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Predição da produtividade de grãos de soja utilizando imagens aéreas de drone

Aderson S. de Andrade Júnior2* , Silvestre P. da Silva3 , Ingrid S. Setúbal3 ,
Henrique A. de Souza2 , Paulo F. de M. J. Vieira2  & Raphael A. das C. N. Casari4

ABSTRACT: This study aimed to evaluate the ability of vegetation indices (VIs) obtained from unmanned aerial 
vehicle (UAV) images to estimate soybean grain yield under soil and climate conditions in the Teresina microregion, 
Piaui state (PI), Brazil. Soybean cv. BRS-8980 was evaluated in stage R5 and submitted to two water regimes (WR) (100 
and 50% of crop evapotranspiration - ETc) and two N levels (with and without N supplementation). A randomized 
block design in a split-plot scheme was used, in which the plots were the water regimes and the subplots N levels, 
with five replicates. Each plot contained twenty 4.5 m-long rows, spaced 0.5 m apart, with a total area of 45 and 
6 m² study area for grain yield evaluations. Twenty VIs obtained from multispectral aerial images were evaluated 
and correlated with grain yield measurements in the field. Pearson’s correlation, linear regression, and spatial 
autocorrelation (Global and Local Moran’s I) were used to analyze the performance of the VIs in predicting grain 
yield. The R2, RMSE and nRMSE indices were used to validate the linear regression models. The prediction model 
based on EVI-2 exhibited high spatial randomness for all the treatments, and smaller prediction errors of 149.68 
and 173.96 kg ha-1 (without and with N supplementation, respectively).

Key words: Glycine max L., remotely piloted aircraft, vegetation indices, autocorrelation, Moran’s I

RESUMO: O estudo objetivou avaliar a capacidade de índices de vegetação (IV) obtidos de imagens aéreas por veículo 
aéreo não tripulado em estimar a produtividade de grãos de soja, nas condições de solo e clima da microrregião de 
Teresina, Piauí, Brasil. Avaliou-se a cultivar de soja BRS-8980, em estádio R5, submetida a dois regimes hídricos 
(RH) (100 e 50% da evapotranspiração da cultura - ETc) e dois níveis de N (com e sem suplementação de N). 
O delineamento experimental foi o de blocos ao acaso, em parcelas subdivididas, sendo as parcelas os regimes 
hídricos e as subparcelas os níveis de nitrogênio, com cinco repetições. Cada parcela continha 20 linhas de 4,5 m de 
comprimento, espaçadas de 0,5 m entre linhas, com área de 45 m² e uma área útil para avaliação da produtividade de 
grãos de 6 m². Avaliaram-se 20 IV obtidos de imagens aéreas de câmera multiespectral, os quais foram correlacionados 
com medidas de produtividade de grãos em campo. Adotaram-se análises de correlação de Pearson, de regressão 
linear e de autocorrelação espacial (índice I de Moran global e local) para geração e análise de desempenho dos 
IV na predição da produtividade de grãos. Para validação dos modelos de regressão linear, usou-se os índices R2, 
RMSE e nRMSE. O modelo de predição baseado no EVI-2 apresenta elevada aleatoriedade espacial, para todos os 
tratamentos avaliados, e menores erros de predição iguais a 149,68 kg ha-1 (sem suplementação de N) e 173,96 
kg ha-1 (com suplementação de N).

Palavras-chave: Glycine max L., aeronave remotamente pilotada, índices de vegetação, autocorrelação, Moran’s I

HIGHLIGHTS:
Prediction models based on VIs using the red, NIR and red edge bands better explained the variability in soybean grain yield.
The variability of soybean grain yield was due more to water regimes than nitrogen supplementation.
The soybean grain yield prediction model generated with the EVI-2 VI showed greater accuracy and spatial randomness.
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Introduction

It is important to develop crop yield prediction models 
because they enable crop conditions to be monitored in the 
field and previous adoption of management practices aimed 
at achieving high yields (Silva Junior et al., 2018).

Remote sensing is a promising technique that allows 
the accurate, low-cost prediction of the biophysical and 
biochemical parameters of plants. The high yield and spatial 
accuracy in predicting these characteristics using unmanned 
aerial vehicles (UAV) images can help assess genotype behavior 
and management practices, detect biotic and abiotic stress, 
and predict crop yield, contributing to decision-making by 
producers (Barbedo, 2019).

The use of vegetation indices (VIs) is common in remote 
sensing studies. VIs are reliable algorithms for evaluating plant 
cover, vigor and growth dynamics, and nutritional status, 
among other applications (Xue & Su, 2017), making them a 
promising tool for crop yield prediction (Zhao et al., 2020).

Several studies have reported a correlation between VIs and 
yield in crops such as corn, wheat, cotton, and rice (Dong et al., 
2015; Baio et al., 2018; Hassan et al., 2019; Zhao et al., 2020). 
Holzman et al. (2014), Christenson et al. (2016), Silva Junior 
et al. (2018), Maimaitijiang et al. (2020), and Schwalbert et al. 
(2020) conducted studies with soybean and concluded that 
VIs produced satisfactory and promising results for predicting 
soybean yield. However, studies in this area are still incipient 
in the Mid-North region of Brazil.

The present study aimed to evaluate the ability of vegetation 
indices (VIs) obtained from unmanned aerial vehicle (UAV) 
images to estimate soybean grain yield under the soil and 
climate conditions of the Teresina microregion, Piaui state 
(PI), Brazil.

Material and Methods

The experiment was conducted at Embrapa Mid-North in 
Teresina, Piaui state, Brazil (05° 02’ 13’’ S, 42° 47’ 49’’ W, and 
altitude of 72 m), from July to November 2019 (Figure 1). The 
climate in the region is classified as Aw, with a wet summer and 
dry winter (Medeiros et al., 2020). Average annual temperature 
and rainfall are 27.4 °C and 1,325 mm, respectively, with the 
latter concentrated between January and May (INMET, 2020). 
During the experimental period, the average maximum and 
minimum temperatures, and cumulative rainfall were 29.6°C, 
27.8 °C and 18.6 mm, respectively. At the time of the flight 
(11:00 a.m.-12:00 p.m.), average maximum and minimum 
temperature, wind speed, and global solar radiation were 

30.7°C, 29.3 °C, 2.8 m s-1, and 406.8 W m-2, respectively 
(INMET, 2020).

The soil at the experimental site is classified as eutrophic 
Ultisol (Melo et al., 2014) (Table 1). Fertilization management 
was based on the soil chemical properties. Nitrogen (urea), 
phosphorus (simple superphosphate), and potassium 
(potassium chloride) were applied to the soil and micronutrients 
to the leaves (Silva, 2021). A 1,000 kg N ha-1 dose was applied 
to meet soybean N requirements throughout the crop season 
in order to achieve maximum productive potential, with an 
expected grain yield of 6 Mg ha-1. For each Mg of soybean 
produced, 80 kg ha-1 of nitrogen is needed and nitrogen 
fertilization efficiency is estimated at 50% (Hungria et al., 2001).

The BRS-8980 soybean cultivar (Embrapa) with a 
determinate growth habit, GM 8.9, and a 125-136-day 
growing season was used. A randomized block design in a 
split-plot scheme was adopted, in which the plots were the 
following water regimes: deficit WR (50% replacement of crop 
evapotranspiration-ETc) (I0) and full WR (100% replacement 
of ETc) (I1), and the subplots were the levels of nitrogen 
fertilization: without nitrogen (N0) and with nitrogen (1000 
kg ha-1) (N1), resulting in four treatments (I0N0, I0N1, I1N0, 
and I1N1), with five replicates. Each plot contained twenty 
4-5 m-long rows, spaced 0.5 m apart, with a total area of 
45 m² and 6 m² study area for grain yield evaluations. 

Sowing was performed manually on 23/07/2019, 
distributing 20 seeds per meter in the furrow. The seeds were 
inoculated with Bradyrhizobium japonicum (SEMIA 5079 and 
5080), at a ratio of 100 mL of inoculant to 7 kg of seeds. After 

P - Phosphorus; K - Potassium; Ca - Calcium; Mg - Magnesium; H + Al - Potential acidity; SB - Sum of bases; CEC - Cation exchange capacity; OM - Organic matter; S% - Base 
saturation; pH (CaCl2) - pH in calcium chloride

Table 1. Soil chemical and granulometric properties in the experimental area

Figure 1. Location (A) and details of the experimental area (B)

A. B.
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germination, the seedlings were thinned, leaving 10 to 12 plants 
per linear m-1. Harvesting was performed at 113 days after 
sowing (DAS) (13/11/2019) at the beginning of the R8 phase, 
cutting the plants in the four 3 m-long center rows spaced 
0.5 m apart (6 m² per plot).

Irrigation management was performed based on crop 
evapotranspiration (ETc) replacement. The reference 
evapotranspiration (ETo) was estimated by the Penman-
Monteith method (Allen et al., 1998) using global solar 
radiation data (MJ m-2), air temperature (°C), relative air 
humidity (%), and wind speed (m s-1) obtained from an 
automatic agro-meteorological station located 500 m from 
the experimental area. The soybean crop coefficients proposed 
by the FAO (Allen et al., 1998) were used to estimate ETc. 
Irrigation was applied using a conventional fixed sprinkler 
system, with sprinklers spaced 12 m apart. Irrigation depth 
was controlled by installing two blocks of 12 collectors each, 
one in each water regime, spaced 3 m between the lateral lines 
of sprinklers, in the center of the experimental plot.

From sowing to stage V3, full irrigation was used for 
both treatments, followed by the application of different 
water regimes from stages V4 to R5, with 50 and 100% ETc 
replacement. After stage R5, full irrigation was resumed for all 
treatments. The cumulative irrigation depth during the soybean 
season in each water regime are shown in Table 2. 

Soil moisture content was monitored using Campbell 
CS616 probes, with three probes in each water regime, two 
0-0.30 m and one 0.30-0.60 m deep, with continuous moisture 
data acquisition and recording by a CR1000 datalogger. From 
the onset of irrigation until the application of differentiated 
water regimes (OT), average moisture content in the 0-0.30 m 
layer ranged between 13.0 and 14.2% in the treatments with 
50 and 100% ETc, while in the 0.30-0.60 layer, variation was 
8.6% (50% ETc) and 10.3% (100% ETc) (Figure 2).

Average moisture content in the 0-0.30 m layer under the 
different water regimes (OT-ET) was 9.9 and 14.7% in the 
treatments with 50 and 100% ETc respectively, and 7.7% (50% 
ETc) and 12.7% (100% ETc) in the 0.30-0.60 m layer. From the 
beginning of irrigation until the flight date (62 DAS), average 
moisture content in the 0-0.30 m layer was 10.0 and 13.2% in 
the treatments with 50 and 100% ETc, respectively, and 7.6% 
(50% ETc) and 12.3% (100% ETc) in the 0.30-0.60 m layer 
(Figure 2). These data indicate that in the full irrigation WR, 
soil moisture was maintained at higher-than-critical levels to 
allow adequate soybean development and production. Under 
deficit irrigation WR, values below the critical moisture content 
and above the permanent wilting point were recorded during 
the study period, which is a limiting factor for soybean grain 
development and yield. 

An XFLY X800 hexacopter (Xfly Brasil, Bauru, SP) UAV 
was used to obtain aerial images. A flight was performed on 
24/09/2019, at 62 DAS, between 11:00 a.m. and 12:00 p.m. The 
flight was planned using Pix4D Capture® software (www.pix4d.
com). The flight plan was created to ensure that the images were 
captured with an 80% lateral and frontal overlap, maintaining 
the flight line at 30 m above ground level, with GSD (ground 
sample distance) of ≈ 1.5 cm pixel-1.

The multispectral images were acquired by a RedEdge 
Micasense sensor, capable of capturing five spectral bands: Red 
(668 nm), Green (560 nm), Blue (475 nm), NIR (840 nm), and 
RedEdge (717 nm). The images generated were georeferenced 
and corrected using GPS and the solar radiation sensor 
installed on the top of the aircraft. A radiometric calibration 
standard was also used to correct the images, which were saved 
in 16-bit tiff format. The orthomosaic images were produced 
with Pix4D Mapper® software.

The orthomosaic underwent a supervised classification 
process (maximum likelihood method), allowing the 
rasterization of the orthomosaic into two classes (soil and 
leaves). This enabled the removal of pixels classified as mosaic 
soil, ensuring that the VIs were estimated only with pixels 
classified as leaves. The process was performed using the 
Semi-Automatic Classification (SCP) plug-in of QGIS v. 3.16 
(QGIS, 2021). The vector layer containing the pixels classified 
as leaves was subdivided into two equal parts, thus obtaining 
two distinct datasets for the training and validation phases of 
the VIs. The “Split Polygon” plug-in of QGIS v. 3.16 (QGIS, 
2021) was used.

WR - Water regimes (% ETc); S - Sowing date; OT - Onset of differentiated WR treatment 
(40 DAS); FD - Flight date (62 DAS); ET - End of differentiated WR treatment (72 DAS); 
EIT - End of irrigation treatment (93 DAS)

Table 2. Cumulative irrigation depth (mm) in each water 
regime during the soybean crop season

A.

B.

FC - Field capacity; CM - Critical moisture; PWP - Permanent wilting point; OT - Onset 
of differentiated WR treatment (40 DAS); ET - End of differentiated WR treatment 
(72 DAS); EIT - End of irrigation treatment (93 DAS); Flight - Flight date (62 DAS)

Figure 2. Soil moisture content during the soybean season 
in the 0-0.30 and 0.30-0.60 m layers in response to the water 
regimes applied
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The spectral response of the soybean to the treatments was 
quantified using 20 VIs estimated from the multispectral image 
bands (R, G, B, red edge, and NIR) (Table 3). The multispectral 
indices were estimated with QGIS v. 3.16 (QGIS, 2021). The VI 
values of each subplot were extracted with the zonal statistics 
plugin of QGIS v. 3.16 (QGIS, 2021). To that end, the vector layer 
of the subplots was used, containing only the areas classified as 
leaves, subdivided into two equal parts (modeling and validation).

The strategy adopted for statistical analysis of the data 
consisted of the following steps: a) Pearson’s correlation analysis 
between grain yield data, measured in the plots, and the 20 VIs 
evaluated, also extracted at the experimental plot level, aimed at 
pre-selecting the most promising indices (r ≥ 0.8); b) creation 
of grain yield prediction models using the most promising 
VIs via linear regression analysis, applying the coefficient of 
determination (R2) (Eq. 1) and standard error of estimate (SEE) 
as the selection criteria (Eq. 2); c) validation of grain yield 
prediction models applying R2, root mean square error (RMSE) 
(Eq. 3) and normalized root mean square error (nRMSE) (Eq. 
4), using a different dataset different from that employed in 
creating the models and d) spatial autocorrelation analysis of 

the most promising prediction models, from steps a, b and c, 
through Moran’s global index (Eq. 5) and Moran’s local index (Eq. 
6) (Anselin, 1995), using the residuals of grain yield prediction 
models (RMR) (Eq. 7) to assess the degree of model randomness, 
as recommended by Maimaitijiang et al. (2020). For the estimates 
of R2, SEE, RMSE, and nRMSE, the Excel Real Statistics Resource 
Pack (version 7.6) supplement was used (Zaiontz, 2020).

Rn - Spectral reflectance - near infrared (840 nm); Rg - Spectral reflectance - green (560 nm); RRE - Spectral reflectance - near red (717 nm); Rr - Spectral reflectance red (668 nm) 
and Rb - Spectral reflectance - blue (475 nm)

Bands/Indices Acronym Equation Reference 

 Chlorophyll index red CI-RED 
Rn
Rr

− 1 Gitelson et al. (2005) 

 Chlorophyll vegetation index CVI 
RnRr
Rg

2  Vincini et al. (2008) 

 Enhanced vegetation index EVI 
2,5(Rn − Rr)

Rn + 6Rr − 7,5Rb + 1 Gitelson et al. (2005) 

 Two-band enhanced vegetation index EVI-2 
2,5(Rn − Rr)
Rn + 2,4Rr + 1 Jiang et al. (2008) 

 Green chlorophyll index GCI 
Rn
Rg

− 1 Gitelson et al. (2005) 

 Green normalized difference vegetation GNDVI 
Rn − Rg
Rn + Rg

 Hunt & Daughtry (2018) 

 Green ratio vegetation index GRVI 
Rn
Rg

 Sripada et al. (2006) 

 Modified excess green MEXG 1,262Rg − 0,884Rr − 0,311Rb Burgos-Artizzu et al. (2011) 

 Modified normalized green red difference MNGRD 
Rg
2 − Rr

2

Rg2 + Rr2
 Bendig et al. (2015) 

 Normalized difference Red-Edge NDRE 
Rn − RRE
Rn + RRE

 Wang et al. (2014) 

 Normalized difference vegetation index NDVI 
Rn − Rr
Rn + Rr

 Gitelson et al. (2005) 

 Normalized green red difference NGRD 
Rg − Rr
Rg + Rr

 Hamuda et al. (2016) 

 Optimized Soil Adjusted Vegetation Index OSAVI 
Rn − Rr

Rn + Rr + 0,16 Roundeaux et al. (1996) 

 Pigment-specific normalized difference index PSND 
Rn − Rb
Rn + Rb

 Blackburn (1998) 

 Renormalized Difference Vegetation Index RDVI 
Rn − Rr

(Rn − Rr)0,5
 Roujean & Breon (1995) 

 Red-Edge chlorophyll index RECI 
Rn
RRE

− 1 Gitelson et al. (2005) 

 Ratio vegetation index RVI 
Rn
Rr

 Gitelson et al. (2005) 

 Soil Adjusted Vegetation Index SAVI 
1,5(Rn − Rr)

(Rn + Rr + 0,5) Zhong et al. (2019) 

 Simplified canopy chlorophyll content index SCCCI 
NDRE
NDVI  Raper & Varco (2015) 

 Triangular greenness index TGI Rg − (0,39Rr) − (0,61Rb) Hunt et al. (2011) 

 

Table 3. Multispectral vegetation indices evaluated in the study
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999 random permutations. The number of 69 (for N treatments 
separately) and 139 (for all treatments) nearest neighbors was 
defined, making it possible for the RMR of each sub-plot to 
be compared with all the others.

Results and Discussion

Pearson’s correlation shows the interaction between 
soybean grain yield and VIs (Table 4). There was greater 
positive interaction between GY and the RECI, EVI, EVI-2, 
OSAVI, SAVI, and GCI VIs, and low interaction between the 
MEXG, MNGRD, and TGI and GY VIs (Table 4). 

The correlation shows the similarity between the VIs that 
use the same spectral bands, such as EVI, EVI-2, NDRE, and 
RECI, which use the red, NIR, and red-edge bands in their 
estimations, as well as the SAVI and OSAVI, which correct 
the soil effect on the vegetation signal (Nguy-Robertson et al., 
2012; Silva Junior et al., 2018). The highest Pearson correlation 
values (r ≥ 0.8) were obtained for EVI, EVI-2, RDVI, SAVI, 
and OSAVI (Table 4).

Silva Junior et al. (2018) found a high correlation between 
SAVI and MSAVI and the GY of soybean cv. AS 3730 IPRO 
(Agroceres), possibly due to the use of soil effect correction to 
estimate these VIs (Hatfield & Prueger, 2010). SAVI, MSAVI, 
and MTVI are directly related to soil reflectance, crop canopy 
sensitivity, vegetation cover, and chlorophyll absorption 
(Haboudane et al., 2004).

Linear regression performed with the VIs selected as 
the most significant in the correlation analysis (r ≥ 0.8) 
indicated that EVI-2, EVI, RDVI, and SAVI were promising 
for estimating GY (Figure 3). EVI-2 was more efficient in 
estimating the GY of the cv. BRS-8980 (R2 = 0.715; SEE = 324.85 
kg ha-1). The worst fit for the regression models was the SAVI 
vegetation index (R2 = 0.70; SEE = 332.83 kg ha-1) (Figure 3). 
It is important to emphasize the ability of the linear regression 
models to better estimate cv. BRS-8980 GY, demonstrated by 
the lower SEE values obtained by the regression models.

The VIs that best estimated GY were those that used the bands 
in the NIR, red, and red-edge regions to express the spectral 
response of soybean to the treatments applied (water regimes 
and soil N levels). A similar trend was observed by Christenson 
et al. (2016), who concluded that yield prediction models using 
VIs that adopt the red, NIR, and red-edge spectral bands better 
explained grain yield variability among soybean genotypes.

Christenson et al. (2016) generated a GY prediction model 
using different VIs for soybean cultivars grouped into two 
maturity groups (G3 and G4). The authors found that the 
resulting model exhibited R2 = 0.58 and SEE = 703.0 kg ha-1, 
performance indices lower than those obtained with the models 
generated in the present study. The authors attribute this poor 
performance to the fact that the model was generated for the 
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# For description of VIs see Table 3. Significance levels (t-test): ns - Not significant; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001

Table 4. Pearson’s correlation between vegetation indices (VIs) and soybean grain yield (GY, kg ha-1) (n = 20)

where: 
n 	 - number of observations;
Yi 	 - GY values measured in the field;
Yi 	 - GY values estimated by linear regression models;
Ym 	 - mean of the GY values estimated by the linear 

regression models;
Yl 	 - mean of the GY values measured in the field;
Wij 	 - spatial matrix of weighting between i and j; 
yi 	 - GY prediction error of the vegetation index in area i; 
yj 	 - GY prediction error of the vegetation index in area 

j; and, 
y 	 - mean of the GY values estimated by the regression 

models.

The RMSE relates the magnitude of the observed values 
versus those estimated by the models, while the nRMSE is 
a normalized measure of the RMSE used to compare the 
performance of different regression models (Maimaitijiang et 
al., 2020). Moran’s global index has been shown to be efficient 
in evaluating the spatial autocorrelation of regression models 
(Dalposso et al., 2013; Ghulam et al., 2015). Moran’s I values 
range from -1 to 1, demonstrating negative to positive spatial 
autocorrelation, respectively, with zero indicating randomness, 
where greater randomness denotes better regression model 
performance (Maimaitijiang et al., 2020). 

To estimate Moran’s global I, the experimental plots were 
subdivided into seven polygons, with areas approximately equal 
to those used to quantify GY in the field. The “Split Polygon” 
plug-in of QGIS v. 3.16 (QGIS, 2021) was used. The global and 
local Moran’s I were estimated using GeoDA software (Anselin 
et al., 2006). The nearest neighbor’s method was applied 
to weight the autocorrelation spatial matrix. The statistical 
pseudo-p-values of Moran’s local index were obtained using 

^
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A.

Significance levels according to the t-test: *** - p ≤ 0.001; ** - p ≤ 0.01; * - p ≤ 0.05; ns - 
Not significant; R2 - Coefficient of determination; SEE - Standard error of estimate and 
n - number of data pairs (50% ETc - gray circles; 100% ETc - orange circles)

Figure 3. Linear regression between promising vegetation 
indices (VIs) and grain yield (GY) of soybean cv. BRS-8980

D.

C.

B.

clustering of all genotypes from different maturity groups, a 
strategy that was avoided in the present study.

Validation of the linear regression models showed 
that among the promising VIs in predicting soybean 
GY, cv BRS-8980 stood out as the most efficient (higher R2 
associated with lower RMSE and nRMSE values). The VIs 
that performed best were EVI-2, RDVI, EVI and SAVI, with 
RMSE, and nRMSE values ranging from 303.55 kg ha-1 and 
15.5% (R2 = 0.727), respectively, for the model generated with 
EVI-2, at 309.25 kg ha-1, and 15.8% (R2 = 0.718), for the model 
generated with SAVI (Figure 4).

Holzman et al. (2014) conducted a study to estimate 
soybean grain yield at a regional scale in the Pampas region 
of Argentina using the temperature vegetation dryness index 
(TDVI) generated from EVI and surface temperature (Ts). 
Despite the regional scope of the study, the model proved to 
be effective in predicting GY. Depending on the agro-climatic 
zone, the R2 values ranged from 0.68 to 0.79, with RMSEs of 
366 and 380 kg ha-1 and nRMSEs of 12.0 to 13.0%, respectively, 
very close to those obtained in the present study. The authors 
concluded that there is a strong correlation between TDVI and 
soil moisture measurements, with R2 values ranging from 0.61 
to 0.83, as well as adequate agreement with the spatial pattern 
of soil moisture, which explains the good performance of the 
model.

Maimaitijiang et al. (2020) evaluated the joint use of RGB, 
multispectral, and thermal sensors embedded in RPAs to 
estimate soybean grain yield using artificial neural networks. 
The authors concluded that the most accurate GY estimate 
(R2 = 0.72; RMSE = 478.9 kg ha-1; nRMSE = 15.9%) was 
obtained with the combined use of all the sensors evaluated. 
However, it is noteworthy that they also obtained adequate 
accuracy (R2 = 0.52; RMSE = 630.5 kg ha-1; nRMSE = 20.9%) 
using only multispectral sensors, confirming the results 
obtained in the present study.

Figure 5 shows the spatial variability of the GY generated 
with the EVI-2, RDVI, EVI, and SAV VIs, with better 
performance in estimating GY in response to the water regimes 
evaluated (WR-50% ETc and WR-100% ETc). The maps show 
considerable similarity to each other for the same water regime. 
The maps of GY at WR = 50% ETc show areas with a greater 
predominance of zones with GY below 1500-2000 kg ha-1, while 
under WR = 100% ETc, the areas with greater predominance 
of GY are above 2000-2500 kg ha-1 (Figure 5).

The level of soil water availability for plants directly affects 
soybean grain yield. Gava et al. (2015) found that imposing 
a water deficit of 70% ETc throughout the growing season 
reduced the growth and quality of grains per plant, lowering 
grain yield. According to Vivan et al. (2013), grain yield 
increases with the application of the ideal irrigation depth 
required by the crop. The irrigation depth with full ETc 
replacement was 511.9 mm (Table 2). Studies indicate that, 
depending on the soil conditions, climate, sowing date and 
cultivar, soybean requires an irrigation depth of 450 to 850 
mm during the growing season to achieve maximum grain 
yield (Allen et al., 1998). 

Distribution of the prediction errors of the soybean 
GY estimation models showed spatial clustering patterns 
at different levels as a function of the water regimes and N 
levels applied to the soil (Table 5 and Figure 6). Moran’s I 
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A. B.

C. D.

Figure 4. Linear regression between cv. BRS-8980 soybean grain yield values measured in the field (GY-Obs.) and estimated by 
linear regression models (GY-Est.) generated with the vegetation indices (VIs) extracted from the validation dataset

Significance levels according to the t-test: *** - p ≤ 0.001; ** ** - p ≤ 0.01; * - p ≤ 0.05; ns - Not significant. RMSE - Root mean square error; nRMSE - normalized root mean square 
error and n - Number of data pairs (50% ETc - gray circles; 100% ETc - orange circles)

 Continues on the next page

values range from -1 to 1, showing negative to positive spatial 
autocorrelation, respectively, with values close to zero and 
significant, indicating spatial randomness, where greater 
randomness indicates better regression model performance 
(Maimaitijiang et al., 2020).

The soybean GY prediction models based on EVI-2 
provided the smallest average prediction errors (RMSE and 

nRMSE), ranging from 149.68 kg ha-1 (nRMSE = 8.31%) 
(N0) to 173.96 kg ha-1 (nRMSE = 10.24%) (N1) (Table 5). The 
better performance and spatial randomness of these models 
in predicting GY (Figure 6) occurs because they use the bands 
in the NIR, red, and red-edge regions to express the spectral 
response of soybean to the spatial variability of the water 
regimes and soil N levels (Christenson et al., 2016).
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Continuation of Figure 5

 Figure 5. Yield maps of soybean cv. BRS-8980, generated with the promising vegetation indices (VIs), in response to the water 
regimes evaluated (50 and 100% ETc)

Table 5. Spatial autocorrelation metrics (Global Moran’s I, RMSE and nRMSE) obtained with the regression models for estimating 
the GY of cv. BRS-8980 with promising vegetation indices (VIs) in response to the N levels evaluated

# For description of IV see Tabel 3. Moran’s I: Global Moran’s spatial correlation index (Eq. 5); RMSE - Root mean square error (kg ha-1) (Eq. 3); nRMSE - Normalized root mean 
square error (kg ha-1) (Eq. 4); Q1 - Lower quartile; Med - Mean; Q3 - Upper quartile; Pseudo p-values: *** - p ≤ 0.001; ** - p ≤ 0.01; * - p ≤ 0.05; o - p ≤ 0.1; ns - Not significant

The global Moran’s index values obtained for the GY 
prediction model generated with the EVI-2 VI were low and 
statistically significant for all N levels, ranging from -0.01449, 
for N0 (p ≤ 0.001) and N1 (p ≤ 0.05) separately, to -0.00719 
(p ≤ 0.05), for all N levels (Table 5 and Figure 6). This indicates 
that the model generated a low spatial clustering pattern for GY 
prediction errors, that is, high model randomness (Figure 6).

However, the values of the global Moran’s index obtained 
for the EVI and SAVI models only indicated high randomness 
in the prediction of soybean GY with and without N 
supplementation, respectively, and should not be used, given 
the limitation of the models for this specific condition. For 
prediction models based on the RDVI, there was no spatial 
randomness for any of the conditions evaluated (Table 5). The 
models should be able to express the GY prediction randomness 
of different soybean cultivars in any environmental condition 
(Li et al., 2014).

In a study of soybean grain yield prediction based on 
the aerial images of RGB, multispectral and thermal sensors 
associated with different deep learning network methods, 

Maimaitijiang et al. (2020) found Moran’s I values in relation 
to grain yield model prediction errors ranging from 0.028 to 
0.144 (p ≤ 0.001) when using the ‘inverse distance’ clustering 
method, and 0.045 to 0.153 (p ≤ 0.001) with the ‘contiguity 
edges’ method. They concluded that the fusion of all imaging 
strategies led to the weakest clustering pattern of prediction 
errors of all regression models evaluated, indicating that 
the joint adoption of all multimodal data can improve the 
adaptability of the model in space by weakening the spatial 
clustering of prediction errors.

Evaluation of the grain yield prediction model based on 
EVI-2 indicated that the lowest local Moran’s index values 
(≤ 0.005), with significant pseudo-p-values (p ≤ 0.05), 
were observed equally in the subplots with and without N 
supplementation, with 35 and 33 subplots, respectively. The 
evaluation of all subplots (N0 and N1) revealed that the lowest 
local Moran’s I (≤ 0.005) were observed in 78 subplots, 61 of 
which had pseudo-p-values less than 5% (p ≤ 0.05), indicating 
high spatial randomness of the soybean grain yield prediction 
model (Figure 6). 
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Maimaitijiang et al. (2020) found a better spatial 
distribution pattern of the residuals of the soybean grain yield 
prediction models, with values ranging from 50 to 400 kg ha-1, 
with the joint use of RGB, multispectral, and thermal sensors 
embedded in the UAV under study to estimate grain yield 
using artificial neural networks. The authors attributed this 
superior performance to better efficacy and high randomness 
in spatial correlation, represented by the low Moran’s I values 
of these prediction models.

The spatial pattern of grain yield variability is conditioned 
by spatial factors (soil properties, irrigation management, and 
crop practices), temporal factors (soil pathogens, diseases, 
and crop production problems) (Peralta et al., 2016), and 
the cultivars studies (Haghighattalab et al., 2017). Thus, the 
importance of evaluating spatial autocorrelation in studies 
proposing prediction models for soybean GY is due to the 
risk of inaccurate estimates, distorted variance or, more 
importantly, erroneous conclusions (Peralta et al., 2016).

The superior performance of the soybean GY prediction 
models may also be related to the development stage of the 
cultivar used to generate the GY prediction models. In this 
study, aerial images obtained at the R5 stage were used to create 
the GY prediction models. Several studies have shown that 
the ideal stage of soybean development for predicting grain 

Figure 6. Local Moran’s spatial autocorrelation index (I) and pseudo-p-values for the grain yield of soybean cv. BRS-8980, 
generated with the promising vegetation index - (EVI-2), in response to the N levels evaluated (with - N1 and without - N0 
supplementation)

yield is between flowering and initial grain filling (stages R2 
to R5) (Gao et al., 2018). In particular, the initial stage of grain 
filling (R5) was considered the best for predicting grain yield 
(Zhang et al., 2019).

Conclusion

The soybean grain yield prediction model based on EVI-2 
exhibits high spatial randomness, for all evaluated treatments, 
and smaller prediction errors of 149.68 kg ha-1 (without N 
supplementation) and 173.96 kg ha-1 (with N supplementation).
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