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Abstract

The Human Genome Project has generated a large amount of sequence data. A number of works are currently
concerned with analyzing these data. One of the analyses carried out is the identification of genes’ structures on the
sequences obtained. As such, one can search for particular signals associated with gene expression. Splice
junctions represent a type of signal present on eukaryote genes. Many studies have applied Machine Learning
techniques in the recognition of such regions. However, most of the genetic databases are characterized by the
presence of noisy data, which can affect the performance of the learning techniques. This paper evaluates the
effectiveness of five data pre-processing algorithms in the elimination of noisy instances from two splice junction
recognition datasets. After the pre-processing phase, two learning techniques, Decision Trees and Support Vector
Machines, are employed in the recognition process.
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Introduction

During the last years, sequencing projects have accu-

mulated large volumes of data. For a complete understand-

ing of the genetic mechanisms, several analyses need to be

carried out on these data. One example is the localization of

genes and definition of their structures (Craven and

Shavlik, 1994; Semple, 2000).

Performing this kind of analysis in laboratories is

usually an arduous and costly task. To overcome this prob-

lem, many studies have employed Machine Learning (ML)

techniques in the analysis of sequence data (Lapedes et al.

1989; Lorena et al., 2002; Rampone, 1998; Towell, 1991;

Xu et al., 1994). Machine Learning, a sub area of Artificial

Intelligence, provides several techniques which can extract

concepts (knowledge) from a given dataset (Mitchell,

1997). These techniques are usually applied in the induc-

tion of a hypothesis, also known as a classifier or predictor,

through a process called training.

When using genetic datasets, some aspects may influ-

ence the performance achieved by ML techniques. Due to

the imprecise nature of biological experiments, redundant

and noisy samples can be present at a high rate. Noisy pat-

terns can corrupt the generated classifier and should be re-

moved (Lavrac and Gamberger, 2001; Lorena et al., 2002).

Redundant and similar samples can also be eliminated

without harming the concept induction and may even im-

prove it.

Several algorithms have been proposed to reduce the

number of exemplars from a given dataset (Tomek, 1976;

Wilson, 1972; Wilson and Martinez, 1997; Wilson and

Martinez, 2000). These reduction techniques are based on

heuristics defined to stimulate the removal of patterns of

low significance present in the dataset. This paper presents

an empirical evaluation of five dataset reduction techniques

in the pre-processing of two datasets. The task is the identi-

fication of splice sites on DNA sequences, a problem that is

part of eukaryote gene structure identification.

After the pre-processing phase, Decision Trees (DTs)

(Quinlan, 1986) and Support Vector Machines (SVMs)

(Cristianini and Shawe-Taylor, 2000) will be trained using

the original dataset and also the different sets of pre-

processed data for the recognition task. By evaluating the

difference in performance among classifiers generated over

original (without pre-processing) and pre-processed data,

the power of the reduction techniques in maintaining the

most important patterns can then be estimated.

This work is organized as follows: next section gives

an overview of some Molecular Biology concepts, neces-

sary for the understanding of the splice site recognition
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problem, which is described on Splice Junction Recogni-

tion. Materials and Methods presents the materials and

methods employed in this work. Results and Discussion

presents the experiments conducted and the results

achieved. Conclusion concludes this paper.

Molecular Biology

Molecular Biology is a field of research concerned

with the study of cells and molecules, the basic blocks of all

living beings. In particular, it studies the genomes of organ-

isms, defined as their set of genetic information. This infor-

mation is coded on genes along DNA (Deoxyribonucleic

Acid) molecules.

The DNA molecule is composed of sequences of nu-

cleotides, of which there are four types: Adenine (A), Cyto-

sine (C), Guanine (G) and Thymine (T). A single DNA

molecule typically has thousands of genes. From the infor-

mation coded in the nucleotide composition of a gene, pro-

teins, essential components of living beings, are produced.

This is accomplished by a process called gene expression.

The gene expression, illustrated on Figure 1, is com-

posed of two stages: transcription and translation. In tran-

scription, a mRNA (messenger Ribonucleic Acid) is

produced from a DNA strand. The mRNA is similar to

DNA. It is also composed of nucleotides, except for an Ura-

cil (U) in the place of the Thymine. In the translation stage,

the mRNA molecule codes for the final protein.

The understanding of the formation and distribution

of the gene sequences is an important source of knowledge.

Several areas can benefit from studies of these structures,

such as medicine, pharmacology and agriculture. They can

provide, for example, insights for the development of new

drugs and treatments for diseases like cancer. The next sec-

tion describes one particular characteristic of eukaryote

DNA, the presence of splice sites.

Splice Junction Recognition

There are some differences in the basics steps of gene

expression between eukaryote and prokaryote organisms.

Eukaryotes (complex beings, like humans) are organisms

whose genetic material is delimited in a nucleus. Pro-

karyote organisms (like bacteria), on the other hand, have

their genetic material dispersed in the cell.

The main difference in expression between these

classes of organisms is the splicing of some regions of the

mRNA before the translation stage in eukaryotes. This

splicing step is a result of the fact that eukaryote genes are

composed of alternate segments of exons and introns.

Exons are regions that code for the final protein. Introns in-

termediate exons and do not code for proteins1. Thus,

introns have to be removed from the mRNA molecule,

which is accomplished in the splicing step, illustrated in

Figure 2.

Splice junctions are the boundary points where splic-

ing occurs. The splice junction recognition problem then

involves identifying if a sequence of a fixed size has an

intron/exon site (IE), an exon/intron site (EI), or if it does

not have a splice site (N). This task is part of eykaryote gene

structure identification, since the boundary points between

coding and non-coding regions have to be accurately deter-

mined in this process.

Many studies report the successful application of Ma-

chine Learning (ML) techniques in splice junction recogni-

tion. In Towell (1991), an Artificial Neural Network

(ANN) (Haykin, 1999) was employed in this task. Prior

knowledge of the biological domain has been used to ini-

tialize the network. The Statlog Project (Michie, 1994) also

reports the use of various ML techniques for primate splice

site identification. Another study based on ANNs was pro-

posed by Rampone (1998), in which an ANN refined

Boolean formulas inferred from data.

ML techniques have also been successfully applied in

the recognition of other types of signals present on genes,

such as translation initiation sites (Zien et al., 2000; Pe-

dersen et al., 1997) and promoters (Bajic et al., 2002;

Gordon et al., 2003). In Zien et al. (2000), for example,

SVMs were applied to the recognition of translation initia-

tion sites. Prior knowledge was incorporated into the tech-

nique and the results observed were superior to those

obtained by an ANN (Pedersen and Nielsen, 1997) and the

Markovian method of Salzberg (1997).

The following section describes the approach and

techniques employed in this work.

Materials and Methods

This section describes the materials and methods em-

ployed in this work. It starts with a description of the
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Figure 1 - Gene expression process. Figure 2 - Splicing in mRNA molecule.

1 In this paper, the occurrence of alternative splicing is not considered.



datasets used in the experiments conducted. Next, the pre-

processing stage for the elimination of noisy patterns from

these datasets is presented. The learning techniques used in

the final recognition problem (of splice junctions) are then

described. The power of the pre-processing techniques in

maintaining the most important patterns in the datasets will

be evaluated according to the test error rates obtained by the

learning techniques trained over the pre-processed datasets

compared to the test error rates obtained by the same tech-

niques over the original data (without pre-processing).

Datasets

Two datasets consisting of sequences of DNA with

and without splice junctions were considered in this work.

The first one, from primates, was extracted from the UCI

benchmark (Blake, 1998). Although it originally contained

3190 instances, sequences with composition different from

the nucleotides A, T, C and G were removed. This proce-

dure left a total of 3175 instances. The other dataset used in

this work was extracted from HS3D (Homo Sapiens Splice

Sites Dataset), which contains 5947 sequences of human

DNA with known splice sites (IE or EI) and 635,666 se-

quences that do not contain a splice site (false splice sites)

(Polastro and Rampone, 2002). From this data, 5000 exam-

ples were randomly chosen, of which 25% were of the IE

type, 25% of the EI type and 50% of the N type (the same

proportion as the dataset from UCI, as can be seen on Table

1), as a final dataset for performing the experiments. Se-

quences with compositions different from the four DNA

nucleotide types were also ignored for this dataset.

Table 1 summarizes both datasets, showing the total

number of instances (# Instances), the number of continu-

ous and nominal attributes (# Attributes) and the class dis-

tribution (Class%).

Data pre-processing

Biological data is often characterized by the presence

of noisy patterns. This kind of data may originate, for ex-

ample, from errors during biological data collection or er-

rors which occurred in the dataset generation process

(Setubal and Meidanis, 1997). Although many of the ML

techniques can deal with noise, as is the case of the tech-

niques applied in this study, detecting and filtering noisy in-

stances from the training dataset can help the induction of

the target hypothesis (Lavrac and Gamberger, 2001).

This study evaluates the use of five pre-processing

techniques in the elimination of less reliable patterns from

the datasets considered in the preveious section. The first

three techniques are classified in Wilson and Martinez

(2000) as noise-filtering approaches. The two remaining

are dataset reduction techniques, capable of identifying

noise data and also redundant instances.

For a better understanding of the pre-processing tech-

niques used, consider the dataset of Figure 3a. The patterns

in this dataset can be divided into five distinct types:

• Mislabelled cases: instances incorrectly classified

in the database generation process. These cases are noisy

and are represented in Figure 3b;

• Redundant data: instances that can be represented

by others in the dataset. Some examples are presented in

Figure 3c. They form “clusters” in the dataset. It should be

pointed out that at least one of these patterns should be

maintained so that the representativeness of the cluster is

conserved;

• Outliers: instances too distinct when compared to

the other samples present in the dataset. These instances

can be noisy or very particular cases and their influence in

the hypothesis induction should be minimized. Examples

of this case are presented in Figure 3d;

• Borderlines: instances close to the decision border.

These samples are quite unreliable, since even a small

amount of noise could have moved them to the wrong side

of the decision border. Examples are presented in Figure

3e;

• Safe cases: remaining instances (Figure 3f). These

cases should be saved for the learning process.

The objective of the pre-processing phase is to create

a training set consisting of only the safe cases.

As previously mentioned, five pre-processing tech-

niques are investigated in this paper. Descriptions of these

techniques are presented next:

• Edited Nearest Neighbour (ENN) (Wilson, 1972):

according to this technique, an instance is removed from

the dataset if its class is not equal to the class of the majority
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Figure 3 - Dataset example (a); mislabelled instances (b); redundant data

(c); outliers (d); borderlines (e); safe data (f).

Table 1 - Datasets summary description.

Dataset # Instances # Attributes (cont., nom.) Class%

UCI 3175 60 (0,60) IE 25

EI 25

N 50

HS3D 5000 140 (0,140) IE 25

EI 25

N 50



of its k nearest neighbours. This procedure removes

mislabelled data and borderlines;

• Repeated ENN (RENN): in this variation, the ENN

technique is repeatedly applied until all instances in the

dataset have the majority of its neighbours with the same

class. This process enlarges the margin of separation be-

tween classes and smoothes the decision border used to

separate data;

• All-kNN (Tomek, 1976): extension of the ENN that

can be applied in the detection and removal of mislabelled

and borderline data. This technique works in the following

way: for i = 1, ..., k, it signalises as “bad” any instance in-

correctly classified by its k nearest neighbours. After the

loop is complete, it removes the signalized instances;

• Decremental Reduction Optimization Procedure 2

(DROP2) (Wilson and Martinez, 2000): let S and S’ be the

original and pre-processed datasets, respectively. Initially,

S= S’. A list of nearest neighbours is then built for each in-

stance. A list of associates is also constructed. The associ-

ate of a pattern x is defined as a sample that has x as one of

its nearest neighbours. DROP2 eliminates a pattern x from

S’ if the majority of its associates in the original dataset S

are correctly classified without this pattern. It lets the near-

est enemy of a pattern x be the instance of S’ of opposite

class closest to x. The order of checking for removal in

DROP2 is given by the samples furthest from their nearest

enemies. This technique is capable of removing noisy in-

stances, outliers and redundant data;

• DROP4 (Wilson and Martinez, 2000): this tech-

nique is similar to DROP2, but it starts by applying a

noise-filtering pass to the dataset. In this filtering pass, an

instance is removed only if it is incorrectly classified by its

k nearest neighbours (like ENN) and if its removal does not

affect the classification of other instances.

In all techniques described, the computation of the

distance between the patterns was carried out with a metric

employed to measure distance of symbolic attributes called

Value Difference Metric (VDM) (Stanfill and Waltz,

1986). The VDM considers two values similar if they occur

with almost identical relative frequencies for all classes. So

the distance d between two values of a certain symbolic at-

tribute V is defined by Equation 1 (Batista et al., 2000),

where V1 and V2 are two possible values assumed by V, p is

the number of classes in the dataset and C1i is the number of

samples of class i whose attribute V assumed the value V1.

C1 is the total number of samples whose attribute V as-

sumed the value V1 and m is a constant, frequently 1.

d
=1

( , )V V
C

C

C

C

i i

m

i

p

1 2

1

1

2

2

= −∑ (1)

Learning techniques

Several supervised learning algorithms can be used to

induce classifiers from a set of samples. Given a training set

composed of known samples of sequences with and with-

out splice junctions, a learning algorithm must induce a

classifier that should be able to predict the class of any new

sample from the same domain where the learning occurred.

The learning methods used in this paper are Support

Vector Machines (SVMs) (Cristianini and Shawe-Taylor,

2000) and Decision Trees (DTs) (Quilan, 1986). The pre-

dictive error rates of these techniques can be used to obtain

an indication of the effectiveness of the pre-processing

phase, which will be discussed in more details in Results

and Discussion.

SVM is a learning technique based on the Statistical

Learning Theory (Vapnik, 1995). Its main goal is to find a

hyperplane that separates members and non-members of a

class in an abstract space of high dimension, also known as

feature space (Cristianini and Shawe-Taylor, 2000). In this

space, the classes present in the training set become linearly

separable, and the optimal hyperplane is defined as the one

that maximizes the separation margin between the classes.

The migration of the samples to the feature space is per-

formed with the assistance of functions called Kernels. A

Kernel function allows simple access to spaces of high di-

mensions (in some cases infinite), without the necessity of

knowing the form of the mapping function that represents

the data in this space, which usually is very complex. The

main advantages of the SVMs are their precision and ro-

bustness with patterns that have a large number of attributes

(high dimensional), like those found in the splice junction

recognition problem.

DT is a symbolic learning technique (Quilan, 1986).

Its structure is composed of nodes and ramifications. The

nodes represent tests applied to data or classes, when the

node is a leaf. The ramifications are possible results of the

tests. The classification of a new sample is performed fol-

lowing the nodes and ramifications until a leaf is reached.

One of the main advantages of DTs is the comprehensive-

ness of the induced rules. This is an important characteristic

of symbolic ML algorithms, since it allows human interpre-

tation of the induced knowledge. As a disadvantage, one

can mention the poor robustness of the DT to high dimen-

sional data.

Results and Discussion

To obtain better estimates of the predictive perfor-

mance of the learning techniques considered in this work,

the datasets described in Datasets were first divided into

training and test sets following the 10-fold cross-validation

methodology (Mitchell, 1997). According to this method,

the dataset is divided in ten disjoint subsets of approxi-

mately equal size. At each training/test round, nine subsets

are used for training and the remaining one is left for test-

ing. This makes a total of ten pairs of training and test sub-

sets. The error of the classifier on the total dataset is then

given by the average of the errors observed in each test par-

tition.
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The pre-processing procedures described in Data

pre-processing were then applied to the training sets ob-

tained. The source code of the pre-processing techniques

was obtained from ftp://axon.cs.byu.edu/pub/randy/ml/

drop (Wilson and Martinez, 2000). Different values of k,

the number of nearest neighbours in the pre-processing

techniques, were tested. They were: 1, 3, 5, 7 and 9. Table 2

shows the average number of instances eliminated from

each dataset, when a number of k = 3 neighbours, default

value of the pre-processing source code, was used.

It should be observed that the techniques DROP2 and

DROP4 have lead to very large reductions in the datasets.

Although for larger values of k these reduction rates were

smaller, they were still high for k = 9, at around 90% for the

UCI dataset and 80% in the case of the HS3D dataset.

The pre-processing mean time (in seconds) for k = 3

was also calculated and is presented in Table 3. The experi-

ments were conducted on a dual processor of 2.4 GHz and

1 GB of memory. A longer pre-processing time was ob-

served in the case of the techniques DROP2 and DROP4,

which in the end eliminated larger numbers of patterns. Al-

though the pre-processing time presented can be considered

relatively high, especially in the case of the HS3D dataset,

it should be emphasized that the pre-processing stage is ap-

plied only once over the training sets, which can then be

used in the learning phase of any supervised ML technique.

For the conversion of the different pre-processed

datasets generated during the experiments conducted to the

formats demanded by the pre-processing code and of the

ML techniques simulators, routines on the Perl language

were implemented. The determination of the best classifi-

ers and k pre-processing parameter for each dataset was

also made by a routine coded in Perl.

Descriptions and discussions of the results achieved

by the SVMs and DTs classifiers over the pre-processed

and original datasets are presented next.

Support vector machines

The software used for the SVMs induction was the

SVMTorch II (Collobert and Bengio, 2001), a simulator

that works for both classification and regression problems.

SVMTorch II has been specifically tailored for large-scale

problems, like the one investigated in this paper. It must be

pointed out that SVMs can only process attributes with nu-

merical values, so the sequences had to be coded accord-

ingly. As in the work of Zien et al. (2000), canonical

encoding, in which each possible value of a nominal attrib-

ute is represented by a vector of binary values, was used.

The following coding was then applied: A = (0 0 0 1), C = (0

0 1 0), G = (0 1 0 0) and T = (1 0 0 0). This representation

scheme ensures that the distances between different attrib-

ute values are equivalent.

SVMs are originally designed for the solution of bi-

nary problems, i.e., applications with two classes only. In

this study, the extension of SVMs to the multiclass splice

junction recognition problem was performed with the

one-versus-all technique, implemented in SVMTorch II. In

the one-versus-all technique, given p classes, p binary clas-

sifiers are induced, each one responsible for distinguishing

one class from the remaining classes (Cristianini and

Shawe-Taylor, 2000). The classifier with the highest output

value provides the final prediction.

In the experiments conducted, two types of Kernel

functions with different values of parameters were tested.

The functions used were Polynomials of distinct degrees (1

to 5) and Gaussians with varying standard deviation param-

eters (5, 10, 25 and 50). Another important parameter for

SVMs refers to a constant that is related to the way this

technique deals with noise. This constant, usually denoted

by C, imposes a tradeoff in the number of patterns allowed

to be within the maximized margins. The smaller this value,

the smoother is the decision function in relation to noise.

Table 4 presents the best SVM models obtained for

each dataset, as well as the best k parameter for the

pre-processing techniques. The abbreviations G and P refer

to Kernel functions of the Gaussian and Polynomial types,
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Table 3 - Pre-processing average time (in seconds) for a pre-processing parameter k = 3.

Dataset ENN RENN AllKNN DROP2 DROP4

UCI 148.1 ± 1.7 156.0 ± 2.1 80.7 ± 0.1 551.6 ± 7.0 705.3 ± 3.5

HS3D 953.2 ± 3.3 1010.0 ± 4.7 457.0 ± 0.3 1850.0 ± 5.0 2271.7 ± 11.0

Table 4 - Best SVMs models and corresponding pre-processing technique

parameters.

UCI HS3D

k Kernel C k Kernel C

Original - G (5) 25 - G (10) 200

ENN 1 P (4) 25 5 P (2) 25

RENN 3 P (4) 25 1 P (2) 25

AllKNN 3 P(4) 25 1 P (2) 25

DROP2 1 P(2) 25 5 P (2) 25

DROP4 9 G (10) 25 5 P (2) 25

Table 2 - Datasets average reduction with a pre-processing parameter of

k = 3.

Dataset ENN RENN AllKNN DROP2 DROP4

UCI 14.2% 14.7% 15.9% 90.8% 92.2%

HS3D 23.6% 25.0% 36.2% 81.2% 85.0%



respectively. The values of their corresponding parameters

(standard deviation for the Gaussian Kernel and polyno-

mial degree, in the Polynomial Kernel case), are indicated

in parentheses. Table 5 presents the mean error rates (stan-

dard deviation) obtained by the indicated SVM models in

the test partitions generated by the cross-validation proce-

dure. The lowest and next to lowest error rates for each

dataset (UCI and HS3D) are detached in boldface and ital-

ics, respectively.

Applying the t student statistical test (Johnson, 2000)

to the results of Table 5, it can be verified that the applica-

tion of the techniques ENN, RENN and AllKNN main-

tained the error rate verified over the original data for both

datasets, with a confidence level of 95%. Besides this, it can

be observed from Table 4 that the SVMs models obtained

using these pre-processed datasets were also simplified by

a reduction in the complexity of the generated models (by

Gaussian Kernels, that have infinite VC dimension

(Burges, 1998), to Polynomial kernels, that have their com-

plexity controlled by their degree (Burges, 1998; Haykin,

1999)). The DROP2 and DROP4 techniques clearly wors-

ened results were obtained for both datasets. This can be

due to the drastic reductions in the datasets with the appli-

cation of these techniques.

Decision trees

The induction of DTs was carried out using the C4.5

algorithm (Quilan, 1988). Three distinct values of the prun-

ing parameter used by this leaning technique were tested:

0.25, 0.5 and 0.75. Pruning is a procedure employed by DTs

for dealing with noisy data. It prunes ramifications of the

trained tree that have low expressive power according to

some criterion. In this process, whole subtrees are replaced

by leaf nodes. The replacement is made if the expected er-

ror rate in the subtree is larger than in the single leaf. Higher

values of the pruning parameter lead to lower reductions of

the induced tree.

An important characteristic of DTs is their average

size. This information is closely related to the comprehen-

siveness of the tree. Smaller trees can be considered more

comprehensive. Table 6 shows the DTs mean size of the DT

models induced in this work. A large reduction in the size

of the DTs trained with the pre-processed data in relation to

the DTs obtained using the original data also indicates a

simplification of the final model. This reduction is very im-

portant for users, since it allows a better understanding of

the criteria used by the model to generate its decisions. Ta-

ble 6 also shows the best pruning parameter in each case

and best number of nearest neighbours k of the

pre-processing techniques.

Still from Table 6, larger reductions in the mean size

of the trees can be verified when the DROP2 and DROP4

techniques are used, which are related to the larger reduc-

tions of the original datasets obtained by using these tech-

niques. For the ENN, RENN and AllKNN techniques, large

reductions in the DTs mean size are also verified (with

more than 50% of reductions).

For a better evaluation of the performance achieved,

the average test error rates obtained from each model are

presented on Table 7. Like in Table 5, the first and second

best results are indicated in boldface and italics, respec-

tively. From this table, it can be seen that the very large re-

duction of the DTs mean size with the application of

techniques DROP2 and DROP4 is related to the drastic re-

ductions of the size of the datasets after they were

pre-processed by these techniques. In the case of ENN,

RENN and AllKNN techniques, a reduction in the error

rates can be observed, although not statistically significant

at a confidence level of 95%. However, for ENN, RENN

and AllKNN, there were clear simplifications in the in-

duced models, indicating comprehensiveness gains, while

maintaining and even reducing the obtained error rates by a

factor of approximately 2%. In some situations, the

achievement of a higher comprehensibility can be more im-

portant than that of a higher accuracy rate.
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Table 5 - SVMs test error rates.

Dataset Original ENN RENN AllKNN DROP2 DROP4

UCI 2.9 ± 1.2 3.0 ± 1.4 3.0 ± 1.2 3.1 ± 1.3 11.2 ± 2.6 12.2 ± 1.2

HS3D 11.3 ± 0.8 12.5 ± 1.1 12.4 ± 1.2 12.7 ± 0.8 21.1 ± 1.4 24.7 ± 2.2

Table 6 - Mean size of DTs, best pruning and pre-processing parameters.

UCI HS3D

k DT size prune k DT size prune

Original - 417.0 ± 3.4 0.25 - 1387.8 ± 4.8 0.25

ENN 3 226.2 ± 18.2 0.25 9 637.8 ± 22.6 0.25

RENN 9 161.0 ± 8.0 0.25 7 575.0 ± 29.6 0.25

AllKNN 9 173.0 ± 7.5 0.25 5 549.4 ± 60.2 0.25

DROP2 9 153.4 ± 8.1 0.25 1 285.0 ± 37.5 0.25

DROP4 9 127.4 ± 7.4 0.25 7 334.6 ± 59.4 0.25



Learning techniques performance comparison

Comparing the results obtained by the learning tech-

niques considered in this work, a better performance of the

SVM classifiers regarding classification accuracy can be

verified. This can be confirmed statistically, at 95% of con-

fidence level.

The higher test error rates of DTs in comparison to

SVMs may be due to their difficulty in dealing with appli-

cations with a high number of attributes, as the one investi-

gated in this paper. On the other hand, SVMs are usually

very robust for high dimensional data.

If the interest is in comprehensiveness, however, the

use of DTs is indicated. Thus, in this case, the use of the

pre-processing techniques ENN, RENN and AllKNN can

bring high benefits in comprehensiveness gains.

Pre-processing techniques results analysis

From the results presented in previous sections, some

conclusions can be drawn concerning the performance of

the pre-processing techniques investigated in this paper.

The results suggest that the application of the noise

filtering techniques ENN, RENN and AllKNN maintained

the most expressive patterns in the datasets UCI and HS3D,

which was reflected in the error rates obtained, which for

DTs in particular, were even reduced. Simplifications of

the induced classifiers were another benefit observed. This

fact is in accordance with Occam’s razor in ML, that af-

firms that among several models with the same error, the

less complex must be chosen (Lavrac and Gamberger,

2001).

In the case of the pre-processing techniques DROP2

and DROP4, overly drastic reductions were observed on

training data. This was reflected in the reduced perfor-

mance achieved by the learning techniques. So, these tech-

niques did not maintain the most significative patterns in

the datasets, and probably eliminated safe samples. As

higher values of k had a tendency to decrease the reduction

of the training sets, further experiments shall investigate if

larger values of k can lead to better results.

Conclusion

This paper investigated the application of data

pre-processing techniques in two splice junction recogni-

tion datasets. Five techniques were studied. In order to

evaluate the power of these techniques in maintaining the

most informative patterns, two learning techniques, Sup-

port Vector Machines and Decision Trees, were trained

over the original and pre-processed datasets.

The results observed indicate that the three first tech-

niques investigated, named ENN, RENN and AllKNN,

were more effective in the pre-processing process. This re-

sulted in simplifications of the induced classifiers and, for

the DTs, in lower error rates and higher comprehensive-

ness.

However, more experiments, including other prob-

lems and datasets from Molecular Biology, are necessary

for a wider evaluation of the benefits in the application of

these pre-processing procedures in Bioinformatics. The use

of other pre-processing techniques could also lead to simi-

lar or even better results than those observed.

Acknowledgements

The authors would like to thank the Brazilian Na-

tional Research Council (CNPq) and the São Paulo State

Research Foundation (Fapesp) for the financial support

provided, Wilson and Martinez for the pre-processing

source code and Pollastro and Rampone for the HS3D

dataset.

References

Bajic VB, Chong A, Seah SH and Brusic V (2002) An intelligent

system for vertebrate promoter recognition. IEEE Intelligent

Systems 4:64-70.

Batista GEAPA, Carvalho ACPLF and Monard MC (2000) Ap-

plying one-sided selection to unbalanced datasets. In: Mexi-

can International Conference on Artificial Intelligence

(MICAI) Lecture Notes in Artificial Intelligence,

Springer-Verlag, v 1793, pp 315-325.

Blake CL and Merz CJ (1998) UCI repository of machine learning

databases. http://www.ics.uci.edu/ ~mlearn/.

Burges CJC (1998) A tutorial on support vector machines for pat-

tern recognition. Knowledge Discovery and Data Mining

2:1-43.

Collobert R and Bengio S (2001) SVMTorch: Support vector ma-

chines for large-scale regression problems. Journal of Ma-

chine Learning Research 1:143-160.

Craven MW and Shavlik JW (1994) Machine learning approaches

to gene recognition. IEEE Expert 9:2-10.

Cristianini N and Shawe-Taylor J (2000) An Introduction to Sup-

port Vector Machines. Cambridge University Press, 189 pp.

Gordon L, Chervonenkis AY, Gammerman AJ, Shahmuradov IA

and Solovyev VV (2003) Sequence alignment kernel for

recognition of promoter regions. Bioinformatics

19:1964-1971.

Haykin S (1999) Neural Networks - A Comprehensive Founda-

tion. Prentice Hall, 842 pp.

Johnson RA (2000) Miller and Freund’s Probability and Statistics

for Engineers. Prentice Hall, 622 pp.

Noise reduction techniques in the splice junction recognition 671

Table 7 - DT test error rates.

Dataset Original ENN RENN AllKNN DROP2 DROP4

UCI 8.1 ± 1.5 6.5 ± 1.4 6.5 ± 1.2 6.5 ± 1.2 26.8 ± 3.5 30.3 ± 5.1

HS3D 23.9 ± 1.7 21.7 ± 1.7 21.9 ± 2.0 22.9 ± 1.9 31.9 ± 4.1 34.8 ± 3.2



Lapedes A, Barnes C, Burks C, Farber R and Sirotkin K (1989)

Application of neural networks and other machine learning

algorithms to DNA sequence analysis. In: Bell G and Marr T

(eds) Computers and DNA, SFI in the Sciences of Complex-

ity, v 7, pp 157-182.

Lavrac N and Gamberger D (2001) Saturation filtering for noise

and outlier detection. In: Proceedings of the Workshop in

Active Learning, Database Sampling, Experimental Design:

Views on Instance Selection, European Conference on Ma-

chine Learning, pp 1-4.

Lorena AC, Batista GEAPA, Carvalho ACPLF and Monard MC

(2002) The influence of noisy patterns in the performance of

learning methods in the splice junction recognition problem.

In: Proceedings of the VII Brazilian Symposium on Neural

Networks, IEEE Computer Society Press, pp 31-36.

Michie D, Spiegelhalter DJ and Taylor CC (1994) Machine

Learning, Neural and Statistical Classification. Ellis

Horwood, 298 pp.

Mitchell T (1997) Machine Learning. McGraw Hill, 432 pp.

Pedersen AG and Nielsen H (1997) Neural network prediction of

translation initiation sites in eukaryotes: Perspectives for

EST and genome analysis. In: Proc Int Conf Intell Syst Mol

Biol (ISMB’97), pp 226-233.

Pollastro P and Rampone S (2002) HS3D, a dataset of Homo Sapi-

ens splice regions, and its extraction procedure from a major

public database. Int J Mod Phys C 13:1105-1117.

Quinlan JR (1986) Induction of decision trees. Machine Learning

1:81-106.

Quinlan JR (1988) C4.5 Programs for Machine Learning. Morgan

Kaufmann, CA, 302 pp.

Rampone S (1998) Splice-junction recognition on DNA se-

quences by BRAIN learning algorithm. Bioinformatics

14:676-684.

Salzberg SL (1997) A method for identifying splice sites and

translational start sites in eukaryotic mRNA. Comput Appl

Biosci 13:365-376.

Semple C (2000) Gene prediction: The end of the beginning. Ge-

nome Biol 1:1-3.

Setubal J and Meidanis J (1997) Introduction to Computational

Molecular Biology. PWS Publishing Company, 296 pp.

Stanfill C and Waltz D (1986) Toward memory-based reasoning.

Communications of the ACM 29:1213-1228.

Tomek I (1976) An experiment with the edited nearest-neighbor

rule. IEEE Trans Syst Man Cybern 6:448-452.

Towell GG (1991) Symbolic knowledge and neural networks: In-

sertion, refinement, and extraction. PhD thesis, University

of Wisconsin, Madison.

Wilson DL (1972) Asymtoptic properties of nearest neighbor

rules using edited data. IEEE Trans Syst Man Cybern

2:408-421.

Wilson DR and Martinez TR (1997). Instance pruning techniques.

In: Fisher D (ed) Machine Learning: Proceedings of the XIV

International Conference, Morgan Kaufmann Publishers, pp

404-411.

Wilson DR and Martinez TR (2000) Reduction techniques for in-

stance-based learning algorithms. Machine Learning

38:257-286.

Vapnik VN (1995) The Nature of Statistical Learning Theory.

Springer-Verlag, 214 pp.

Xu Y, Mural RJ, Einstein JR, Shah M and Uberbacher EC (1996)

GRAIL: A multi-agent neural network system for gene iden-

tification. In: Proceedings of the IEEE 84:1544-1552.

Zien A, Rätsch G, Mika S, Schölkopf B, Lengaeuer T and Müller

KR (2000) Engineering support vector machine kernels that

recognize translation initiation sites in DNA. Bioinformatics

16:799-807.

672 Lorena and Carvalho


