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Abstract

This work presents a method to analyze characteristics of a set of genes that can have an influence in a certain
anomaly, such as a particular type of cancer. A measure is proposed with the objective of diagnosing individuals
regarding the anomaly under study and some characteristics of the genes are analyzed. Maximum likelihood
equations for general and particular cases are presented.
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Introduction

In many practical situations, decisions have to be

taken based upon individual quantities that cannot be ob-

served directly. These quantities are referred to by latent

variables that are given different names according to the ar-

eas in which they are applied: ability or proficiency in edu-

cational and psychological areas; purchasing power in

marketing; life quality or predisposition to a certain disease

in the biological and medical areas (see Andrade et al.,

(2000), Paas (1998), for example). These types of analysis

are, in general, based upon the responses of a set of vari-

ables often referred to as items that comprise the measuring

tool. In educational evaluations, for example, items are rep-

resented by questions in a test that might have their answers

categorized as right/wrong, A/B/C/D/E with only one cor-

rect alternative or in a way where A is the least correct, and

E is the most correct alternative. Other extensions are avail-

able, such as for each item a weight like 1 (right) or 0

(wrong) is attached. These types of study were, for some-

time, based upon scores for each individual, that is, upon

the number of items with weight one. However, this type of

approach has many drawbacks mainly because it does not

make a difference among the items which lead to the devel-

opment of a theory based upon the items themselves and

not upon the overall results, named Item Response Theory.

In such a theory each item has a set of well defined charac-

teristics that are estimated. The estimation procedure of the

latent variable of an individual takes into account each one

of the items of the test and reveals, for example, the level of

knowledge of that individual in a certain area or his pur-

chasing power as related to a certain product.

Some times there is more than one population being

studied. For instance, in the educational area the interest

can be the estimation of the average proficiencies regarding

sex or geographical location.

In a similar situation, a set of genes is studied in order

to appraise the predisposition of an individual related to a

certain illness. A set of items (genes) are taken into account

and their answers can be activated or deactivated or in the

categorized form as A/B/C/D/E representing different lev-

els of activity of the genes. Genes have peculiar characteris-

tics that need to be incorporated into a model so that they

can be evaluated. Suggestions have been advanced on the

way to pinpoint genetic influences (Vanyukov and Tarder,

2000), but with some shortcomings. For example, the con-

clusions reached depend upon the sample chosen.

Models for Response Functions

The Item Response Theory is based upon models that

represent the probability of response to an item as function

of the parameters of the item and of the individual predispo-

sition. These functions are treated as Item Response Func-

tions (IRF) or Item Charasteristic Curve (ICC). The

different models proposed in the literature depend basically

upon the type of item.

For explanatory reasons we will consider that there

are K populations in study and each of them has the same n
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genes being analyzed. The sample related to the population

k is composed by Nk individuals, k = 1,..., K. Following, the

model used in this paper is the unidimensional logistic

model of 4 parameters for each item of two categories (of

the type activated/deactivated). Its expression is given by

P U c c
e

ijk jk i i i i Da bi jk i

( , ) ( )
( )

= = + −
+ − −

1
1

1
θ ς γ
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with ζi = (ai, bi, ci, γi)’, i = 1,..., n, j = 1,..., Nk and k = 1, 2,...,

K, where

Uijk is a dichotomous variable that takes on the values

1,when the individual j of the population k has gene i acti-

vated, or 0 when the gene is deactivated.

θjk represents a predisposition of the jth individual of

the population k.

bi is the inactivity (or position) parameter of the gene

i, measured at the same scale of the predisposition

ai is the discrimination (or of inclination) parameter

of the gene i

ci is the probability of gene i being active for individu-

als with low predisposition,

γi is the probability of gene i being deactivated for in-

dividuals with high predisposition,

D is a scale factor, constant and equal to 1. The 1.7

value is used when it is desired that the logistic function

yield results similar to that of the normal function.

N is the number of individuals involved in the study.

Defining the Parameters of the Genes

In a general way, the proposed model is based upon

the fact that predisposed individuals are more likely to have

the gene i activated, and that this relation is not linear. As a

matter of fact, it can be perceived from Figure 1 that the IRF

has the form of “S” with inclination and displacement de-

fined by the gene parameters. However, only a subset of

genes has to satisfy this situation that occurs only when

ai > 0. Chances are that some genes are deactivated in high

propensity individuals, and therefore the IRF curve should

have an inverted form, expressing that individuals with

high propensity are less likely to get the gene activated, and

this is expressed by ai < 0. When ai = 0, we have that

P U cijk i i i( , ) ( ) /= = +1 2θ ζ γ , constant for all θ, indicating

that the gene i does not interfere in the occurrence of the

anomaly.

Parameter bi is, perhaps, the most important of the

four. The greater this parameter is, less likely it is that a

given individual has the gene i activated. This is a valid

conclusion only for ai > 0, and the opposite is true for ai < 0.

It is safe to say that individuals with low predisposi-

tion are prone to have the gene i active, and this information

is conveyed by the parameter ci. On the other hand, high

predisposition individuals can also have the gene i inactive,

and this information is conveyed by 1 - γi. These conclu-

sions are valid only for ai > 0, and the opposite is valid for

ai < 0.

Scale of Measurement/Indetermination

Predisposition can theoretically take any real value

between -∞ e +∞. Thus, it is necessary to establish an origin

and a unit of measurement for defining the scale. When

only one population is under study the scale of measure-

ment can be defined in such a way as to represent the mean

value and the standard deviation of the individual predispo-

sitions of the population under study. For the graphs shown

earlier the scale used had a mean of 0 and a standard devia-

tion of 1, that will be referred from now on as scale (0,1). In

practice, it does not make any difference to set these or any

other values. What is paramount are the existent order rela-

tions between scale points. For example, in the scale used

above an individual with a predisposition of 1.2 in fact is

1.2 standard deviations above the predisposition mean.

This same individual would have a predisposition of 92,

and therefore would also be 1,2 standard deviations above

the predisposition mean, if the scale used for this popula-

tion would have been the scale (80,10).

When various populations are present, one of them

can be adopted as a Reference Population, and only the

scale for this population will have to be refereed. The ob-

tained predisposition values for other populations will have

to be directly compared with those of the Reference Popu-

lation. One such example consists of taking healthy indi-

viduals in the Reference Population and the population

with a certain anomaly as the other. Other populations can

be taken into account.

Local Independence

An often used hypothesis in IRT is the local inde-

pendence (or conditional independence). It states that the

probability that a certain gene is active depends only on its

predisposition; that is, it offers all the necessary informa-

tion to determine an activation/deactivation of the gene. In
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this fashion it does not mean that the quantities Ukji e Ukjl, i ≠
l, are independent, but given the individual predisposition

θjk they will be considered conditionally independent.

However, there are models for the case when conditional

independence is not met, but we have to model this possible

dependence.

Parameter Estimation of the Genes and
Predispositions

One of the most important stages of the IRT is the pa-

rameter estimation of the genes and/or of the individual

predispositions. In some cases we can consider that the pa-

rameters of the genes are already known and what is wanted

is to estimate the predispositions; in other, less common,

predispositions of the individuals are known and what is

wanted is the estimation of the parameter of the genes.

However, the most common cases are those in which not

only the parameters of the genes are to be estimated but

also the individual predisposition simultaneously. In all

these cases, the proposed model is assumed as true, and

from the set of responses obtained for a certain number of

individuals from one or more populations, parameters

and/or predispositions are estimated using either likelihood

or Bayesian methods. Both methods require iterative proce-

dures involving very complex calculations and, therefore,

specific computer codes. It is important to point out that, in

any of these cases, the predisposition values and those of

the gene parameters will all be in the same scale of mea-

surement and therefore they can be compared.

Before outlining some points about the estimation

process, some arrangements are in order. The set of genes

involved in the analysis will be ordered in a fashion such

that they will be represented by ζ = (ζ1,..., ζn). Let

Ukj. = (Ukj1, Ukj2,..., Ukjn) be a random vector of answers

from individual j from group k; Uk.. = (Uk1., Uk2.,..., Ukn.) the

random vector of answers from group k and U... = (U1..,

U2..,..., Uk..) the whole vector of answers. In a similar fash-

ion, observed answers will be represented by ukji, ukj., uk..

and u.... This notation and local independence allow us to

write the probability associated with the vector of answers

Ukj as

P u P ukj kj

i l

kji kj

k

( , ) ( , ). θ ζ θ ζ ι=
∈
∏ (2)

Generally, it is considered that the predispositions of

the individuals of population k, θjk, j = 1,..., Nk, are accom-

plishments of a random variable θk, with continuous distri-

bution and probability density function g k( )θη , twice

differentiable, with the components of ηk finite. In the case

where θk has a Normal distribution, we have η µ σk k k= ( , )2 ,

where µk is the mean andσ k

2 the variance of the predisposi-

tions of the individuals of the population k, k = 1,..., K. This

hypothesis carries a great advantage: only the parameters of

the genes have to be estimated, as the likelihood will not de-

pend on the individuals’ predispositions. Therefore, the es-

timation is a two-stage process, where in the first only the

parameters of the genes are estimated, after which these pa-

rameters are considered as known for the estimation of the

predispositions.

Estimation of Gene Parameters

With the above defined notations we have determined

that the marginal probability of Ukj is given by

P u P u g d

P u g

kj k kj k k

kj

( , ) ( , , ) ( )
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. .

.
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where in the last inequality we use that the distribution of

Ukj. is not a function of parameters ηk.

Utilizing the independence between answers of dif-

ferent individuals, we can see that the associated probabili-

ties to the vector of answers U... as

P u P uk

j

N

k

K

kj k

k

( , ) ( , )... .ζ η ζ η=
==
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11

Even though the likelihood can be written as (2), the

approach has often been used of Response Patterns. As we

have n genes, with two possible answers for each item (0 or

1), there are S = 2n possible response vectors (response pat-

terns). Let rkj be the number of distinct occurrences of the

answer pattern j in group k, and yet Sk ≤ min(Nk, S) the num-

ber of response patterns with rkj > 0. It follows that

r Nkj k

j

Sk

=
=
∑

1

By the independence between the answers of differ-

ent individuals, we have that the data follows a Product-

Multinomial distribution, that is,
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And, therefore, the log-likelihood is
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The estimation equations for the item parameters are

given by

∂ ζ η
∂ζ

log ( , )L

i

= 0, i = 1,...,n,

with
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and Pi represents the IRF adopted. The specific equations

for each parameter of the vector ζi = (ai, bi, ci, γi)’ can thus

be obtained from above.

Application to the 4-parameter Logistic Model

For convenience, let

W
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1θ
and Qi
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In sum, the estimation equations for ai, bi, ci and γi

are, respectively,
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which do not have explicit solutions. Therefore, such esti-

mations are arrived at by iterative processes, such as New-

ton-Raphson, BFGS, Fisher’s Scoring or EM algorithm.

Estimation of the Population Parameters

Considering the log-likelihood obtained in (3), the es-

timation equations for the mean predispositions and popu-

lation variances are obtained by
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If we use the distribution N(µk, σk
2) for θk, we have
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Thus, the final forms of the estimation equations for

µk and σk
2 are, respectively,
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Estimation of the Predispositions

Once the parameters of the genes are set, individual

predispositions can be estimated. In addition, such predis-

positions can also be estimated for individuals whose data

were not considered in the item parameters estimation. The

usual methods for estimating the predispositions are the

maximum likelihood (ML) as well as Bayesian methods

such as maximum a posteriori (MAP) and the expected a

posteriori (EAP).

Estimation by ML

In this case, the estimation of the predispositions is

done iteratively by the Newton-Raphson algorithm maxi-

mizing the likelihood in (2), or of the equivalent form, the

function

( ){ }log ( ) log logL u P u Qkji kji kji kji

i

n

j

S

k

K k

θ = + −
===
∑∑∑ 1

111

The Maximum Likelihood Estimator (MLE) of θkj is

that which maximizes the likelihood, or equivalently, is the

solution of the equation

∂ θ
∂θ

log ( )L

kj

= 0, j = 1,..., Nk, k = 1,..., K. (5)

Note, from (5), that
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where the last equality follows by (4), and when plugged in

the respective quantities. As
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It follows then that the estimation Eq. (5) for θkj,

j = 1,..., Nk, is
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Again, this equation does not have an explicit solu-

tion for θkj and, for this reason it is necessary for some itera-

tive method in order to obtain the desired estimation.

Following, the necessary expressions are obtained for ap-

plications of the Newton-Raphson iterative processes.
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Estimation by MAP

Such as in the marginal likelihood estimation, the

Bayesian estimation of the predispositions is done on the

second stage, considering the fixed parameters of the

genes. Through the hypothesis of independence between

the predispositions of different individuals, estimations can

be done separately for each individual.

Let us assume that the prior distribution for θkj,

j = 1,..., Nk, is Normal with known vector η µ σk k k= ( , )2 of

parameters. The posterior distribution for the ability of the

individual j of the population k can be written as

g g u P u gkj kj kj kj kj kj kj k

*

. .( ) ( , , ) ( , ) ( )θ θ ς η θ ς θ η≡ ∝ (9)

Some characteristic of g kj kj

* ( )θ can be adopted as es-

timator of θkj, where the most frequently adopted are the

mean and the mode. Following, we deal with how to obtain

each of these characteristics.

Estimation of the mode of the posterior distribution -
MAP

The Bayesian modal estimation consists in obtaining

the maximum of (9). For easiness, we work with the loga-

rithm of the posteriori
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Keeping in mind that P u P Qkji i kj kji
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ukji kji( , )ς θ = −1
and

using the development under (5), we have that
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As we have adopted the prior distribution Normal (µk,

σk
2) for θkj, the second portion of (10) is
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As this equation does not have an explicit solution,

some iterative method can be used to solve it. To do that it is

necessary the second derivative of log ( )*g kj kjθ with rela-

tion to θkj, whose expression is
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Estimation by EAP

The Bayes expected a posteriori (EAP) consists in ob-

taining the expectation of the posterior distribution, that can

be written as
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It follows that the estimator is given by
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This form of estimation has the advantage of being

calculated directly, not being necessary the application of

iterative methods.

Simulation Results

In this section we present one application of the pro-

posed methodology in simulated data. The data were gener-

ated based on N = 5000 individuals and to n = 5 genes. The

total simulation consisted of 1000 replications. The known

gene parameters are presented below. All the calculations

were done via a computer program developed by the au-

thors using the computer language Ox (see Doornik, 1998)

using the BFGS routine for maximization.

The Genes Parameters

In order to generate the data it was assumed that the

genes parameters are those presented in Table 1. It was

adopted the 4 parameter logistic model with D = 1.7. The

values for parameter a (discrimination) varied from 0.8

(low discrimination) to 1.2 (high discrimination) and the

values for parameters b (predisposition) varied from -0.5 to

3.0. For the parameters c it was considered only one value

(0.20) and for the γ, only 0.9. It was adopted the 4 parameter

logistic model with D = 1.7.

From Table 2 we see that the average estimates ob-

tained from 1000 replicates are very accurate for all genes.

We see that the estimations procedure works very well, still

when we have a relatively small number of genes. Results

were obtained with a larger number of genes and the results

were still very good. However, we hope that estimation

problems just appear when the number of genes is too

small.

The Table 3 presents the standard deviations obtained

from 1000 estimates. The largest values are associated with

the parameters a and b. With exception of the gene 2, the

values associated with parameter a are larger than those as-

sociated to b.

Concluding remarks

We have introduced a new proposal for genes and

person diagnostic via Item Response Models. From a simu-

lation study, it was shown that the models provide good es-

timates for several genes configurations. However, other

studies and models should be proposed to allow, for exam-

ple, different levels of activities of the genes. Longitudinal

models, following the lines of Tavares and Andrade (2004)

and Andrade and Tavares (2004), should also be consid-

ered.
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Table 2 - Deviations from the average estimates with relation to the true

gene parameters.

1 2 3 4 5

ai 0.0193 0.0333 0.0233 0.0254 0.0117

bi 0.0021 -0.0103 0.0472 -0.0062 0.0038

ci -0.0038 -0.0038 -0.0036 0.0001 -0.0006

γi 0.0042 0.0031 0.0195 -0.0031 0.0020

Table 1 - Genes parameters.

1 2 3 4 5

ai 0.8 0.8 1.0 1.2 1.2

bi -0.5 1.0 1.5 0.5 0.0

ci 0.2 0.2 0.2 0.2 0.2

γi 0.9 0.9 0.9 0.9 0.9

Table 3 - Standard deviations for the 1000 estimates.

1 2 3 4 5

ai 0.1576 0.1738 0.2562 0.1293 0.1164

bi 0.1080 0.2055 0.2019 0.0934 0.0804

ci 0.0346 0.0377 0.0244 0.0242 0.0232

γi 0.0411 0.0726 0.0798 0.0336 0.0289
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