable because if the validation 
data are normally distributed, the errors in data variability 
around the mean will be null and decrease the RMSE.

The B550, B660, and B850 bands and the indices derived from 
the near-infrared region contribute mostly to the estimation 
models of the physiological variables (Table 3). Band B850 
contributed the most to the biometric and nutritional variables 
(Table 3). The variables NF15, SDM, RDM, and Area represent 
the vegetation biomass, which may explain these results 
because multispectral indices such as SR and GNDVI are 
highly correlated with the biomass of canopies of several crops 
(Jensen, 2009).

For the physiological variables, bands B550 and B850 were 
present in most prediction models, except for the variables 
chlorophyll a and ETo/RC (Table 3). For chlorophyll a, the 
B660 red spectrum band was the predictor variable because this 
specific portion of the reflective spectrum is causally related to 
chlorophyll a and b absorption (Jensen, 2009). 

For the nutritional variables, the predominance of the B850 
band in the prediction models reflects the direct relationship 
between the near-infrared and lettuce nutrients, as observed 
by Mao et al. (2015). 

SR - Simple ratio; GNDVI - Green normalized difference vegetation index

Table 3. Linear models and coefficient of determination (R2) for the estimation of biometric, physiological, and nutritional 
variables

Table 4. Performance of algorithms in estimating biometric, 
physiological, and nutritional variables

M5 - Backward elimination method; NF15 - Number of leaves at 15 DAE; SDM - Shoot 
dry mass (g plant-1); RDM - Rroot dry mass (g·plant-1); Chlorophyll a - Chlorophyll a 
index; Area - Leaf area (cm2 plant-1); F0 - Initial fluorescence; Fm - Maximum fluorescence; 
Fv - Variable fluorescence; Fv/Fm - Maximum quantum yield; ABS/RC - Absorption flow/
center of reaction; TRo/RC - Captured energy flow/center of reaction; ETo/RC - Electron 
transport flow/center of reaction; Dio/RC -Non-photochemical energy flow/center of 
reaction; N, P, K, Ca, Mg, and S - Leaf concentrations (g kg-1)

Table 4 shows the performance of the algorithms (RMSE 
and RMSE%) for estimating the biometric, physiological, and 
nutritional variables.

Regarding the biometric variables, the M5 model had 
higher precision in the NF15 estimate (10.7%), while the neural 
networks provided more precise estimates of SDM (27%) and 
RDM (15.6%) (Table 4). 
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The estimated leaf area was not satisfactory because the 
errors were 43% and 44% for the neural networks and M5 
models, respectively (Table 4). In contrast, when monitoring 
lettuce health, Ren et al. (2017) verified that the estimation of 
leaf area by remotely piloted aircraft cameras was possible and 
determinant for the development of a methodology capable of 
detecting leaf deterioration. 

Burmgarder et al. (2012) also highlighted the possibility of 
monitoring the leaf area index (LAI) using RGB images and 
machine learning algorithms. The authors were able to estimate 
the LAI of lettuce samples under different treatments with an 
accuracy ranging from 71% to 95%.

As shown in Table 3, the performance of the B660 chlorophyll 
estimate regression model stands out. The composition of the 
red spectrum response may be associated with the fact that 
this range is sensitive to chlorophyll a and b (Jensen, 2009). 
Hyperspectral data can also be used in similar studies. Simko 
et al. (2015) determined that lettuce leaf deterioration can be 
detected using hyperspectral images. In the same study, using 
hyperspectral indices, chlorophyll was classified according to 
leaf health with an accuracy of 97%. 

Hyperspectral curves obtained by field spectroradiometers 
can also provide spectral models capable of estimating 
biometric variables. In Kizil et al. (2012), chlorophyll was 
estimated with an accuracy of 97%, and the authors built 
models using neural networks from hyperspectral indices 
derived from field radiometric measurements.

With regard to the physiological variables, the M5 model 
showed higher precision in the estimates of Fv/Fm (1.66%), 
ABS/RC (6.5%), TRo/RC (5.8%), and Dio/RC (12%), while 
the neural networks had higher precision in the estimates of 
F0 (10.2%), Fm (12.5%), Fv (13.37%), and Chlorophyll a (5.9%). 
The estimate of the ETo/RC parameter was not satisfactory 
because the errors were 77% and 63% for the neural networks 
and M5 models, respectively (Table 4). 

Among the nutritional variables, the M5 model was more 
accurate in estimating N (21.9%), P (15.6%), Mg (7.5%), and 
S (11.5%), while the neural networks had higher precision in 
the estimation of K (9.2%) and Ca (11.2%) (Table 4). 

With respect to N, Mao et al. (2015) discussed the 
potential of composing N prediction models in lettuce from 
hyperspectral images, where it was possible to characterize in 
detail the spectral response of the plant and detect nutritional 
characteristics omitted by multispectral cameras. 

Furthermore, although it is possible to estimate Ca by 
M5, the architecture created by the neural networks proved 
to be more efficient. Various studies aimed at monitoring 
Ca in lettuce have already been reported. Story et al. (2010) 
determined that it was possible to detect Ca deficiency 
using computational vision algorithms by considering the 
integration between images composed by visible RGB bands, 
hue-saturation-luminance (HSL), and morphological features.

It is important to emphasize that, based on the results 
obtained, except for chlorophyll a, TRo/RC, and ETo/RC 
contents, it is possible to estimate the biometric, physiological, 
and nutritional variables of lettuce in absolute values, using 
multispectral cameras to monitor seedling yield without the 
need for destructive analyses, in the shortest possible time and 

without complex architectures, given that the simplest models 
generated by the M5 parametric algorithm were efficient in 
estimating the variables assessed. 

Despite the possibility of accurately estimating these lettuce 
variables, it is important to emphasize that the methodology 
exhibits implementation limitations in situ. The challenges lie 
mainly in the radiometric data acquisition protocol, because 
under ideal electromagnetic radiation incidence, the interval 
between images should be restricted to a short timeframe, 
between 11 a.m. and 1 p.m.

Another point to highlight is the possibility of continuous 
calibration of coefficients contained in the regression models 
and the configuration of neural network architecture, since 
the models presented here are calibrated for specific seasonal 
conditions at the time and place where the images were taken. 
Thus, with the confirmed possibility of estimating quality 
variables in lettuce using the Mapir camera, it is recommended 
that models be recalibrated for every field campaign. 

Conclusions

1. In this study, it was possible to quantify the estimated 
biometric, physiological, and nutritional variables of lettuce 
using multispectral cameras.

2. Among the Mapir camera bands, B660 exhibited the 
greatest variability, showing that the red range was the most 
sensitive to different treatments. Except for the variables 
Chlorophyll a, TRo/RC, and ETo/RC from the B850 band and 
derived indices, it was possible to estimate all the agronomic 
variables using the models generated by the M5 algorithm. 
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