
Use of signal thresholds to determine significant changes
in microarray data analyses

Xinmin Li1, Jaejung Kim1, Jian Zhou1, Weikuan Gu3 and Richard Quigg1,2

1The University of Chicago, Functional Genomics Facility, Chicago, IL, USA.
2The University of Chicago, Division of Biological Sciences, Section of Nephrology, Chicago, IL, USA.
3University of Tennessee Health Science Center, Department of Orthopedic Surgery, Center of Genomics

and Bioinformatics & Center of Diseases of Connective Tissues, Memphis, TN, USA.

Abstract

The use of a constant fold-change to determine significant changes in gene expression has been widely accepted for
its intuition and ease of use in microarray data analysis, but this concept has been increasingly criticized because it
does not reflect signal intensity and can result in a substantial number of false positives and false negatives. To
resolve this dilemma, we have analyzed 65 replicate Affymetrix chip-chip comparisons and determined a series of
user adjustable signal-dependent thresholds which do not require replicates and offer a 95% confidence interval.
Quantitative RT-PCR shows that such thresholds significantly improve the power to discriminate biological changes
in mRNA from noise and reduce false calls compared to the traditional two-fold threshold. The user-friendly nature of
this approach means that it can be easily applied by any user of microarray analysis, even those without any
specialized knowledge of computational techniques or statistics. Noise is a function of signal intensity not only for
Affymetrix data but also for cDNA array data, analysis of which may also be benefited by our methodology.
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Introduction

Affymetrix oligonucleotide arrays (Lockhart et al.,

1996) are widely used for measuring global changes in

gene expression (Landis et al., 2004; Zamurovic et al.,

2004; Baechler et al., 2004; Hunter et al., 2002). While the

power of this technology has been recognized, how thresh-

olds for significant changes should be determined remains

an open question.

To date, fold-change thresholds have been the most

commonly used method for filtering false positives and de-

claring significant changes (Bassett et al., 1999; Der et al.,

1998; Fambrough et al., 1999; Wang et al., 1999). Because

this is an arbitrary decision and has no statistical basis, dif-

ferent thresholds have been used in the literature, varying

from 2- to 6-fold (Amundson et al., 1999; Coller et al.,

2000; Schena et al., 1996; Tamayo et al., 1999). Although

this approach is intuitively appealing, it does not take into

account absolute signal intensities and ignores the fact that

the confidence levels of fold-change appear to be sig-

nal-dependent. Such constant thresholds tend to produce

false positives when signal intensities are low and false

negatives when signal intensities are high.

Several statistical treatments of microarray data anal-

ysis have been explored to overcome these weaknesses,

(Chen et al., 1997; Kerr et al., 2000; Newton et al., 2001;

Tusher et al., 2001; Li and Wong, 2001, Long et al., 2001,

Goryachev et al., 2001; Strand et al., 2002). Locally

weighted linear regression (Lowess) (Cleveland and Devlin

1988) has been proposed as a normalization method for

microarray data analysis (Yang et al., 2002; Dudoit et al.,

2002) to remove intensity-dependent dye-specific effects.

Hughes et al (2000) proposed a mathematical model to esti-

mate intensity-dependent differential expression, which

can identify biologically meaningful differential regulation

at levels lower than twofold in a compendium of 300 differ-

ent yeast mutants and chemical treatments. Use of a

smoothed estimate of the SD as a function of the fluores-

cence intensity has also been discussed (Baggerly et al.,

2001). These treatments are responsive to signal intensity

and provide a better discrimination of true change from

noise but suffer from a common drawback in that they re-

quire that the researcher who uses them has both statistical

and computational training. To address this problem, a rela-
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tively simpler approach has been proposed to identify dif-

ferentially expressed genes using the intensity-dependent

calculation of a standard Z-score (Yang et al., 2003).

Because traditional fold-change thresholds (tradi-

tional thresholds) are popular but have limitations we theo-

rized that signal-dependent fold-change thresholds (signal

thresholds) could be used because signal thresholds take

into account the fact that fold-change variability is a func-

tion of signal intensity. In this paper we report the use of

multiple replicate comparisons to establish and validate

user-adjustable signal thresholds which have improved

power to discriminate true change from noise without the

drawbacks of traditional thresholds.

Materials and Methods

Sources of data

All data were generated by the Functional Genomics

Facility (FGF), University of Chicago, Illinois, USA.

Sixty-five duplicate chip-chip comparison data sets were

derived from 14 experiments, performed over a period of

11 months, using Human Genome U133A and U95A, Rat

Genome U34A and Murine Genome U74Av2 arrays.

Thirty-three comparisons were biological replicates in

which RNA was extracted from different samples that were

genetically identical and exposed to the same manipula-

tion; 16 were technical replicates in which the same RNA

source was used for replicate experiments; and 16 were cell

line replicates in which RNA was extracted from different

batches of daughter cells.

RNA quality assurance

All RNA samples submitted to the FGF for hybridiza-

tion had a 260nm/280 nm optical density ratio

(OD260/280) > 1.8 and a total RNA concentration > 1 µg/µL

and the quality of the RNA was validated using an Agilent

2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,

USA).

Target preparation

The target preparation protocol followed the

Affymetrix GeneChip® Expression Analysis Manual

(Affymetrix, Inc. Santa Clara, CA) with minor modifica-

tions. Briefly, 10 µg of total RNA was used to synthesize

double-stranded cDNA using the Superscript Choice Sys-

tem (Life Technologies). First strand cDNA synthesis was

primed with a T7-(dT24) oligonucleotide. From 3 µg of

log-phase Gel-purified cDNA, biotin-labeled antisense

cRNA was synthesized using the BioArray High Yield

RNA Transcript Labeling Kit (Enzo Diagnostics,

Farmingdale, NY, USA). After precipitation with 4 M Lith-

ium Chloride, 20 µg of cRNA was fragmented in fragmen-

tation buffer (40 mM Tris-Acetate, pH 8.1, 100 mM KOAc,

30 mM MgOAc) for 35 minutes at 94 °C and then hybrid-

ized to Affymetrix Arrays for 16 hours at 45 °C and 60 rpm

in an Affymetrix Hybridization Oven 640. The arrays were

washed and stained with streptavidin phycoerythrin in

Affymetrix Fluidics Station 400 using the Affymetrix

GeneChip protocol and then scanned using the Affymetrix

Agilent GeneArray Scanner.

Data analysis and definitions

Hybridization signals were analyzed using

Affymetrix Microarray Suite version 5.0 (MAS 5.0) with

the default analytic parameters (Alpha 1: 0.04; Alpha 2:

0.06; Tau: 0.015; global scaling target signal: 500). The

qualitative output of MAS 5.0 includes detection calls and

change calls, the confidence of each call being reflected by

a p value which is a new feature of MAS 5. Quantitative

output includes signal intensities from absolute analyses

and signal log2 ratios (SLRs) from comparison analyses.

Data analysis in this study involved three stages: visual ex-

amination of the scatter plot using MAS 5.0 software,

two-step data filtration (see results section for details) and

empirically determining signal thresholds. For each repli-

cate comparison (after data filtration), genes were divided

into six groups based on the average signal intensity of two

replicates (see results for grouping criteria) and then a 95%

confidence threshold (α) was determined based on all SLRs

within each group, 95% of SLRs of a given signal intensity

group being encompassed within α. The signal thresh-

old was the average value of α derived from 65 replicate

comparisons. This study established six signal thresholds,

one for each signal intensity group. There were six α values

for each replicate comparison, i.e. one for each signal inten-

sity group. The interarray variability (β) is a measure of sig-

nal intensity variation between the two replicate samples

being compared, where β = Σ[Ai-Bi/(Ai+Bi)]/n where Ai

is the signal intensity of the ith gene in replicate A, Bi is the

signal intensity of the ith gene in replicate B and n is the total

number of genes on the GeneChip® array. Experimental

variation between replicate experiments was defined as the

interarray variability (β), which was used to predict the

weighted average threshold (δ), the weighted average value

of all six α values from a replicate comparison. This study

used 65 replicate comparisons and therefore 65 δ were de-

rived. As an alternative approach for data visualization

(Dudoit et al., 2002), a standard M vs. A plot was derived, in

which Mg = log2(Yg/Xg) and Ag = log2 (XgYg)
1/2 for expres-

sions Xg and Yg from the two arrays being compared for all

genes g = 1, 2, 3, ..., G.

Results

Visualization of signal intensity scatter plot

We started the data analysis by plotting two replicate

experiments on a log scale, it being known that all data

points in the plot should theoretically be located on the line

of identity (y = x) and that deviation from this line repre-
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sents noise. Visually examination of these plots provided

important information for developing the subsequent data

analysis strategy. Firstly, the scatter plot clearly showed

(Figure 1A) that the degree of signal variation was a func-

tion of the signal intensity, with the variation increasing as

the signal intensities decreased. This fundamental relation-

ship was also seen in 3-D plots where the third dimension

was the SLR (Figure 1B) and also in MvA plots (Figure

1C). These observations illustrate the practical difficulty in

using a constant fold-change threshold for all genes under

study and suggests that thresholds for significant change

should vary in accordance with the signal intensity, the

premise which formed the basis for the current study.

Secondly, genes with low signal intensities and ab-

sent calls (green dots in the plot) had an elliptical variation

pattern which did not obey the linear functional relation-

ship described above. Figure 2 shows plots of two replicate

experiments using three potential sources of variation: the

RNA derived from different mice (A); using the same RNA

sample but with separate enzymatic reactions (B); and us-

ing the same hybridization master mix (C). It is clear that

the degree of variation increases as the number of potential

sources of variation increase (A > B > C) for genes with

present calls but the variation seems constant for genes with

absent calls (elliptical variation, i.e. elliptical noise). About

50% of genes have absent calls and account for most of the

false positives. This observation highlights the need to filter

out this constant noise before performing data analysis.

Thirdly, scatter plots provides a convenient way to

evaluate the non-random noise contributed by scaling it-

self. The relationship between the level of gene expression

and signal intensity reported by a scanner is linear only

within a certain range of intensities, being limited by detec-

tion sensitivity below and subject to saturation above that

range. When the overall signal intensity in sample A is sig-

nificantly higher than that in sample B (i.e. the scaling fac-

tor is higher in sample B than in sample A), scaling itself

could introduce false increases in the low non-linear range

and false decreases in the high non-linear range in a com-

parison of A vs. B (Figure 2). We plotted all chip-chip com-

parisons and scatter plots with a characteristic sigmoidal

shape (about 2% of the plots examined) were eliminated

from the analysis.

Data filtration

After visualization of scatter plots, it was clear that

raw data needed to be filtered to avoid excessive noise at

the low signal intensity range. We used a two-step filtration

strategy to balance the removal of noise with the retention

of the true biological information. The first filtration step

was to filter genes with a signal intensity in both replicate

experiments of ≤ 100 intensity units, a rather conservative

but effective strategy which resulted in the vast majority of

elliptical noise being eliminated at this cut-off intensity

(Figure 1A). The second filtration step was to remove the
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Figure 1 - Representative scatter plot of two replicate experiments. (A) A

log-scale linear plot where the black lines show that variation is a func-

tion of signal intensity for most of the genes while the elliptical line

shows that genes with a low signal intensity and absent call do not obey

the linear functional relationship. Red dots: present-present plots; Green

dots: absent-absent/marginal plots; Blue dots: present-absent/marginal

plots. (B) Three-dimensional plot of log transformed signal intensities

(x-y axis) and signal log2 ratios (SLR, z axis). (C) MvA plot (see text for

definitions).



genes with a signal intensity ≤ 200 and also having an ab-

sent call in both replicate experiments. About 50% of genes

were eliminated by this two-step filtration strategy. The re-

maining genes were used to determine signal thresholds.

Signal thresholds with 95% confidence

After data filtration, average signal intensities were

calculated for each gene in each pair of comparisons and

sorted in ascending order. The genes were then divided into

the following six groups based on average signal intensi-

ties: χ ≤ 200, 200 < χ ≤400, 400 < χ ≤ 800, 800 < χ ≤ 1600,

1600 < χ ≤3200, and χ > 3200. A 95% confidence threshold

(α) for each of the 6 groups was determined for each repli-

cate comparison as illustrated in Figure 3. The average

value of all α values from 65 replicate comparisons in a par-

ticular intensity group represents the signal threshold for

that group (Table 1). For example, when signal intensity is

≤ 200 the magnitude of change should be a ≥ SLR of 1.72

(3.3-fold) in order to declare that it represents a significant

change with 95% confidence, while a significant change

can be declared at a SLR of > 0.41 (1.3-fold) when the sig-

nal intensity is > 3600. Table 1 also shows a considerable

degree of variability in the 95% confidence threshold over

65 replicate comparisons as indicated by the difference be-

tween the maximum and minimum threshold values as well

as by the standard deviation. This variation motivated us to

explore how these signal thresholds could be adjusted using

specific experimental variation.

Signal thresholds are user-adjustable

We used the interarray variability, β, to measure sig-

nal intensity variation between two replicate samples and

weighted average threshold, δ, to reflect variability at the

SLR level. As shown in Figure 4, β was linearly correlated

with δ, the correlation being so good that δ can be predicted

for a particular comparison from the formula δ = 6.6157β –

0.4325, where β can be determined from the signal inten-

sity of two replicate samples (hence, experimental variation
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Figure 2 - Different variation patterns and scaling effects. Top panel: Comparison of variation patterns among different replicates. (A) Biological repli-

cate – RNA derived from the kidney cortex of two different C57BL/6J mice. (B) Technical replicate – independent experiment with the same kidney cor-

tex RNA. (C) Chip replicate – same master hybridization mix applied to two different U74A chips. The linear-shaped variation (red dots) decreases as the

potential source of variability decreases, while the elliptical variation (green dots) is constant across the three experimental designs. The parallel green

lines represent, from the inside to outside, 2-, 3-, 10-, and 30-fold differences. Bottom panel: Different effects of global scaling. To illustrate the scaling ef-

fects, the average signal intensity of sample B was set at 2-fold lower than that of sample A. The average intensity of sample A was set at the designated

scaling target intensity. The genes outside the linear detection range were falsely increased at the lower limit range and falsely decreased at the upper limit

range to compare sample A with sample B.



is directly related to the 95% confidence thresholds). The

ratio of predicted δ values from a particular replicate com-

parison versus the mean weighted average threshold (0.78,

calculated from 65 weighted average thresholds) can be

used to convert the signal thresholds established in this

study (1.72, 0.89, 0.59, 0.48, 0.45, 0.41) to a new set of sig-

nal-dependent thresholds (1.72*δ/0.78, 0.89*δ/0.78,

0.59*δ/0.78, 0.48*δ/0.78, 0.45*δ/0.78, 0.41*δ/0.78),

where δ is derived from the formula above. These converted

signal-dependent thresholds reflect the experimental varia-

tion of that particular comparison. We validated this conver-

sion strategy using 5 new replicate comparisons with

different experimental variability. There was no significant

difference between the predicted and practically determined

thresholds for each of five comparisons. A plot of deter-

mined against predicted thresholds for all 5 comparisons

showed a correlation coefficient of 0.94 (Figure 5).

The interarray variability in this study was derived

from replicate experiments and thus represents only experi-

mental noise, while in a typical experiment comparing con-

trol and experimental treatments interarray variability in-

cludes both experimental noise and expected biological

variation. There is a potential complication when the signal

thresholds derived from replicate experiments are used to

predict the expected signal thresholds for a biological com-

parison. We evaluated this potential complication by ana-

lyzing a set of real experimental data which included 7

biological samples each with two replicates. We compared

interarray variability derived from replicate samples with

those derived between biological samples and our results

showed that the biological sample-derived interarray vari-

ability is on average 2.7% greater than the replicate sam-

ple-derived interarray variability. This suggests that the

interarray variability mainly consists of experimental noise

and that a small number of genes with biological changes in

a typical experiment have only a limited effect (about 2.7%

increase) on the magnitude of the interarray variability.

This small effect could slightly increase the confidence in-
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Figure 3 - Illustration of how the 95% confidence threshold (α) is deter-

mined. Signal intensity group of 400 < x ≤ 800 in one representative

chip-chip comparison was used for demonstration, in which α was defined

as encompassing 95% of the signal log2 ratios (SLR).

Table 1 - Signal thresholds with 95% confidence. The thresholds listed represent absolute values, e.g. a threshold of 1.72 represents 1.72.

Signal intensity group α (signal log2 ratio) α (fold-change)

Mean ± SD Maximum* Minimum* Mean ± SD Maximum Minimum

χ ≤ 200 1.72 ± 0.47 2.6 0.7 3.3 ± 0.98 6.1 1.6

200 < χ ≤ 400 0.89 ± 0.28 1.7 0.3 1.9 ± 0.39 3.2 1.2

400 < χ ≤ 800 0.59 ± 0.22 1.2 0.2 1.5 ± 0.25 2.3 1.1

800 < χ ≤ 1600 0.48 ± 0.22 1.1 0.2 1.4 ± 0.24 2.1 1.1

1600 < χ ≤ 3200 0.45 ± 0.21 1 0.1 1.4 ± 0.21 2 1.1

χ > 3200 0.41 ± 0.21 0.9 0.1 1.3 ± 0.21 1.9 1.1

Mean of weighted average threshold 0.78 ± 0.23 1.7 ± 0.38

*Maximum/minimum threshold at that signal intensity in a group of 65 comparisons.

Figure 4 - A linear relationship exists between interarray variability (β, a

measure of experimental variation between two replicate samples calcu-

lated from signal intensity) and the weighted average threshold (δ, the

weighted mean of six 95% confidence thresholds from each replicate com-

parison as derived from the signal log2 ratios). There are 65 data points be-

cause there are one β and one δ value for each replicate comparison.



terval of adjusted signal thresholds ( 95%) and further re-

duce false discovery rates.

Validation of signal thresholds in predicting changes
using real-time PCR

To test the validity of the signal thresholds, we de-

signed two independent RT-PCR experiments. The first ex-

periment was to assess whether or not the signal thresholds

can identify small biological changes at the high signal in-

tensity range that traditional thresholds fail to detect.

Eleven genes were selected that were known to have

changed significantly in respect to their signal threshold but

not by the traditional 2-fold change. The RT-PCR method

showed that 10 out of the 11 genes were up-regulated 50%

or more relative to the controls (Table 2). The second ex-

periment involved 15 genes randomly selected from an

Affymetrix microarray experiment that were independently

evaluated by RT-PCR. Use of our signal threshold pro-

duced a false positive rate of 9% and a false negative rate of

7%, while the use of a 2-fold change threshold would have

produced a false positive rate of 27% and a false negative

rate of 20% (Table 3). The RNA samples used in both

RT-PCR experiments were the same as those used for the

compared microarray experiments.

Discussion

Traditional fold-change thresholds are currently in

common use in microarray data analysis for at least four

reasons: 1) researchers are used to the concept that fold-

change defines change; 2) the traditional thresholds are in-

tuitive and easy to use; 3) many of the statistical approaches

available require substantial statistical knowledge and

computational ability; and 4) the majority of microarray ex-

periments have no replicates, which is a practical limitation

to the use of replicate-based statistical strategies (Long et

al., 2001; Tusher et al., 2001).The use of traditional thresh-

olds to determine significant changes in transcriptional

quantities has three limitations: 1) the decisions made are

arbitrary and without a statistical basis; 2) traditional

thresholds do not reflect signal intensity, which carries im-

portant information about signal variability; and 3) tradi-

tional thresholds are particularly vulnerable to artifacts

produced by global scaling. These factors led us to develop

a novel threshold strategy which, like traditional thresh-

olds, could easily be applied by the microarray community

but has a significantly improved predictive power com-

bined with a certain level of statistical assurance incorpo-

rating more sophisticated data treatment approaches. The

signal-dependent fold-change thresholds reported in this

paper offer such features since they are responsive to signal

intensity, adjustable to specific experimental variation,

carry 95% confidence levels and are user-friendly in that
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Figure 5 - Scatter plot of experimentally determined 95% confidence

thresholds with predicted signal-dependent thresholds using the formulae:

δ = 6.6157*β – 0.4325 and (1.72*δ/0.78, 0.89*δ/0.78, 0.59*δ/0.78,

0.48*δ/0.78, 0.45*δ/0.78, 0.41*δ/0.78). Five new replicate comparisons

(not used for establishing the signal-dependent thresholds described in this

paper) are included in this plot. There are 30 data points because each

comparison has six thresholds.

Table 2 - Validation of significant changes identified by signal thresholds. All genes have no significant changes using a two-fold threshold but have

significant changes by using signal thresholds. Ten out of the eleven genes have ≥1.5 fold-change by quantitative RT-PCR.

Gene accession number Experimental signal Control signal Affy fold-change RT-PCR fold-change

AA929330 1776 1241 1.5 1.5

D86725 1844 1279 1.7 2.9

K02927 1865 1275 1.4 1.9

AA840409 1874 1223 1.4 1.7

AW045261 1919 1233 1.5 1.1

M14223 2133 1380 1.4 1.9

D88792 2551 1522 1.5 1.6

AW123697 3095 2177 1.5 2.1

AF036008 3235 2844 1.5 2.1

D26090 3555 3837 1.4 2.0

M17516 6032 3946 1.5 1.5



they do not require advanced statistical knowledge or ex-

tensive computational ability.

Our strategy to establish these empirical thresholds

involved three steps: visual examination of scatter plots,

data filtration and the determination of 95% confidence in-

tervals for each of the signal intensity groups. We consider

visualization of scatter plots as a critical starting point for

any microarray data analysis, and our visual analysis

showed three important observations: 1) variation as a

function of signal intensity is a general phenomenon re-

gardless of the type of chips, tissue type, or species used,

this universal linear functional relationship providing the

rationale for establishing signal thresholds; 2) genes with

low signal intensity and absent calls have a constant varia-

tion pattern across different experimental designs, suggest-

ing that this unusual eliptical variation is governed by a

specific factor independent of biological, technical and

chip-to-chip variability. This invariable variation seems be-

yond experimental control and is most likely caused by the

perfect match- mismatch probe pair subtraction procedure

(this variation pattern was not seen when either perfect

match intensity or mismatch intensity was used for data

analysis). Identification of this constant noise provided a

foundation for developing a data filtration strategy; 3)

global scaling can introduce false positives when two sam-

ples have substantially different signal intensities. This im-

portant source of variation was largely ignored until Mills

and Gordon (2001) demonstrated it hypothetically.

Scaling-induced false positives at the high non-linear range

are particularly problematic because experimental

variation between experiments at the high intensity range is

significantly smaller. A small deviation from the identity

line could be treated as a significant change when using sig-

nal thresholds, which is why the comparisons with obvious

scaling-induced sigmoidal curves were eliminated from

this study. When users apply the empirical thresholds re-

ported in this paper it is important to make sure of the ab-

sence of a sigmoidal curve in the chip-chip comparisons.

Otherwise, interpretation of changes at the two extreme in-

tensity ranges must be made with caution.

We adopted a two-step data filtration strategy, which

was designed to maximize the capacity of eliminating noise

and minimize the possibility of excluding biological infor-

mation. The rationale for choosing 100 as the first-step cut-

off intensity was based on our observation that the final

concentration of spike control BioB in the hybridization

mix is 1.5 pM, which is equivalent to 1-3 RNA molecules

per cell, but the signal intensity of BioB is normally above

100 when the global scaling target signal is set as 500

(Affymetrix Microarray Suit default setting). Thus, the sig-

nal intensity of BioB can be used as a guideline to deter-

mine the lower limit of intensity which still carries

biological information. Furthermore, over 99% of the

genes with a signal intensity of ≤ 100 are called absent by

MAS 5. The second filtration step considered both signal

intensities of between 100 and 200 and an absent detection

call. Since the MAS 5 has independent algorithms to calcu-

late signal intensities and absent detection calls their use as
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Table 3 - Comparison between the traditional 2-fold threshold and signal thresholds.

Gene accession

number

Experimental

signal

Control

signal

Affymetrix

fold-change

Significant using

2-fold thresholds

Significant using

signal thresholds

RT-PCR

fold-change

M96577 47.5 28.1 1.7 0.1

Z80776 62.0 24.4 2.5 √ 0.8*

D13891 93.6 31.6 3.0 √ 7.7#

U64315 109.2 5.5 19.8 √ √ 3.5

L06139 129.0 35.0 3.7 √ √ 1.1*#

X13403 144.8 27.2 5.3 √ √ 1.6

X60484 151.1 16.0 9.4 √ √ 4.2

X14850 155.7 69.0 2.3 √ 0.5*

AF078077 168.2 38.3 4.4 √ √ 3.5

D13891 350.2 33.4 10.5 √ √ 4.2

X77956 687.6 438.3 1.6 √ 3.2*

X77956 1053.8 699.9 1.5 √ 2.1*

S81914 1329.1 890.9 1.5 √ 1.9*

L19779 1847.0 435.0 4.2 √ √ 1.8

V01512 4671.0 311.0 15.0 √ √ 256.0

*Genes falsely identified using the traditional 2-fold change.
#Genes falsely identified using signal thresholds.



filters enhance the power of MAS 5 to distinguish noise

from real biological variation. We believe that the direct

use of a relatively high cutoff signal intensity

(Grundschober et al., 2002; Sreekumar et al., 2002) to filter

data may sacrifice biological information. By surveying 11

independent experiments involving different human,

mouse and rat tissue, we found that 10-35% of the genes

with a signal intensity of 100-200 were called present or

marginal by the Affymetrix software, many of these genes

being transcription factors. For example, ER81, an impor-

tant transcription factor responsive to many signals via

mitogen-activated protein kinases (Wu and Janknecht,

2002), was expressed in mouse kidney at a signal intensity

of 146 (present call) but in the vitamin D receptor knock-

out mouse its expression was reduced to 20 (absent call), an

extremely important observation in this particular study be-

cause this gene would be detected by the double filtration

strategy but not if a signal intensity of 200 was used as the

only cutoff threshold.

The 65 chip-chip comparisons for determining signal

thresholds involved 14 experiments, 4 different types of

chips and 9 different tissues, and included biological, tech-

nical and cell line replicates. The thresholds we established

using such a wide range of replicate experiments should be

representative and robust enough to guide GeneChip data

analysis while also being as easy to use as traditional

threshold. Unlike traditional thresholds, signal thresholds

vary according to signal intensity and thus overcome the

weakness of the traditional 2-fold threshold which is nor-

mally too low for genes within the low signal intensity

range but too high for genes in the high signal intensity

range. Signal thresholds also have the advantage that the

threshold for a particular gene can be determined with 95%

confidence simply by examining the signal intensity of the

gene.

Though convenient, the use of a constant set of signal

thresholds for different experiments can be criticized be-

cause some experiments are more variable than others and

one set of thresholds may not be ideal for all type of experi-

ments. We addressed this potential problem by identifying

a linear relationship between the interarray variability β
which is a measure of experimental variation between two

replicate samples and the weighted average threshold δ
which is the weighted mean of six 95% confidence thresh-

olds from each replicate comparison, the linear relationship

making it possible to adjust the thresholds based on the ex-

tent of experimental variation in a particular experiment.

We validated the feasibility of this adjustment by directly

comparing the predicted thresholds with experimentally

determined thresholds and found no significant difference

between the two. User-adjustable signal thresholds are ap-

plicable to all types of experiments with different degrees

of variation but are particularly useful for those experi-

ments without replicates, these types of experiments ac-

counting for the majority of published microarray

experiments. Signal thresholds can either be used directly

as a guideline for microarray data analysis or three simple

steps can be followed to convert the signal thresholds into a

new set of thresholds to suit a specific experiment, these

steps being: 1) calculating the interarray variability β as

β = Σ[|Ai-Bi|/(Ai+Bi)]/n, where Ai is the signal intensity of

the ith gene in experiment A and Bi is the signal intensity of

the ith gene in the control (easily achieved using Excel®); 2)

predicting the weighted average threshold δ using

δ = 6.6157*β – 0.4325; and 3) converting the established

signal thresholds into a new set of thresholds (1.72*δ/0.78,

0.89*δ/0.78, 0.59*δ/0.78, 0.48*δ/0.78, 0.45*δ/0.78,

0.41*δ/0.78). The whole conversion procedures requires

less than 10 min using the Excel® spreadsheet and a hand

calculator.

Mills and Gordon (2001) have also developed an em-

pirical approach for eliminating noise from Affymetrix

mouse GeneChip® data sets in order to overcome the weak-

ness of traditional thresholds. In this case, Mills and

Gordon used three-dimensional plots to characterize noise

in the context of biological variation and summarized the

noise in the form of tables of look-up scores which they

used to evaluate the reliability of the `increase’ or `de-

crease’ in the calls produced by the Affymetrix software.

This approach is useful for initial screening and has proven

to be more effective than the traditional thresholds but has

the following drawbacks: the look-up tables were derived

from only 18 chip-chip comparisons of the same mouse

chips; the score system (particularly for a partner chip) has

no rules to follow and is difficult to remember; the use of

the score is still an arbitrary decision with no statistical ba-

sis. In contrast, the signal thresholds described in our pres-

ent paper were derived from 65 replicate comparisons

involving different samples and chips; the signal intensity

bins were grouped in increments of χi-1 (χi = 2*χi-1); and the

thresholds carry 95% confidence levels and offer signifi-

cantly enhanced power in predicting change compared to

traditional thresholds. Quantitative RT-PCR showed that

the use of signal-dependent thresholds produced three

times less false change calls than the use of the traditional

two-fold thresholds.

In summary, we have established user-adjustable,

signal thresholds for declaring significant changes in

Affymetrix GeneChip® data analyses. These thresholds

combine the user-friendly feature of traditional fold-change

thresholds with the confidence intervals of other statistical

treatments, offering a strategy to bridge the gap between a

widely-accepted but somewhat primitive methodology and

the sophisticated statistical approaches that can be difficult

to apply. Given the fundamental fact that variation is a

function of signal intensity for all types of microarray data,

the experimental approach to filtering data and defining

signal-dependent thresholds may be applicable to cDNA

arrays as well.
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