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Abstract

The aim of data mining is to find useful knowledge out of databases. In order to extract such knowledge, several
methods can be used, among them machine learning (ML) algorithms. In this work we focus on ML algorithms that
express the extracted knowledge in a symbolic form, such as rules. This representation may allow us to “explain” the
data. Rule learning algorithms are mainly designed to induce classification rules that can predict new cases with high
accuracy. However, these sorts of rules generally express common sense knowledge, resulting in many interesting
and useful rules not being discovered. Furthermore, the domain independent biases, especially those related to the
language used to express the induced knowledge, could induce rules that are difficult to understand. Exceptions
might be used in order to overcome these drawbacks. Exceptions are defined as rules that contradict common
beliefs. This kind of rule can play an important role in the process of understanding the underlying data as well as in
making critical decisions. By contradicting the user’s common beliefs, exceptions are bound to be interesting. This
work proposes a method to find exceptions. In order to illustrate the potential of our approach, we apply the method in
a real world data set to discover rules and exceptions in the HIV virus protein cleavage process. A good
understanding of the process that generates this data plays an important role in the research of cleavage inhibitors.
We believe that the proposed approach may help the domain expert to further understand this process.
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Introduction

The convergence of computing and communication

has changed scientific research almost beyond recognition.

For instance, in the study of biological processes, espe-

cially genetics and molecular biology, high volumes of data

have been produced. The sequencing of the human genome

and that of other organisms is just one element of an emerg-

ing trend in the life sciences. While the knowledge, experi-

ence, and insight of researchers remains indispensable, the

understanding of life processes is increasingly a data-

driven enterprise. Thus, it is necessary to develop sophisti-

cated methods to analyse such data.

Several methods can be used to analyse the collected

data, among them, methods based on mathematical and sta-

tistical modelling and Machine Learning (ML). Common

to all these methods is a frequent focus on prediction, i.e.,

forecasting what will happen in new situations from data

that describe what happened in the past. However, we are

often interested in methods that, in addition to forecasting,

can be used for data explanation and understanding.

Symbolic machine learning can be regarded as the ac-

quisition of structural descriptions from examples. These

descriptions should support explanation and understanding

as well as prediction. In our view, insights that might be

gained by the user are of major interest in the majority of

practical machine learning applications. Indeed, this is one

of the symbolic machine learning’s major advantages over

other methods.

In spite of successful machine learning applications

reported in the machine learning and data mining literature,

some of them highly correlated to specific biological fields,

such as medicine (Lavrac et al., 1997) and molecular biol-

ogy (Cootes et al., 2003), the discovered knowledge is sel-

dom communicable on the application’s domain (Dzeroski

and Langley, 2001). This is mainly due to the fact that ma-

chine learning and data mining framework employ

formalisms developed by artificial intelligence researchers,

such as decision trees and sets of rules. Although such

methods can produce highly accurate predictive models,

their output representation is not necessarily presented in

terms that are familiar to domain experts.
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Furthermore, since life is an evolutionary process, the

underlying processes that generate the data are often a mov-

ing target. In this scenario, the currently accepted models

are often based on general rules to create a big picture and

exceptions to explain uncharacterised situations. More-

over, in life sciences in general and in genetics and molecu-

lar biology in particular, rare objects are of the most

interest. This is to say that, although general theories form

the core of knowledge in such areas, researchers are often

interested in identifying truly unknown exceptions. As a

matter of fact, it is almost impossible to come up with mod-

els that explain the data without taking into consideration

their possible exceptions.

All things considered, in order to popularise the em-

ployment of machine learning methods in such domains, it

would be interesting not only to employ machine learning

methods in the yet unexplained data but also to adapt these

methods in order to make them as close as possible to the

current representation of accepted theories. In this work,

we present an approach that aims to frame the acquired

knowledge in such a way to increase its acceptance and uti-

lization. Its main characteristic is to incorporate exceptions

into the representation used by machine learning algo-

rithms.

This work is organized as follows: Material and

Methods presents our proposed approach to discover

knowledge, highlighting its main component: exceptions.

Case Study presents the HIV protease cleavage case study

and results obtained using the standard as well as the pro-

posed approach to extract knowledge from this data using

machine learning algorithms. Although this is an inten-

sively studied problem, often employing sophisticated

models, we believe that our approach might contribute to

the understanding of viral protease function in general,

thereby leading to a better understanding of protease fami-

lies and their substrate characteristics. Finally, Discussion

presents some concluding remarks and discussion.

Material and Methods

Exceptions

In this work, we are interested in symbolic ML algo-

rithms that induce rules1 from a data set D, which consists

of a set of n instances described by m distinctive attributes

X1, X2, ..., Xm. The rules induced from such a data set are tar-

geted at a specific attribute, often named class attribute,

which can assume one of k possible distinct values, named

labels or classes.

The aim of the set of rules induced by the learning al-

gorithm is to classify any new instance that has an unknown

class value in one of the k possible classes. We focus on

symbolic algorithms because the user normally wants to

know both the unknown class of an instance and how the

other attributes are related to the target attribute. Thus, we

do not consider neural networks or other kinds of ‘‘black

box classifiers, as they are not capable of explicitly express-

ing knowledge in a symbolic manner. The set of rules Rj,

j = 1, ..., p, induced by symbolic algorithms are generally in

the format

R: if <condition> then <class = Ci>.

The if <condition> is also called Body or B and

<class = Ci> is also called Head or H. Hereafter, to refer to a

rule, we will use the notation Body → Head or, in brief,

B → H. For rule learning algorithms that have the same rep-

resentational power as propositional logic, each condition

is a disjoint of restrictions among the attributes, such as Xi

op value, where op can be any operator from the set {=, <,

>, ≤, ≥, ∈} and Ci is one of the k possible classes.

Classical rule learning algorithms are mainly devel-

oped to induce sets of rules for classification or prediction

tasks whose aim is to predict or classify new instances with

as high accuracy as possible. In other words, these algo-

rithms try to induce rules with high accuracy and support,

so that these rules are gathered in a final set of rules, called

classifiers, able to predict the class of new instances with

high accuracy. Although this approach produces consistent

classifiers, some of the induced rules may be either trivial

or difficult to understand by humans.

The straightforward way to discover novel knowl-

edge is to individually evaluate the rules that constitute the

classifier, filtering the whole set of rules in order to select

those most interesting, according to some objective or sub-

jective criteria (Freitas, 1999). Since these rules are mainly

induced by focusing on the classification accuracy bias,

they generally express common sense knowledge (i.e., they

are common sense or general rules). Even though general

rules are consistent with the experts’ expectations, in some

activities is interesting to find out other kinds of rules be-

sides the general ones.

Another important issue is how we interpret and un-

derstand the induced rules. ML algorithms can induce both

disjointed and overlaid rules. Furthermore, overlaid rules

can be either ordered (decision lists) or unordered (inde-

pendent rules). From a knowledge discovery point of view,

rules in a decision list are difficult to understand by the do-

main expert, since they are meaningful only in the context

of all the preceding rules. Alternatively, disjointed and un-

ordered rules can be individually interpreted. Nevertheless,

the rules presented in these sets of rules are uncorrelated

with each other. In many Data Mining (DM) applications,

establishing a type of relationship among those rules can
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1 Some symbolic ML algorithms also induce Decision Trees. As we can always rewrite a decision tree as a set of rules, from now on

the term rule represents either a rule directly induced by a ML algorithm or the one obtained by rewriting a branch of a decision tree

as a rule.



play an important role in obtaining a good overall under-

standing of the underlying relationships in the domain.

In our view, the construction of classifiers where the

main emphasis lies on the classifier’s accuracy fails to re-

flect the way humans construct and express hypothesis. Al-

though the classifier’s accuracy is an important issue, it is

important to note that at the knowledge discovery level, and

in some practical applications, the direct application of

learning algorithms strongly based on accuracy bias is al-

most worthless, since it fails in the search for novelty pat-

terns and/or expressing the discovered knowledge closer

than humans do (Dzeroski and Langley, 2001).

From a knowledge representation point of view, one

of the main features of rules is that they tend to have excep-

tions (Kivinen et al., 1994). If we could represent the in-

duced rules in this manner, they would be more intuitive for

humans, since humans generally talk about knowledge in

terms of general patterns and special cases. For instance, in

medical applications, physicians generally say that people

with certain characteristics tend to have a particular dis-

ease; however, in some special situations, they may not de-

velop the disease. Thus, more realistic rules are of the form

‘if P then u unless Q’. To represent such a rule we can re-

fine common sense rules by adding exceptions.

Intuitively, exceptions contradict a general or com-

mon sense rule. A common sense rule represents a common

phenomenon that comes with high support and confidence

in a particular domain. Therefore, exceptions to the rules

are weak in terms of support, but have confidence similar to

the common sense rules (Hussain et al., 2000). Support is a

measure related to the relative frequency of the instances

covered by a rule and confidence is related to its accuracy.

In this work, we use the exception concept given in

(Hussain et al., 2000), which structurally defines exception

as shown in Table 1, where the term B’ also represents a

non-empty set of conjunctions of restrictions among the at-

tributes. For instance, if we have the common sense rule “if

a gene X and gene Y are expressed, then the cellular cycle

halts”, we could have an exception such as “if a gene X and

gene Y are expressed, but a gene Z is also expressed, then

the cellular cycle does not halt”. In this case, the rule “a

gene Z is expressed” represents the reference rule, which

explains the exception. Reference rules should have low

support and low confidence and they are difficult do dis-

cover.

Exceptions help to solve the understandability prob-

lem. A set of isolated rules is not intuitive to the domain ex-

pert, since these rules fragment the knowledge; sets of rules

expressed in this manner are generally difficult to read and

understand because the domain expert cannot see any rela-

tionship among the rules. The induced rules have the prop-

erty that most of the examples are covered by the high-level

(general) rules. Lower-level (reference) rules represent ex-

ceptions. Once the knowledge is represented in this way,

the domain expert can either get a good feeling for what the

rules mean by ignoring all the deeper structures and looking

only at the first levels or focus his/her attention on some

specific points that are unexpected and interesting. It is

worth noting that exceptions have the same representation

power and logical constraints as production rules. Thus, it

is possible not only to represent the concept in an easy-to-

understand way but also apply all the available formalisms,

such as evaluation metrics.

A related problem is the discovery of interesting or

useful rules. The quest for a simple set of rules of existing

classification systems2 results in many interesting and use-

ful rules not being discovered. By contradicting the com-

mon sense rules, exceptions are generally more interesting

and useful to the users. For instance, an exception can play

an important role in a cell process regulation. If the biolo-

gist recognizes this role as an exception, he or she could

better understand the related process.

Another problem is the one concerned with the static

models generated by machine learning algorithms. As

some processes are not static (i.e., they may change with

time) or new data may be acquired, it is interesting to have a

model that could evolve without reengineering. Aside from

that, people generally cope with the acquisition and mainte-

nance of complex knowledge structures by making incre-

mental changes to them within a well-defined context such

that the effect of changes is locally contained in a well-

defined manner (Gaines and Compton, 1995). Standard

production rule systems do not have this property. The

modularity of the rules themselves is not reflected in the

modularity of the consequences of changes in these rules.

Small changes can lead, through complex interactions, to

major effects, making the development and maintenance of

rule-based systems far more difficult than it appears at first.

Proposed approach

This section describes a new method to find excep-

tions from general classification rules. This method is

mainly based in the following three key principles (Prati et

al., 2003):
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Table 1 - Rule structure for exceptions.

B → H general rule

high support, high confidence

B ∧ B’ → ¬ H Exception rule

low support, high confidence

B’ → ¬ H reference rule

low support, low confidence

2 In general, classification systems use the Ockam’s razor advice “prefer the simplest hypothesis consistent with the data”, in order to

choose from multiple consistent hypotheses.



1. A reasonable rule induction algorithm can

summarize data and learn rules;

2. This algorithm has biases that favour the in-

duction of rules with high support;

3. Exceptions should have low support in the

whole data set; otherwise, they would be a common sense

rule.

These three principles make the direct induction of

exceptions by traditional ML algorithms difficult. The di-

rect extraction of exceptions from a data set is not a trivial

task since ML algorithms biases favour the induction of

general rules. Although we may relax these biases in order

to induce rules with lower support, there is a high chance

that the knowledge would be fragmented among the in-

duced rules. All things considered, our proposed approach

is divided in the following two steps:

Step 1 - induction of common sense rules

In this step we use a traditional rule learning algo-

rithm in order to induce general classification rules. As we

are mainly interested in the induction of general rules, its

main objective is to avoid the induction of highly special-

ized rules. This can be achieved by properly configuring the

parameters of the learning algorithm.

Normally, a user can stop here for his/her preliminary

data mining probing. The user can also apply a filtering step

in order to select the most interesting rules. In our approach

we also apply a filtering stage, but with the intent of finding

and focusing on some rules to be further treated in the next

step.

Step 2 - looking for exceptions

In this step we focus on rules that are general (cover

several examples) but also have high misclassification rates

in order to search for possible exceptions. After identifying

such rules, the search for reference rules that might be ex-

ceptions is initiated. For each of these rules, and only using

the subset of instances that are misclassified by that rule, we

look for associations with attribute instances and the nega-

tive(s) class(es)3 foreseen by the rule. If those associations

have minimum support and confidence values in the subset

of instances, they represent a reference rule and the pair of

rules (general rule, reference rule) representing one excep-

tion. It is worth noting that, although reference rules have

high support in the subset of instances used to look for ex-

ceptions, they probably have small support in the whole

data set.

A major advantage regarding our approach is that be-

sides extracting exceptions out of general classification

rules, it also preserves the locality concept of exceptions.

This offers a powerful mechanism of expressing knowl-

edge. Another point is that the model is not static, since in-

cremental modifications can be made to a set of rules by

adding exceptions to existing rules rather than by

reengineering the entire set (Gaines and Compton, 1995).

Case Study

The biological problem

Intact HIV (Human Immunodeficiency Virus) virions

are endocytosed (inserted into a cell) via specific cellular

receptors on human cells. For ‘retroviruses’, a single

stranded RNA sequence (typically between 8-12 kilobases

and containing at least 9 genes, including genes for produc-

ing core protein precursors (gag), envelope proteins (env)

and pol (reverse transcriptase, integrase and protease)) is

then transcribed by one of the enzymes accompanying the

RNA sequence into double stranded DNA (by the reverse

transcriptase enzyme) and integrated with the host genome

(by the integrase enzyme). The DNA provirus (originally

reverse transcribed from RNA or single stranded DNA, or

simply the original double stranded inserted viral DNA),

when expressed, is transcribed into messenger RNA

(mRNA) and translated into a protein chain (viral

polyproteins), giving rise to new viral molecules which

then reassemble to form complete virions that are then re-

leased for the infection of further cells.

Viral protease is the third enzyme typically accompa-

nying viral DNA or RNA into the cell, although protease

can also self-cleave itself naturally from the viral

polyprotein if it is not introduced through endocytosis. It

cleaves the precursor viral polyproteins (the substrate) at

specific cleavage-recognition sites when they emerge from

the ribosome of the host cell as one long sequence. This

cleavage step is essential in the final maturation step of

HIV. That is, protease is responsible for the post-translation

processing of the viral gag and gag-pol polyproteins to

yield the structural proteins and enzymes of the virus for

further infection (Figure 1). If viral protease action can be

inhibited by drugs so that such cleavage-recognition sites

cannot be identified, viral replication can be stopped.

Results

In order to illustrate the potential of our approach, we

chose a real world data set4 related to where a viral protease

cleaves HIV viral polyprotein amino acid residues. This

data set is also used by (Narayanan et al., 2002, Cai and

Chou, 1998). Table 2 summarizes this data set.

Each instance of the HIV data set consists of eight at-

tributes that represent a recognition sequence followed by

its class, related to its cleavage-ability. In turn, each attrib-

ute on the recognition sequence represents one amino acid.

The attributes on the recognition sequence are sequentially

ordered, i.e., the first attribute refers to position one in the

640 Prati et al.

3 In the case of more than two classes, the set of classes not foreseen by H are the negative classes H.

4 Available at http://www.dcs.ex.ac.uk/~anarayan/ismbdatasets/



sequence, the second attribute to position two, and so forth.

The size of the recognition sequence is the same as the size

of the viral protease. When one of the recognition se-

quences matches its counterpart in the viral protease, the

cleavage occurs between positions 4 and 5 of the recogni-

tion site. Whenever it does not match, the cleavage does not

occur.

To avoid a possibility of exceptions over-fitting the

data, we repeated the experiment three times using different

training and testing samples; the data set was divided into

three different disjoint subsets, and in each experiment two

subsets were used for training and the other one for testing

(3-fold cross-validation).

To apply the first step of the proposed methodology,

we used the See5 program, which induces symbolic deci-

sion trees. To generate smaller trees, the option of generat-

ing nodes having subsets of possible values for conditions

rather than individual values was set up. The overall error

rate achieved by See5 is 14.63% with an standard deviation

of 5.95%. Using our proposed approach, the error rate is es-

timated at 13.53% with a standard deviation of 6.24%. This

result is significantly better with a 95% confidence level,

using a paired t-test to assess significance. Regarding sensi-

tivity (true positive rate) our approach also outperforms See

5 with a 95% confidence level. The sensitivity achieved by

See5 is 85.09% with a 7.60% standard deviation while our

approach achieved 93.86% sensitivity with a 4.02% stan-

dard deviation.

As the transcription of the decision trees into rules

produced a small number of rules, we decided to apply the

second step to all the rules. In the second step, each rule se-

lected in the first step defines a subset of instances where

we need to look for exceptions. As stated before, this subset

contains all the instances that are covered by a rule but do

not have the same class as the one foreseen by the rule. In

order to look for possible reference rules, we applied the as-

sociation rule-mining algorithm APRIORI (Agrawal et al.,

1993). We only select as possible reference rules the ones

that present a support value of at least 0.5. Furthermore, if

the possible reference rule appears at least twice in all the

conducted experiments, we assume it is a reference rule and

the pair (general rule, reference rule) as a true exception.

Table 3 shows the final hypothesis found by our pro-

posed approach. In this hypothesis we have an exception to

the rule R1. Without the exception, this rule covered 229 in-

stances in the whole data set, where 17 of them were mis-

takenly covered. When we added the exception, 10 of these

17 examples were correctly covered.

The induced rules confirm the importance on the

cleavage process of the amino acids in positions 4 and 5 of

the substrate. This point is the one where the linkage of the

catalytic process occurs in order to cleave the substrate

(scissile linkage). The generated exception also shows the

importance of the position 6 in this process, which does not

appear in the rules directly induced by the ML algorithm 4.

The importance of position 6 in this process is also related

in (Narayanan et al., 2002).

In order to compare our proposed approach to a tradi-

tional ML algorithm, we also apply the See5 (rules) pro-

gram, with default parameters, to the whole data set. Table

4 shows the rule set induced by See5 (rules) on the data set.

The numbers in parentheses at the end of each rule repre-

sent, respectively, the number of instances correctly and in-

correctly covered by the rule. The overall misclassification

rate, assessed using the 3-fold cross validation technique, is
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Figure 1 - When the HIV viral polyprotein emerges from the CD4+T

cell’s ribosome (a), potential recognition sites (amino acid sequences of

length 8) become available to the viral protease for cleavage. If a binding

site is found, the protease cleaves the polyprotein (b) after locking on to

the polyprotein (substrate) and cutting (c) at the active site. Protease inhib-

itors (d) are a relatively new form of anti-viral agent, which, through com-

petitive inhibition, prevents the protease from further functioning

(Narayanan et al., 2002).

Table 2 - Data set description.

#attributes #instances unknown values classes

8 (nominal) 362 no 0 - non-cleavage (68.51%)

1 - cleavage (31.49%)

Table 3 - Final hypothesis found using our proposed approach.

R1 if pos4 ∈ {A,R,N,D,C,Q,E,G,H,I,K,P,S,T,W,V}

then non-cleavage

exception: if pos6 = E then cleavage

R2 if pos4 ∈ {L,M,F,Y} and pos5 ∈ {A,R,E,G,H,I,L,M,F,P,T,

W,Y,V}

then cleavage

R3 if pos4 ∈ {L,M,F,Y} and pos5 ∈ {N,D,C,Q,K,S}

then non-cleavage



14.08% with a standard deviation of 6.43%. In this case, al-

though the nominal rate is slightly better, our approach does

not outperform See5 with a 95% confidence level. As can

be observed, a domain expert is barely able to have an over-

all understanding of the related data.

We also tried to find the exception using only a tradi-

tional ML algorithm (in this case, we used again the See5

algorithm, without setting up the option that generates sub-

sets of values in the nodes). To this end, we stepwise re-

laxed the pruning confidence factor by 5% until the

attribute position 6 appeared in the induced tree (we step-

wise relaxed this value from 25% (default) to 60%). The re-

sult is an induced decision tree with 55 leave nodes that can

be translated into 55 rules. In two of these 55 rules, the dis-

joint if pos6 = E appears. However, in these cases, we can-

not see the relationship between the generated rules and the

exception.

Discussion

HIV protease is one of the most studied processes in

an effort to develop drugs against AIDS (Acquired Immune

Deficiency Syndrome) infection (Wlodawer and

Vondrasek, 1998). Although an understanding of the HIV

lifecycle indicates that inhibition of HIV protease could

lead to a treatment of HIV infections, the creation of HIV

protease inhibitors requires a detailed understanding of the

molecules involved and their interactions.

However, studies on protease inhibitors are mainly

carried out ‘‘ad-hoc, generally focusing only on some HIV

variations and developing complex computer models or

analysing crystallized forms of proteases using X-rays.

These processes are both costly and time consuming. Be-

sides, it is also known that proteases seem to be able to

evolve in response to virus mutations (Narayanan et al.,

2002). Some HIV protease inhibitors (e.g., Saquinivir,

Ritonavir, and Indinavir) have been produced and are cur-

rently on the market. These drugs have been proven suc-

cessful in treating HIV infection (Wlodawer and

Vondrasek, 1998), although serious side effects (the virus

life cycle is intertwined with the cell life cycle) and the de-

velopment of resistance are still major unsolved problems

(Wlodawer and Vondrasek, 1998). In this sense, due to the

high degree of viral mutation, it is generally accepted that

protease inhibitors may have to “co-evolve” with their pro-

tease targets.

However, even though there are more than 150 cleav-

age proteins deposited at the Protein Data Bank (PDB),

there is still little understanding of how viral polyproteins

are cut into their functional units. Moreover, it is clear that

the structures provided only a small fragment of informa-

tion necessary for drug design (Wlodawer and Vondrasek,

1998). Thus, the challenge is to investigate whether it is

possible to generalise from known cleavage sites to un-

known ones. A general understanding of viral protease

specificity may help the development of future anti-viral

drugs involving protease inhibitors by identifying specific

features of protease activity for further experimental inves-

tigation.

We believe that the approach proposed in this work to

find exceptions out of general rules is especially suitable

for such analysis. It allows a more compact and easy to un-

derstand model description, helping the domain expert to

understand the underlying process. While the general in-

duced rules are related to the biological process, as is al-

ready known that phenylalanine(F), tryptophan(W) or

tyrosine(Y) are generally present on either side of the

cleavage point in the substrate (Pettit et al., 1991) and R2

capture this pattern, the exception found - also, it is well

know that carboxylic acids, such as Glutamic (E) preset in

the found exception, have a fundamental role in the forma-

tion of peptide bonds which link amino acids together to

form the backbone of the protein (Landis et al., 2004) - can

provide some insights to help the domain expert to under-

stand the underlying data.

A natural extension of this work is the analysis and

validation of the generated rules by domain experts. To this

end, the results reported here could be used as a compass

needle for future laboratorial experiments, which would

take into account patterns of residuals instead of focusing
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Table 4 - Hypothesis found using See5 (Rules) program.

R1 if pos4 = T then class non-cleavage (16/0)

R2 if pos5 = C then class non-cleavage (15/0)

R3 if pos5 = K then class non-cleavage (15/0)

R4 if pos4 = K then class non-cleavage (14/0)

R5 if pos4 = R then class non-cleavage (14/0)

R6 if pos5 = D then class non-cleavage (13/0)

R7 if pos4 = V then class non-cleavage (13/0)

R8 if pos4 = S then class non-cleavage (26/1)

R9 if pos5 = S then class non-cleavage (25/1)

R10 if pos4 = Q then class non-cleavage (10/0)

R11 if pos5 = Q then class non-cleavage (10/0)

R12 if pos4 = I then class non-cleavage (9/0)

R13 if pos4 = P then class non-cleavage (7/0)

R14 if pos4 = C then class non-cleavage (16/1)

R15 if pos4 = W then class non-cleavage (6/0)

R16 if pos4 = D then class non-cleavage (12/1)

R17 if pos4 = H then class non-cleavage (5/0)

R18 if pos4 = A then class non-cleavage (27/4)

R19 if pos4 = N then class non-cleavage (29/5)

R20 if pos4 = F then class cleavage (35/5)

R21 if pos5 = F then class cleavage (23/5)

R22 if pos4 = L then class cleavage (38/9)

R23 if pos4 = Y then class cleavage (49/16)

Default class 0



only on some HIV variations. Finally, it is worth noting that

the model built in this work is somewhat simplistic, since it

neither explores possible relations between two (or more)

positions in the substrate nor takes into account the bio-

chemistry and physical properties of the amino acid resi-

dues. It would be interesting to further refine the model by

incorporating such properties as background knowledge

and using learning algorithms that can directly incorporate

such background knowledge and learning first order rules

that can represent relationships. However, due to the expo-

nential search associated with such algorithms, the domain

expert’s help and guidance is of fundamental importance in

order to constrain the search.

We conclude by stating that in this task, like others re-

lated to molecular biology and bioinformatics, the use of

machine learning approaches which are able to provide rel-

evant insights to the domain experts are often more useful

than approaches that only look at classification accuracy.
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