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Abstract

The problem of multicollinearity in regression analysis was studied. Ridge regression (RR) techniques were used to
estimate parameters affecting the performance of crossbred calves raised in tropical and subtropical regions by a
model including additive, dominance, joint additive or “profit heterosis” and epistatic effects and their interactions with
latitude in an attempt to model genotype by environment interactions. A software was developed in Fortran 77 to per-
form five variant types of RR: the originally proposed method; the method implemented by SAS; and three methods
of weighting the RR parameter λ. Three mathematical criteria were tested with the aim of choosing a value for the λ
coefficient: the sum and the harmonic mean of the absolute Student t-values and the value of λ at which all variance
inflation factors (VIF) became lower than 300. Prediction surfaces obtained from estimated coefficients were used to
compare the five methods and three criteria. It was concluded that RR could be a good alternative to overcome
multicollinearity problems. For all the methods tested, acceptable prediction surfaces could be obtained when the
VIF criterion was employed. This mathematical criterion is thus recommended as an auxiliary tool for choosing λ.
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Introduction

Many applications in animal breeding involve the

prediction of one variable as a function of several others.

The statistical technique most commonly employed for de-

riving prediction equations is ordinary least-squares regres-

sion analysis. When some of the explaining variables are

highly correlated the ordinary least-squares predictor, al-

beit unbiased, may have large variances (Bergmann and

Hohenboken, 1995). Ridge regression (RR) is an alterna-

tive technique to be employed when such ill-conditioning

problems occur (Hoerl, 1962).

Standard models presently used for the genetic evalu-

ation of crossbred beef cattle contain functions of up to four

covariates to account for breed differences and heterosis:

(direct and maternal) additive and dominance effects.

Many recent studies have indicated that accounting for

other genotypic effects may improve the accuracy of pre-

dicting performance of untested genotypes (Hirooka et al.,

1998; Arthur et al., 1999; Kahi et al., 2000; Mohamed et

al., 2001; Demeke et al., 2003). According to Brito et al.

(2002) and Piccoli et al. (2002) the following parameters

should be considered in a proper model to design

crossbreeding programs for specific regions, based on (pre)

weaning traits: additive direct and maternal contributions

from each breed; interactions between breeds in their addi-

tive contributions; direct and maternal dominance effects;

direct and maternal epistatic effects; and interactions be-

tween these genotypic components and environmental vari-

ables.

In the estimation of crossbreeding parameters, when

other genotypic effects (e.g. epistasis) are added to the ad-

ditive-dominance model multicollinearity may be a prob-

lem as reported by Kinghorn and Vercoe (1989), Cassady et

al. (2002) and Roso et al. (2005a).

The aim of this study was to compare different forms

of implementation of RR to overcome effects of

multicollinearity on the prediction of early growth perfor-

mance in crossbred animals raised in different latitudes, us-
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ing the model proposed by Brito et al. (2002) and Piccoli et

al. (2002).

Statistical background

Multicollinearity is defined as the existence of nearly

linear dependency among columns of the design matrix X

in the linear model y = Xβ + ε. It induces numerical insta-

bility into the estimates and has dire consequences on their

precision. It limits the size of the coefficient of determina-

tion and makes it increasingly more difficult to add unique

explanatory prediction from additional variables. It also

makes determining the contribution of each explanatory

variable difficult because the effects of these variables are

“mixed” or confounded due to collinearity. Coefficients

may have the wrong sign or an implausible magnitude

(Hair Jr et al., 1992).

Several criteria have been used to detect

multicollinearity problems. Draper and Smith (1998) sug-

gest the following: (1) check if some regression coeffi-

cients have the wrong sign, based on prior knowledge; (2)

check if predictors anticipated to be important based on

prior knowledge have regression coefficients with small

t-statistics; (3) check if deletion of a row or a column of the

X matrix produces surprisingly large changes in the fitted

model; (4) check the correlations between all pairs of pre-

dictor variables to see if any are surprisingly high; and (5)

examine the variance inflation factors (VIF).

Let Ri
2 be the squared multiple correlation coefficient

that result from the regression of xi against all other explan-

atory variables. The variance inflation of xi is then given

by:

VIF
1

1 Ri

i

2=
−

.

It is clear that if xi has a strong linear relation with

other explanatory variables, Ri
2 is close to 1 and VIF values

will tend to be very high. In the absence of any linear rela-

tion among explanatory variables, Ri
2 is zero and VIF

equals 1. A VIF value greater than 1 indicates deviation

from orthogonality and tendency to collinearity (Chatterjee

and Price, 1991). There is no well-defined critical value

that characterizes large VIF. Leclerc and Pireaux (1995)

suggest that VIF values exceeding 300 may indicate the

presence of possibly troublesome multicollinearity. Previ-

ous work by these authors (Pimentel et al., 2004) has shown

that this suggestion is valuable.

Examining a pairwise correlation matrix of explana-

tory variables might be insufficient to identify collinearity

problems because near linear dependencies may exist

among more complex combinations of regressors, that is,

pairwise independence does not imply independence at all.

Because VIF is a function of the multiple correlation coeffi-

cient among the explanatory variables, it is a much more in-

formative tool for detecting multicollinearity than the

simple pairwise correlations.

Many procedures have been suggested in an attempt

to overcome the effects of multicollinearity in regression

analysis. Freund and Wilson (1998) summarize them into

three classes: variable selection, variable redefinition and

biased estimation. These first two approaches actually rep-

resent some form of model reparametrization strategy for

dealing with the problems caused by multicollinearity. An-

other alternative to be considered is the use of a priori in-

formation.

Lipovetsky and Conklin (2001) argue that, even in the

presence of multicollinearity, it can be desirable to keep all

possible variables in the model and to estimate their com-

parative importance in their relation to the response vari-

able. This analysis strategy is justified because all available

variables are not exact representation of each other. Rather

each of the explanatory variables plays its own specific role

in fitting and describing the behavior of the response vari-

able.

Gau and Kohlhepp (1978) state that it should be rec-

ognized that any attempt to heuristically design simpler

models with possibly lower levels of multicollinearity

would explicitly require selection of certain variables

which may lead to: (1) model specification errors; and (2)

sacrificing of information. Every important variable, from

a theoretical perspective or a priori knowledge, must be

considered in model definition. When multicollinearity is a

problem, biased estimation methods, such as RR, should be

faced as the next step in the analysis procedure, after mod-

eling measures, which include variable selection and/or re-

definition. In the words of Leclerc and Pireaux (1995):

multicollinearity is not an inferential ground on which one

can objectively reject a regression, a model or an estimate.

The ‘true’ model may well be ill-conditioned after all.

Ridge regression is characterized by the addition of

small positive quantities (λ) to the diagonal elements of the

coefficient matrix, as a means to reduce linear dependen-

cies observed among its columns. A solution vector is thus

obtained by the expression �*β λ= + −(X'X I) X'y1 where I is

an identity matrix of the same order as X’X. Perhaps the

best way for choosing the RR parameter (λ) would be the

minimization of the expected squared difference between

the estimate and the parameter being estimated (MSE).

This would reveal the ideal balance between increase in

bias and reduction in variance of the estimator (PEV), re-

membering that MSE = PEV + bias2. Since bias estimation

is left to simulation studies, analyses of real data demand

other, sometimes subjective, arguments.

Some alternative forms of implementation of RR

have recently been suggested. Aldrin (1997) present the

length modified RR, which seems like a combination of

James-Stein and RR: James-Stein estimators modify the or-

dinary least squares solution by shrinking the length of �β.

Foucart (1999) present a partial RR, showing that the addi-

tion of a constant to some of the diagonal elements of the
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matrix is sufficient for obtaining satisfactory estimates of

the regression coefficients. The interest of such an ap-

proach, in contrast to classical RR, is that: by modifying

only the diagonal terms involved in collinearity, one can get

satisfying estimates of the regression coefficients overesti-

mated by least-squares estimator, without perturbing the

other regression coefficients.

Materials and Methods

Data and model

Data on 109,614 records of Hereford (Bos taurus) x

Nelore (Bos indicus) calves born from 1974 to 1998, dis-

tributed in 4,665 contemporary groups (CG), and raised in

29 farms in the Brazilian states of Mato Grosso, Goiás,

Mato Grosso do Sul, São Paulo, Paraná and Rio Grande do

Sul, located between latitudes 14° S and 31.5° S, were used.

Each of these farms also runs its own breeding program and

they produce Hereford and Braford genetics (southern

states) or Nelore and Braford genetics (central regions).

This data set does not follow the general pattern of using

imported and improved genetics on local unimproved pop-

ulations.

A large proportion of calves (43.7%) were produced

by artificial insemination, mostly from highly selected na-

tive Nelore and Hereford sires. Some Braford semen was

imported, mainly from Argentina and most of these sires

were 3/8 Brahman (Bos indicus). Given that Nelore took

part in the formation of Brahman no distinction was made

with respect to the origin of the Braford sires. The average

sire had a Nelore composition of 0.21 ± 0.33.

Table 1 presents joint and marginal frequencies of re-

cords across latitudes and breed compositions of calves.

Breed compositions were grouped in classes of eighths

form Hereford (0) to Nelore (1).

The model related pre-weaning average daily gain

(ADG) to direct and maternal additive (da and ma), domi-

nance (dd and md), epistatic (de and me) and joint additive

(dc and mc) effects. Covariates for da and ma were defined

by expected Nelore contribution to the genetic make up of

each calf and its dam. Dominance effects were estimated

via direct and maternal coefficients of heterozygosity.

Epistatic effects were calculated as the average hetero-

zygosity present in the gametes which generated each off-

spring, that is, the average of the heterozygosity coeffi-

cients of the parents (de) and maternal grandparents (me)

of an offspring (Fries et al., 2000a; Roso et al., 2005b). Co-

efficients of heterozygosity are relative to the maximum of

1.00 in generation F1, and coefficients of epistatic effects,

as calculated here, are relative to the maximum of 1.00 in

generation F2. Covariates for dc and mc were calculated as

dc = da*(1 - da) and mc = ma*(1 - ma), respectively.

When ancestral breed composition was not available, inter

se mating was assumed. Sires, dams, maternal grandsires

and maternal granddams had complete information to cal-

culate their heterozygosities with the following frequen-

cies: 0.76, 0.76, 0.74, and 0.73, respectively.

Contemporary groups were defined as farm x year of

birth x sex x management group and julian weaning date.

Attempting to save processing time and computational

costs, a previous absorption (Searle, 1971) of the CG effect

was carried out. Previous absorption of CG effects had re-

moved the main effects of latitude, since animals in the

same CG were all raised at the same latitude. Consequently,

when a covariate for latitude was included in the model as a

main effect, null parameter estimates were obtained. Lati-

tude was then included in the model as a “modifier agent”

in the form of interactions between genotypic and linear

and quadratic latitude effects.

After absorption of CG effect, the final regression

model used to analyze the data was as follows:

y = Xβ + Zγ + Wδ + ε,

with

E(ε) = 0 and V(y) = V(ε) = σ2In,
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Table 1 - Frequencies of records across latitudes and breed compositions of the calves, grouped in classes of eighths and expressed as the expected

proportion of Nelore.

Genotype

range

Latitude (° S) Totals

14.0 16.0 21.0 21.5 22.0 23.0 29.0 30.0 31.0 31.5

0.000 to 0.124 15 5 - 2,287 2 2,202 30 13,870 31,114 1,783 51,308

0.125 to 0.249 - - - - 2 - 72 147 370 67 658

0.250 to 0.374 9 36 9 - 90 336 723 3,319 3,595 1,684 9,801

0.375 to 0.499 37 15 54 - 155 - 983 6,284 4,662 2,704 14,894

0.500 to 0.624 2,195 12,383 1,359 - 2 695 180 1,162 1,817 634 20,427

0.625 to 0.749 1,845 46 163 - - - 347 65 58 186 2,710

0.750 to 0.874 1,541 989 322 - - 11 331 12 307 65 3,578

0.875 to 1.000 449 5,320 312 - - 49 71 3 3 31 6,238

Totals 6,091 18,794 2,219 2,287 251 3,293 2,737 24,862 41,926 7,154 109,614



where y is the vector of observed ADG; β is a vector of un-

knowns corresponding to the other environmental effects

included in the model as covariables: linear and quadratic

effects of age of dam nested in sex of calf, linear and qua-

dratic effects of age of calf, and quadratic-quadratic spline

function of julian date of birth; γ is the vector of unknowns

corresponding to the eight genotypic effects considered; δ
is the vector of unknowns for the interactions between the

eight genotypic effects and linear and quadratic latitude ef-

fects; X, Z and W are the respective data matrices; and ε is a

stochastic disturbance term.

Table 2 presents the basic descriptive statistics for the

response and explanatory variables. By definition, joint ad-

ditive coefficients range from 0.00 for purebreds to 0.25 for

F1 offspring. All other genotypic covariates varied from

0.00 to 1.00, with the exception of me, for which the maxi-

mum value was 0.75. This means the data set contained F2

offspring but no F2 dams.

Statistical procedures

Multicollinearity diagnosis was performed using VIF

values, eigenvalues of the correlation matrix and the condi-

tion number. The VIF values for each covariate were calcu-

lated as the product of diagonal element of the coefficient

matrix, with respect to the covariate in question, by the cor-

responding diagonal element of the inverse of the coeffi-

cient matrix, as in Maindonald (1984). Eigenvalues of the

correlation matrix and the condition number were obtained

using the COLLINOINT option of the REG procedure of

the SAS program (SAS Inst., Inc., Cary, NC).

A Fortran 77 program was developed to perform

some variants of ridged multiple linear regression analysis

and test three criteria for choosing the RR parameter (λ).

Five implementation methods of RR were performed:

�β λ
RR

1(X'X I) X'y= + − . (1)

The original implementation of RR, as presented by

Hoerl (1962).

[ ]� (β λSAS XX

1

Xy
R I+ D ) R=

−
. (2)

The RR technique implemented by SAS, as described

by Freund and Littell (2000), where RXX is the correlation

matrix of explanatory variables, RXy is the vector of corre-

lations between the response and the explanatory variables,

and Dλ is a diagonal matrix with λ as the value of the diago-

nal elements.

�β λ
WRR

1(X'X W) X'y= + − , (3)

where W is a diagonal matrix whose elements are the quo-

tients of the diagonal elements of X’X by the smallest ele-

ment of it. In this method, λ values are weighted by the ratio

of the sum of squares of each covariate by the smallest sum

of squares, in an attempt to adjust for the magnitude of each

element of X’X.

�β λ
VIF

1(X'X F) X'y= + − , (4)

where F is a diagonal matrix, such that F = {VIFi} if VIFi is

greater than 300 and F = {0} otherwise. Here, the biasing

factor (λ) is adjusted for the degree of involvement of each

covariate in multicollinearity. The VIF values employed on

weighting the RR parameter were the ones found for each

covariate at λ = 0.
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Table 2 - Means, standard deviations (SD), minimum and maximum values for the co-variables included in the record of each calf. The total number of

observations was 109,614.

Variable 1 Mean SD Minimum Maximum

Average daily gain (kg/day) 0.67 0.16 0.25 1.50

Age of dam (years) 5.5 2.6 2.0 20.0

Weaning age (days) 201.2 29.6 100.0 320.0

Julian date of birth 269.0 49.1 1.0 365.0

Direct additive (da) 0.27 0.29 0.00 1.00

Maternal additive (ma) 0.34 0.40 0.00 1.00

Direct joint additive (dc) 0.11 0.12 0.00 0.25

Maternal joint additive (mc) 0.07 0.11 0.00 0.25

Direct dominance (dd) 0.31 0.36 0.00 1.00

Maternal dominance (md) 0.15 0.24 0.00 1.00

Direct epistasis (de) 0.13 0.19 0.00 1.00

Maternal epistasis (me) 0.12 0.20 0.00 0.75

Latitude (° S) 26.6 6.4 14.0 31.0

1
da and ma = expected proportion of Nelore in the calf and its dam; dc and mc = products [da*(1-da)] and [ma*(1-ma)]; dd and md = expected breed

heterozygosity (relative to the maximum of 1.00 in the F1) in calf and dam; de and me = average of estimated heterozygosities in parents and maternal

grandparents of the calf.



�β λ
CFW

1(X'X C) X'y= + − , (5)

where C is a diagonal matrix whose elements are the prod-

ucts of the corresponding elements of W and F. This combi-

nation of methods 3 and 4 is intended to adjust λ values for

the magnitude of the elements of X’X and its involvement

in multicollinearity, simultaneously.

The program was developed in a way to perform RR

by the inclusion of a matrix of pseudo-observations (Law-

son and Hanson, 1995) in each analysis, and for each range

of λ values to be tested. If there are n observations, repre-

sented by yn×1, and p explanatory variables (Xn×p), then the

original data matrix is:

X y

0 0

n p n 1× ×⎡
⎣⎢

⎤
⎦⎥
.

Then, given that S is a diagonal matrix whose diago-

nal entries equal the square root of λ (for λ being a given

real number), it is necessary to add p pseudo-observations

to form the new data set:

X y

0 0 S 0

X y

S 0

n p n 1

p p p 1

n p n 1

p p p 1

× ×

× ×

× ×

× ×

⎡
⎣⎢

⎤
⎦⎥
+

⎡

⎣⎢
⎤

⎦⎥
=

0 0 ⎡

⎣⎢
⎤

⎦⎥
.

Direct solutions to multiple regression problems will

begin by triangularizing the following matrix:

X' S'

y' 0'

X y

S 0

X'X + S'S X'y + S'0

y'X + 0'S y'y

⎡
⎣⎢

⎤
⎦⎥
×

⎡
⎣⎢

⎤
⎦⎥

=
+ 0'0

X'X + S'S X'y

y'X y'y

⎡
⎣⎢

⎤
⎦⎥

=

⎡
⎣⎢

⎤
⎦⎥
.

The coefficient matrices of real observations (X’X)

were all the same, and thus all the variables contemplated in

the model were defined in the same way, in all methods, ex-

cept in method 2. What was actually changing from one

method to another was the matrix of pseudo-observations

that was added to the data set. In method 1 we had S’S = λI;

in method 3, S’S = λW; and so forth. Following Marquardt

(1970), the RR estimator is then seen to be a type of

weighted average between the actual data and other data (in

Bayesian terms, the “prior information”) for which the re-

sponse values are arbitrarily set to zero.

Method 2 operates on standardized variables and the

change in notation (RXX and RXy) was made in an attempt to

characterize that they are correlation matrices. Dλ is actu-

ally the matrix λI. It must be emphasized that the vector of

estimates in this method is defined by a different equation,

which makes evident that off-diagonal entries are added to

the correlation matrix.

Three mathematical criteria for choosing λ were eval-

uated: the sum and the harmonic mean of absolute Student-t

values of the variables involved in collinearity, and their

VIF. A maximum value for the sum of the absolute t-values

(sat) may indicate the maximum reduction in standard er-

rors of the estimates, with the possibly lowest λ (Fries et al.,

2000b). A maximum value for the harmonic mean of the

absolute t-values (hat) may suggest higher uniformity in

terms of statistically significant estimates (Piccoli et al.,

2002). The VIF criterion consisted of the choice of λ at

which all VIF values were lower than 300 (Leclerc and

Pireaux 1995).

Comparisons of the five types of implementation and

three criteria were made under the exam of the prediction

surfaces described by the estimates obtained for each im-

plementation and criterion. Predicted values were calcu-

lated for nine genotypes, from pure Hereford to pure Nelore

by eighths, at six latitudes: 16, 19, 22, 25, 28, and 31° S. All

predicted values were added by a constant (0.61 kg/day)

corresponding to an average environmental effect.

Results

The presence of multicollinearity was clearly evident

in this analysis. Nine out of the 33 eigenvalues (9 environ-

mental + 8 genotypic + 16 interaction covariates) were

lower than 0.001 showing how much the correlation matrix

approached singularity. The condition number, which can

be defined by the ratio of the largest to the smallest

eigenvalue, is used here as another reference for revealing

this situation. Belsley et al. (1980) suggest that moderate to

strong relations are associated with condition numbers of

30 to 100. The one observed in this analysis was 2969,

which is almost a hundred times what is considered to be

critical, having in mind that COLLINOINT option outputs

the square root of this ratio (see Freund and Littell, 2000).

Some VIF values were in the hundreds of thousands, char-

acterizing intense association among the explanatory vari-

ables.

Figure 1 shows the primary (“subjective”) criterion

for choosing the RR parameter λ, which is done by plotting

the values of estimated coefficients, referred to as the ridge

trace (a), and respective Student t-values (b) against succes-

sive values of λ, for implementation methods 1 to 5. Note

that, for better visualization, the range of λ values varies

from one method to another.

Figure 2 shows the prediction surfaces described by

estimated coefficients obtained when sat (a), hat (b) and

VIF (c) criterion was used for choosing λ, for each of the

five RR methods. Genotypes range from Hereford (0) to

Nelore (1).

Discussion

Figure 1b1 shows an increase in absolute t-values can

be observed until a certain point, after which they begin to

decrease. The largest values for sat and hat were obtained

at λ = 0.08 and λ = 0.06, respectively. For all breed compo-

sitions the predicted ADG values were lower at intermedi-

540 Ridge regression in crossbreeding analysis



ate latitudes than at extreme latitudes (Figures 2a1 and

2b1). This is particularly evident for the Nelore genotype. It

is very unlike that B. indicus cattle, selected to produce in

tropical environments, would show greater performance in

the state of Rio Grande do Sul (latitude 31° S – subtropical

Brazilian region) than in São Paulo (latitude 23° S).

Looking at the ridge trace in Figure 1a1 we can see

that the changes in the estimated coefficients still continue

as λ increases towards values much larger than 0.06 or 0.08.

It may suggest that using sat or hat criteria would not pro-

vide a λ value that represents enough change in estimated

coefficients. In this case, not enough to provide prediction

surfaces that meet the expectations from a biological per-

spective. In fact, the prediction surfaces obtained with 0.06

and 0.08 (Figures 2a1 and 2b1) are the same as the one for

λ = 0, that is, for ordinary least-squares regression. One

could speculate that the lack of practical coherence shown

by these surfaces could be one of the reasons why attempts

to account for other than additive-dominance genotypic ef-

fects are usually discarded.

An effective reduction in VIF occurs at much greater

λ values. It is only at λ = 190 that they all become lower

than 300 (Table 3). The prediction surface described for

this λ (Figure 2c1) shows a continuous decrease in the pre-

dicted ADG of Nelore calves, as latitude gets higher. Better

performance of crossbred animals compared to purebreds

confirms a beneficial heterotic effect at all latitudes except

at lower ones, where Nelore calves did better. Barlow

(1981) observed that heterosis for growth among ruminants

appears to be favored by a benign nutritional environment.

Under low input conditions, genes for adaptation seem to

have much more importance than genes for high metabo-

lism, aggregated to genotypes by Hereford proportion, plus

heterotic effects.

Method 2 provided very different results from

method 1. Figures 1a2 and 1b2 show a sharp decrease in pa-

rameter estimates at very small λ values, while t-values

keep rising. Largest sat and hat occur at λ = 2.65 and

λ = 0.35, respectively. A drastic reduction in VIF is veri-

fied. They are all lower than 300 at λ = 0.0004 (Table 3).

This greater impact of RR implemented by SAS on

parameter estimates can be explained by the fact that, in this

method, elements are added to the whole correlation ma-

trix, not only to its diagonal entries. In this way, it may pos-

sibly introduce a larger amount of bias in the analysis.

Another point is related to variable standardization. Since

SAS performs the addition of RR parameters on correlation

matrices, smaller λ values may produce a greater effect

than what could be expected on coefficient matrices. One

may also have in mind that, in this method, λ values are

added to elements corresponding to all covariates included

in the model, with no distinction about their involvement in

multicollinearity.

Figures 2a2 and 2b2 show that, when sat and hat cri-

teria were used, this method of RR flattened the prediction

surfaces. These criteria may have provided too large λ val-

ues, resulting in an excessive shrinkage of parameter esti-

mates.

The surface corresponding to the VIF criterion (Fig-

ure 2c2) is very similar to the one obtained for the same cri-

terion in method 1, except that it shows a slightly larger

advantage for Nelore calves at lower latitudes. Since the

greater impact of this method over parameter estimates is

also valid for VIF values, the criterion based on them led to

a more acceptable surface, and its shape corresponded to a

more realistic situation.
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Figure 1 - Parameter estimates (a) and respective Student t-values (b)

against successive values of λ, for the implementation of methods 1 to 5.



In method 3, the RR parameter was weighted accord-

ing to the size of each diagonal entry of X’X (a sort of stan-

dardization process). All genotypic covariates are expres-

sed in percentage, ranging from 0 to 1, except for joint

additive effects, for which maximum value is 0.25. This

may be the reason why the results obtained with this

method are almost the same as those from method 1 (com-

pare first and third lines of Figures 1 and 2). Values of λ
were 0.0022, 0.0014 and 0.26 according to sat, hat and VIF

criterion, respectively. The effects of this kind of adjust-

542 Ridge regression in crossbreeding analysis

Figure 2 - Predicted average daily gain (ADG) surfaces described by estimated coefficients obtained according to the sum of absolute t-values (sat) (a),

the harmonic mean of the absolute t-values (hat) (b) and the variance inflation factor (VIF) (c) criterion, for implementation of methods 1 to 5. Genotypes

ranged from Hereford (0) to Nelore (1).



ment could possibly be better evidenced with other data

sets, where covariates are expressed in more divergent units

of measurement.

Method 4 included an adjustment of λ values accord-

ing to the involvement of each covariate in collinearity.

Maximum sat and hat were reached at λ = 0.29 and

λ = 0.016, respectively. All VIF became lower than 300 at

λ = 0.01 (Table 3). It can be seen in Figures 2a4, 2b4 and

2c4 that, in this method, there could be observed an agree-

ment amongst the three criteria, specially hat and VIF.

These surfaces are very close to the ones achieved when the

VIF criterion was employed in methods 1 to 3, making

method 4 the most robust one with respect to the criteria for

choosing λ.

The expectation (at least ours) about method 5, which

is a combination of 3 and 4, was that it would repeat the

same path observed in method 4, but for lower λ values. In-

stead, it occurred only for VIF and hat (to some extent).

The λ values defined by sat, hat and VIF criterion were

0.0275, 0.00022 and 0.00004, respectively. Perhaps the

huge magnitude of the weights employed in this method

had “broken down” the factor that provided such a coinci-

dence amongst criteria in method 4. Vinod (1976) was

probably right when he stated that “finding a λ for any spe-

cific problem remains something of an art”.

The results of this work indicate that there is always

some value of λ that improve regression analysis output

(estimated coefficients or predicted values). This value

may coincide with the point where the relationship between

error variance and bias reaches its best configuration, as

suggested by Hoerl and Kennard (1970). Variation of the

value used in the five methods actually comes from the dif-

ference in magnitude of weights employed in each of them.

Except in method 1, what was added to the coefficient ma-

trix was, in fact, larger than the λ value informed to the pro-

gram.

As pointed out by Marquardt (1970), the RR and the

generalized inverse estimators share many properties: both

are superior to least-squares for ill-conditioned problems;

for both classes of estimators the degree of bias can be

bracketed within a reasonable range in any given instance

and practical results can be obtained. The generalized in-

verse solution is especially relevant for precisely zero

eigenvalues. The RR solution is computationally simpler

and it seems better suited to coping with very small, but

nonzero, eigenvalues.

In the analysis described in the present paper, with

this particular data set the VIF criterion has emerged as the

most robust way for choosing λ, although consideration of

the classic reference (current estimates) is not discarded.

Here, examination of the signs and values of the estimated

coefficients was unfeasible because of the inclusion of in-

teraction terms between latitude and genotypic effects.

In our study, the key point was to look at prediction

surfaces and carefully check that they were reasonable.

This procedure can be interpreted from a Bayesian point of

view as the specification of 5 or 10 prior distributions cov-

ering a plausible range followed by the comparison of the

closeness of various alternative regression procedures to

the 5 or 10 posterior means. Both approaches offer some

clarification of the real problem posed by a given data set: if

the correct analysis depends critically on the model and the

prior information adopted, over some reasonable range, the

researcher should not expect any specific procedure to be

automatically applicable (Dempster et al. 1977).

In conclusion, ridge regression (RR) can be a good al-

ternative to overcome multicollinearity problems not only

when the interest is interpretation of signs and values of es-

timates but also when regression analysis is made for pre-

diction purposes. The fourth method of implementation of

RR was the most robust one, with respect to the criterion for

choosing the RR parameter λ. Nevertheless, when the VIF

criterion was used, all methods provided prediction sur-

faces showing quite acceptable interpretation from a bio-

logical perspective. This mathematical criterion for

choosing λ is thus recommended as an indicator tool and

should not exclude an examination of the signs and values

of the estimated coefficients and a good understanding of

the phenomenon under study.
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Table 3 - Maximum variance inflation factor (VIF) values according to the ridge parameter (λ) for each implementation method of ridge regression.

Method 1 Method 2 Method 3 Method 4 Method 5

λ maxVIF λ maxVIF λ maxVIF λ maxVIF λ maxVIF

0.0 371,906.4 0.0000 371,906.4 0.00 371,906.4 0.0000 371,906.4 0.00000 371,906.4

46.0 1,090.1 0.0001 1,434.3 0.06 1,102.8 0.0024 714.3 0.00001 1,004.7

92.0 590.9 0.0002 680.8 0.12 585.9 0.0048 454.2 0.00002 559.5

138.0 405.6 0.0003 404.5 0.18 400.8 0.0072 354.9 0.00003 387.9

190.0 299.6 0.0004 269.6 0.26 282.9 0.0100 293.3 0.00004 296.9
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