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Abstract

Terpenes are a very large and structurally diverse group of secondary metabolites which are abundant in many es-
sential oils, resins and floral scents. Additionally, some terpenes have roles as phytoalexins in plant-pathogen rela-
tionships, allelopathic inhibitors in plant-plant interactions, or as airborne molecules of plant-herbivore multitrophic
signaling. Thus the elucidation of the biochemistry and molecular genetics of terpenoid biosynthesis has paramount
importance in any crop species. With this aim, we searched the CitEST database for clusters of expressed sequence
tags (ESTs) coding for terpene synthases. Herein is a report on the identification and in silico characterization of 49
putative members of the terpene synthase family in diverse Citrus species. The expression patterns and the possible
physiological roles of the identified sequences are also discussed.
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Introduction

Terpenes are found widely distributed in the plant

kingdom, from lichens and algae to higher plants. Although

terpenes cover a wide range of compounds with diverse

structure, the word terpene has been frequently associated

with essential oils, which are volatile compounds belong-

ing to some terpene classes. Terpenes have several applica-

tions in the food and cosmetic industry in the production of

flavors and fragrances (Croteau et al., 2000; Phillips et al.,

2006; Tholl, 2006).

Terpenes are classified according to the following

classes: hemiterpenes (C5H8); monoterpenes (C10H16); ses-

quiterpenes (C15H24); diterpenes (C20H32); sesterterpenes

(C25H40); triterpenes (C30H48); tetraterpenes (C40H64) and

polyterpenes [(C5H8)n]. Hemiterpenes are not found in ap-

preciable amounts as free compounds but are usually bound

to other non-terpene compounds, such as the purine base

adesonine and the plant hormone zeatin (Goodwin, 1967;

Croteau et al., 2000; Phillips et al., 2006; Tholl, 2006).

Monoterpenes consist of two condensed basic units of iso-

pentenyl pyrophosphate (IPP). Accordingly, sesquiter-

penes have three, diterpenes four, sesterterpenes five, triter-

penes six and tetraterpenes eight IPP molecules,

respectively. Polyterpenes are all terpenes containing more

than eight isoprene units, which include all natural rubbers

(Goodwin, 1967; Croteau et al., 2000).

Elucidation of the biochemistry and molecular genet-

ics of terpenoid biosynthesis has made rapid progress in re-

cent years (Rohdich et al., 2005). The genes coding for the

main enzymes involved in this biological process are being

identified, and all the members of the Arabidopsis terpene

synthase gene family have been characterized following the

sequencing of the whole genome of this model plant

(Aubourg et al., 2002). Figure 1 shows the general scheme

for the synthesis of the precursor molecules of the main

terpene classes. The starting reaction is the isomerization of

IPP to dimethylallyl pyrophosphate. Both compounds con-

dense to form the first parental structure, geranyl-PP. Sub-

sequently, the other structures are formed by sequential

addition of IPP (Phillips et al., 2006; Tholl, 2006). Two

farnesyl-PP are condensed to form the parent molecule

squalene, the precursor of triterpenes, and two geranyl-PP

are condensed to form phytoene, the parent molecule for

tetraterpenes (Goodwin, 1967; Croteau et al., 2000;

Rohdich et al., 2005; Phillips et al., 2006; Tholl, 2006).

The biological functions of the many terpene mole-

cules in plants are linked not only to the biosynthesis of hor-

mones, but also to protection against UV radiation and

photo-oxidative stress. Additionally, terpenes are also re-

lated to thermal protection, pollinator attraction, membrane

stabilization, resistance against insects and microorgan-
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isms, plant-plant signaling, etc. (Steele et al., 1998; Trapp

and Croteau, 2001; Copolovici et al., 2005; Baldwin et al.,

2006; Keeling and Bohlmann, 2006).

In Citrus spp, terpene molecules belonging to differ-

ent classes are produced especially in leaves, fruit epider-

mis (flavedo) and fruit juice. These terpenes have special

economic interest, as they are the main components of Cit-

rus essential oils and some of them (carotenoids) give the

Citrus juice its special color. Additionally, carotenoids are

well known to be important to human health. Several bio-

technological approaches have been taken to increase such

compounds in food (Botella-Pavia and Rodriguez-Con-

cepcion, 2006). There are several reports on the composi-

tion of terpenes in several Citrus species, mainly regarding

the essential oil composition (Ruberto and Rapisarda,

2002; Sawamura et al., 2005; Verzera et al., 2005). The ar-

omatic components of citrus are classified in two catego-

ries: those present in the oil from the flavedo and juice, and

those soluble in the water and components of the juice.

Monoterpene d-limonene is the main component of oil

from the flavedo, with concentrations over 85% of the oil

fraction. In the Pêra variety of orange, the concentration

may reach up to 93% while in the Tahiti variety of lime it

ranges from 50 to 60%. In addition to d-limonene, other

terpenes found in the flavedo oil fraction are linalool, gera-

niol, citronellol, α-terpineol, valencene, mircene, α-pine-

ne, etc. (Ruberto and Rapisarda, 2002; Sawamura et al.,

2005; Verzera et al., 2005).

Thus, due to the importance of Citrus terpenes to the

Brazilian economy (Boteon and Neves, 2005), we under-

took a genomic approach for the characterization of the Cit-

rus terpene synthase gene family by analyzing the CitEST

database of Citrus expressed sequence tags. We have iden-

tified 49 putative members of the terpene synthase family

in diverse Citrus species and we suggest their possible bio-

logical roles based on their expression patterns and on se-

quence comparisons with other terpene synthases that have

already been functionally characterized in other plant spe-

cies.

Material and Methods

Searching Citrus EST homologs for terpene
synthases

The clustered expressed sequence tags (ESTs) from

the CitEST project database were used as a primary source

of data for our analyses. These sequences were assembled

from ESTs obtained from the sequencing of several Citrus

spp. cDNA libraries, made from different tissues and vari-

ous physiological states (see other papers in this issue for

details on library construction and sequencing). Nucleotide

and amino acid sequences from other terpene synthase

genes were obtained from The National Center for Biotech-

nology Information (NCBI). Searches for terpene synthase

sequences in the CitEST database were conducted using the

tBLASTN module that compares the consensus amino acid

sequence with a translated nucleotide sequences database

(Altschul et al., 1997). We used as a query a consensus

terpene synthase sequence obtained by aligning all

Arabidopsis thaliana terpene synthase protein sequences

(Aubourg et al., 2002). All sequences that exhibit a signifi-

cant alignment (e-value lower than 10-5) with the consensus

were retrieved from the CitEST database. All retrieved se-

quences were then re-inspected for occurrence of terpene

synthase conserved motives using the InterProScan.

Phylogenetic analysis and expression patterns of
putative Citrus terpene synthases

Amino acid sequences were used for all the phylogen-

etic analyses. Sequence alignments were performed With

ClustalX (Thompson et al., 1994) using default parameters,

but the final alignment was visually inspected and manu-

ally corrected. The MEGA software, version 2.0 (Kumar et

al., 2000) was used for the phylogenetic analysis. Average

p-distances were high so the Poisson model was used to

provide unbiased estimates of the number of substitutions

between sequences. Phylogenetic trees were obtained using

parsimony and/or genetic distance calculations. Neighbor-

joining (Saitou and Nei, 1987) and Bootstrap (with 1000

replicates) trees were also constructed.

For each EST-contig, the frequency of reads in the se-

lected libraries was calculated. This procedure requires a

normalization that is accomplished by dividing the total

number of reads in the specific library by the total number

of reads in all libraries and then dividing the number of

Dornelas and Mazzafera 833

Figure 1 - General scheme of the biosynthesis of different terpene classes.

The precursor IPP is biosynthesized in two different pathways, in plastids

and cytosol, which involve similar reactions, but performed by specific

enzymes in different compartments (dashed lines). In the cytosol, IPP will

be the precursor of sequiterpenes and triterpenes, while monoterpenes,

diterpenes and tetraterpenes are formed in plastids. HMG-CoA =

hydroxymethyl glutaryl-CoA; IPP = isopentenyl pyrophosphate; DMAPP

= dimethylallyl pyrophosphate; GPP = geranyl pyrophosphate;

FPP = farnesyl pyrophosphate; GGPP = geranyl-geranyl pyrophosphate;

GFPP = geranyl-farnesyl pyrophosphate.



reads of each EST-contig by the ratio found for each li-

brary. The results were cast in a matrix and a hierarchical

clustering was performed, using the Cluster and Tree View

programs (Eisen et al., 1998). The pattern of gene expres-

sion was displayed as color-coded arrays of EST-contigs,

using a color scale representing the number of reads from a

specific library in each EST-contig.

Results

Identifying Citrus spp putative terpene synthase
genes

Despite the fact that the whole genome of the model

plant Arabidopsis thaliana had been completely sequenced

four years ago, the function of only three, out of the 32

Arabidopsis terpene synthase genes (Aubourg et al., 2002),

has been described to date. These are the AtTPSGA1 gene

for copalyl diphosphate synthase (Sun and Kamiya, 1994)

and the AtTPSGA2 transcript which encodes kaurene syn-

thase (Yamaguchi et al., 1998), both of which are involved

in the formation of gibberellins, and the AtTPS10 transcript

for myrcene/ocimene synthase (Bohlmann et al., 2000) re-

quired for the formation of acyclic monoterpenes. In an ini-

tial attempt to identify the members of the Citrus terpene

synthase gene family, we have performed an in silico

screen of the CitEST database for putative terpene synthase

sequences. This exhaustive sequence search detected 49

unique assembled Citrus spp EST sequences.

We started our analysis by detecting conserved se-

quence motifs within the putative Citrus terpene synthase

proteins. In pairwise comparisons of all predicted Citrus

terpene synthases to all Arabidopsis AtTPS proteins, over-

all sequence identity varies widely from 18% (LT33-C1-

003-056-E04 and AtTPS21) to 91% (CS00-C1-100-123-

A05 and AtTPGA1). These sequence comparisons allowed

the construction of the distance-based tree shown in

Figure 2. For this analysis, we considered all Citrus spp

EST clusters found within the CitEST database (we used

the name of the founder EST sequence to name the entire

sequence cluster), all Arabidopsis TPS and all publicly

available Citrus terpene synthase sequences available at

GenBank (as of May 2006). We adopted the separation of

the terpene synthases into classes, as suggested by Aubourg

et al. (2002).

When the putative Citrus terpene synthase EST

contigs were long enough to allow the complete encoded

protein sequences to be deduced, their size ranged from 547

to 617 amino acids, which corresponds to the size of known

monoterpene synthases, sesquiterpene synthases and diter-

pene synthases of secondary metabolism (Bohlmann et al.,

1998; Aubourg et al., 2002). Variation in length within this

class of terpene synthase could be attributed to the presence

or absence of putative plastid transit peptides (Figure 1).

Most terpene synthases encoded by class-III genes

contain variations of a conserved motif, RR(x)8 W, close to

834 Citrus terpene synthases

Figure 2 - Phylogenetic tree of the Citrus putative terpene synthase family

members, the Arabidopsis terpene synthase family (AtPS) and representa-

tive Citrus terpene synthases of known function. The neighbor-joining

tree was generated from an alignment of amino acid sequences. Nodes

supported by bootstrap values higher than 75% are shown. For designation

of the AtTPS genes see Aubourg et al. (2002). For characterized Citrus se-

quences see Sharon-Asa et al. (2003) and Shimada et al. (2004; 2005).

CA: Citrus aurantium; CG: C. aurantifolia; CR: C. reticulata; CS: C.

sinensis, LT: C. latifolia; PT: Poncirus trifoliata. Shadowed sequences

contain predicted signaling peptides directing them to the plastid.



the N-terminus (Bohlmann et al., 1998; Aubourg et al.,

2002). The RR(x)8 W motif is absolutely conserved in most

Citrus sequences that resemble typical monoterpene syn-

thases. There was a clade within this group that contained

only Arabidopsis-derived sequences (AtTPS02, AtTPS 03,

AtTPS 10, AtTPS 23 and AtTPS 24; see Figures 2 and 3)

and it has been reported that these proteins contain varia-

tions on the RR(x)8 W motif; however, these variations

have as yet unknown biological implications (Aubourg et

al., 2002).

Attributing putative functions to Citrus putative
terpene synthases by sequence comparisons

Comparison of the predicted Citrus terpene synthase

proteins with homologs of known function from other spe-

cies allowed the identification of putative orthologues that

evolved from a common ancestral gene by speciation and

retained the same or similar biological function in different

species during the course of evolution (Tatusov et al., 1997;

Huynen and Bork, 1998). The deduced Citrus terpene syn-
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Figure 3 - Phylogenetic tree of the Citrus putative terpene synthase family members, the Arabidopsis terpene synthase family (AtPS) and representative

terpene synthases of known function from diverse plant species. The neighbor-joining tree was generated from an alignment of 16 AtTPS and 43 docu-

mented terpene synthases from 25 different plant species. Nodes supported by bootstrap values higher than 700 out of 1000 replicates are marked in yel-

low. Subfamilies have previously been defined (Bohlmann et al., 1998; Aubourg et al., 2002). For designation of the AtTPS genes see Aubourg et al.

(2002). CA: Citrus aurantium; CG: C. aurantifolia; CR: C. reticulata; CS: C. sinensis; LT: C. latifolia; PT: Poncirus trifoliata. Accession numbers for

other TPS represented in the phylogenetic tree are: Abies grandis abietadiene synthase (U50768); A.grandis (E)-α-bisabolene synthase (AF006195);

A.grandis-γ-humulene synthase (U92267); A.grandis (-)-4S-limonene synthase (AF006193); A.grandis (-)-limonene/(-)-alpha-pinene synthase

(AF139207); A.grandis myrcene synthase (U87908); A.grandis β-phellandrene synthase (AF139205); A.grandis (-)-pinene synthase (U87909);

A.grandis δ-selinene synthase (U92266); A.grandis terpinolene synthase (AF139206); Artemisia annua amorpha-4,11-diene synthase (AF138959);

A.annua epi-cedrol synthase (AF157059); Clarkia breweri S-linalool synthase (U58314); Croton sublyratus copalyl diphosphate synthase (AB042424);

Cucumus sativus ent-kaurene synthase (AB045310); Cucurbita maxima copalyl diphosphate synthase (AF049905); C.maxima ent-kaurene synthase

(U43904); Elaeis oleifera sesquiterpene synthase (AF080245); Gossypium arboreum (+)-d-cadinene synthase XC14 (U23205); Latuca sativa copalyl

diphosphate synthase (AB031204); L.sativa ent-kaurene synthase (AB031205); Lycopersicon esculentum copalyl diphosphate synth- ase (AB015675);

L.esculentum germacrene C synthase (AF035630); L.hirsutum germacrene B synthase SSTHL1 (AF279455); Mentha x piperita (E)-β- farnesene

synthase (AF024615); Mentha longifolia (-)-4S-limonene synthase (AF175323); Nicotiana tabacum 5-epi-aristolochene synthase (L04680), Perilla

frutescens limonene synthase (D49368); Pisum sativum copalyl diphosphate synthase (U63652); Populus alba x tremula isoprene synthase (AJ294819);

Ricinus communis casbene synthase (L32134); Scoparia dulcis copalyl diphosphate synthase (AB046689); Schizonepeta tenuifolia (+)-4R-limonene

synthase (AF282875); Salvia officinalis (+)-bornyl diphosphate synthase (AF051900); S. officinalis (+)-sabinene synthase (AF051901); S. officinalis

1,8-cineole synthase (AF051899); Solanum tuberosum vetispiradiene synthase (AB022598); Stevia rebaudiana copalyl diphosphate synthase

(AF034545); S. rebaudiana kaurene synthase (AF097310); Taxus brevifolia taxadiene synthase (U48796); Zea mays copalyl diphosphate synthase

(L37750); Z.mays sesquiterpene synthase (AF296122).



thase proteins were compared with more than 40 terpene

synthases from over 20 different species, including mono-

cotyledonous and dicotyledonous species and gymno-

sperms, to determine sequence identity. A neighbor-joining

tree was constructed based on multiple sequence alignment

(Figure 3). Six subfamilies of the plant terpene synthase

family, designated TPS-a through TPS-f, were previously

defined based on clusters identified in the phylogeny

(Bohlmann et al., 1997; 1998; Aubourg et al., 2002). Se-

quence relatedness places all Citrus putative terpene syn-

thases into the previously defined angiosperm terpene

synthase subfamilies (Figure 3). Most Citrus sequences

cluster in the class III. The terpene synthases from this

group contain all known sesquiterpene and diterpene syn-

thases of the secondary metabolism from angiosperms. It is

therefore most likely that the Citrus members of this group

are also sesquiterpene synthases or diterpene synthases,

rather than monoterpene synthases. The lack of transit pep-

tides in some of the Citrus proteins from this group is remi-

niscent of previously characterized sesquiterpene synthases

of the TPS-a group (Bohlmann et al., 1998; Aubourg et al.,

2002).

Class I terpene synthases include AtTPS GA1 (Sun

and Kamiya, 1994), which is a member of the TPS-c group

of angiosperm copalyl diphosphate synthases. This class

also includes the AtTPS GA2 enzyme (Yamaguchi et al.,

1998), which is a diterpene synthase of the TPS-e sub-

family of kaurene synthases. These terpene synthases are

involved in the biosynthesis of gibberellic acid and putative

Citrus ortologues were found for both of them. The Class I

sub-clade, which includes the highly divergent AtTPS14,

also contains terpene synthases from three different Citrus

species that share the conserved DDxxD motif. Finally,

Class I also includes AtTPS04 of which the primary struc-

ture is reminiscent of that of linalool synthase from Clarkia

breweri (Dudareva et al., 1996).

Expression patterns of Citrus putative terpene
synthases

To investigate whether the expression patterns of pu-

tative Citrus terpene synthases were biased towards a cer-

tain organ and/or tissue, we performed an in silico Northern

in order to determine the relative abundance of putative

terpene synthase-coding transcripts among different

CitEST cDNA libraries. The results, shown in Figure 4, in-

dicate a preferential accumulation of transcripts in leaves,

and in the fruit flavedo, especially during the early stages of

fruit development. These results are in agreement with ob-

servations of terpene accumulation and essential oil pro-

duction by these tissues in Citrus plants (Ruberto and

Rapisarda, 2002; Sawamura et al., 2005; Verzera et al.,

2005).

Citrus putative terpene synthase sequences were

present at extremely low frequencies (a single EST among

all CitEST sequences, as in the case of PT11-C1-901-

080-G07) or at relatively high proportions (more than one

hundred ESTs, in the case of CR05-C3-700-046-D07), in-

dicating that the terpene synthase family members are dif-

ferentially expressed among Citrus species, as well as in

different tissues and developmental stages (Figure 4).

Discussion

The duplication followed by divergence of terpene

synthase genes are central to the biosynthesis of hundreds

of basic terpenoid skeletons derived from only four

prenyl-diphosphate intermediates of the isoprenoid path-

way (Figure 1; Davis and Croteau, 2000). Evolution of a

large terpene synthase family reflects, at the genetic level,

the structural diversity of terpenoid natural products and

their roles in ecological plant interactions. Earlier phylo-

genies of plant terpene synthases established characteristic

features for this family: clustering of terpene synthases into

at least six subfamilies; independent evolution of specific

catalytic functions of terpene synthases in gymnosperms

and angiosperms; the presence of a 200 amino acid motif in

an ancestor of angiosperm and gymnosperm terpene syn-

thases and divergence of terpene synthase genes involved

in secondary metabolism as the consequence of gene dupli-

cation and functional diversification (Bohlmann et al.,

1998; Aubourg et al., 2002).

In the present analysis, a protein phylogeny was com-

bined with novel genomic information generated from min-

ing the data provided by the CitEST database of Citrus

expressed sequence tags. Due to the importance of Citrus

terpenes in aroma, flavor and the juice industries, we set out

to characterize the Citrus spp terpene synthase gene family.

We successfully identified 49 putative Citrus terpene syn-

thase coding sequences derived from six different species

(Figure 2). In most cases, sequence comparison analyses

revealed that some terpene synthases showed higher simi-

larity among different Citrus species, indicating a possible

conservation of their biological roles within these species.

This observation also suggests that the different classes of

terpene synthases diverged before Citrus speciation events

and that the last ancestor of all Citrus species analyzed pos-

sessed at least one member of each known terpene syn-

thases classes. For instance, CS00-C1-100-123-A05

showed higher similarity to CG32-C1-003-043-D03 from

C. aurantifolia than to any other terpene synthase from C.

sinensis.

The position of three conifer terpene synthase se-

quences within the present protein phylogeny (Figure 3) is

in agreement with previous analyses of terpene synthase

family evolution (Bohlmann et al., 1998; Aubourg et al.,

2002). Nevertheless, more terpene synthase sequences

from gymnosperms and lower nonvascular plants are re-

quired for a better understanding of their phylogenetic loca-

tion relative to the large number of known angiosperm

tepene synthases. On the other hand, the placement of all

Citrus spp putative terpene synthases in the protein phylog-

836 Citrus terpene synthases



eny is well supported and might be indicative of their po-

tential biological roles (Figure 3). For instance, the Class III

sub-clade containing well-characterized limonene syn-

thases also includes many clusters from five different Cit-

rus species, which might indicate that these clusters code

for putative limonene synthase orthologs from these spe-

cies.

Sequence comparisons of all Citrus putative terpene

synthases found in the CitEST database with terpene syn-

thases from other plant species allowed the prediction of

their putative preferential substrates and thus, suggest their

potential biological roles (Figure 3). Among the Citrus pu-

tative terpene synthase coding sequences that we have

found, most of them were preferentially expressed in the

leaves and in the fruit flavedo, in agreement with their ex-

pected putative roles in terpene biosynthesis (Figure 4).

Apart from being an important constituent of Citrus essen-

tial oils, some reports have described the activation of

terpene synthase gene expression in defense responses

against insects and pathogens. For example, in cotton, ses-

quiterpene phytoalexins are elicited in response to bacterial

or fungal infection. Chen et al. (1995) observed that

Gossypium arboreum cell suspension culture showed an in-

crease of transcripts of a (+)-delta-cadinene synthase when

challenged by a preparation from Verticillium dahliae. The

authors concluded that such observation was consistent
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Figure 4 - Expression profiles of the 49 putative Citrus terpene synthase EST clusters in selected cDNA libraries from the CitEST database. Data repre-

sent the relative number of reads from a specific library in each EST cluster after normalization. Each EST cluster is represented by a single row, and each

library is represented by a simple column. The cladogram on the left represents the relatedness of all Citrus sequences and was built according to their rel-

ative genetic distances (Saitou and Nei, 1987). For consistency of each clade, use other figures for comparison.



with a role for this enzyme as the first step in the pathways

leading to the biosynthesis of phytoalexins gossypol and

lacinilene C in cotton. Accordingly, tent caterpillars feed-

ing on leaves of hybrid poplar induced local and systemic

emissions of (-)-germacrene D, (E)-β-ocimene, linalool,

(E)-4,8-dimethyl-1,3,7-nonatriene, benzene cyanide, and

(E,E)-α-farnesene (Arimura et al., 2004b). This emission

of volatile terpene compounds was correlated with an in-

crease in transcription levels of a sesquiterpene synthase

greatly induced in response to herbivory (Arimura et al.,

2004a). We found putative Citrus homologs to terpene

synthases expressed preferentially in leaves (Figure 4).

However, it remains speculative whether their biological

function is related to the plant signaling system induced by

pest and/or pathogen attack.

Transcripts of a valencene synthase were found to ac-

cumulate in fruits of C. sinensis only towards maturation,

contributing to the accumulation of valencene (Sharon-Asa

et al., 2003). Curiously, Citrus fruits are non-climacteric

but valencene and its synthase were induced by ethylene,

indicating that this hormone may play a role at the final

stages of Citrus fruit maturation.

Within the CitEST frame, six libraries were made

from the flavedo tissue of fruits at different developmental

stages, ranging from 1 to 9 cm diameter. Only two C.

reticulata EST clusters, CR05-C3-700-084-E04 and

CR05-C3-700-046-D07), showed a significant increase in

EST abundance correlated with developmental progress up

to the third developmental stage, fruits of 5 cm in diameter

(Figure 4). The putative orthologs of these sequences in

other Citrus species analyzed did not show this behavior,

indicating that this up-regulation during fruit development

may be a characteristic of C. reticulata fruit.

Cluster CS00-C3-700-022-C06 showed very high

similarity to cycloartenol synthase, which converts oxi-

dosqualene to cycloartenol, a pentacyclic isomer of the ani-

mal and fungal sterol precursor lanosterol. Plants cyclize

oxidosqualene to cycloartenol as the initial sterol (Corey et

al., 1993). Other clusters/genes closely related within this

same clade (Figure 3) are also apparently involved with ste-

roid biosynthesis. Steroids are structural components of

membranes and are very important for membrane fluidity.

Brassinosteroids, a class of hormones, are also exclusively

formed by the terpene metabolism (Croteau et al., 2000).

Thus it would be interesting to test whether the protein pre-

dicted to be coded by cluster CS00-C3-700-022-C06 is in-

deed involved with steroid biosynthesis in Citrus.

The cluster CA26-C1-002-055-E09 showed high si-

milarity to an isoprene synthase from Pueraria montana

(Sharkey et al., 2005). Isoprene is formed from dime-

thylallyl-PP and its emission from leaves can significantly

influence the surrounding atmosphere. Claeys et al. (2004)

showed that photo-oxidation of isoprene emitted from

plants in the Amazon was sufficient to influence the rain re-

gime in the region. Additionally, isoprene emission has

been reported to protect plants against high temperatures

particularly during rapid temperature fluctuation periods

(Velikova and Loreto, 2005). Future work on the putative

substrate of the enzyme coded by cluster CA26-C1-002-

055-E09 might help with the elucidation of its biochemical

function.

We found many Citrus spp clusters showing high lev-

els of similarity with limonene synthases and γ-terpinene

synthases (Figure 3). We speculate that these transcripts

might represent Citrus orthologs for limonene synthases, as

limonene is the most abundant terpene in Citrus spp essen-

tial oils. Figure 4 shows that contigs CR05C3700084E04

and CR05C3700046D07, which showed high similarity to

both limonene and γ-terpinene synthases, are highly ex-

pressed in the flavedo, especially during the first three

stages of fruit development. This was also observed for

d-limonene synthase (Shimada et al., 2005) and γ-terpinene

synthase (Shimada et al., 2004) genes isolated from C.

unshiu. The transcripts of these genes were reported to ac-

cumulate in the fruit peel at the early stages of fruit devel-

opment (Shimada et al., 2004; 2005).

It was surprising to discover that some putative Citrus

terpene synthases such as those coded by Poncirus se-

quences PT11-C2-300-054-G01 and PT11-C2-300-012-

H06 were apparently exclusively expressed in bark tissue

(Figure 4). Nevertheless, it has been recently suggested that

expression of limonene synthase may be related with in-

duced oleoresinosis response against the white pine weevil

attacking Sitka spruce trees (Byun-McKay et al., 2006).

Oleoresin is a mixture of turpentine (85% monoterpenes

and 15% sesquiterpenes) and rosin (diterpene resin acids)

that seal wounds and is toxic to both invading insects and

their pathogenic fungal symbionts (Steele et al., 1998). Of

course, this attempt to attribute a putative function to the

proteins predicted to be coded by sequences PT11-C2-

300-054-G01 and PT11-C2-300-012-H06 remains specu-

lative, but it would be interesting to find out whether their

expression is indeed bark-specific.

Conclusions and Perspectives

This initial characterization of a large number of puta-

tive members of the Citrus spp terpene synthase gene fam-

ily provides novel resources for research on terpene

secondary metabolism in Citrus species. We report here the

largest number of putative terpene synthase sequences ever

published for a single plant genus. We have characterized

49 sequence contigs that might represent 49 different

genes, although the exact number of members of the Citrus

terpene synthase gene family will be established only when

a complete genome sequence is available for Citrus. To-

gether with the recent characterization of the complete

terpene synthase gene family for the model plant

Arabidopsis (Aubourg et al., 2002) and the functional char-

acterization of some of its members (Bohlmann et al.,

838 Citrus terpene synthases



2000; van Poecke et al., 2001), our findings add exciting

new aspects to our concept of secondary metabolism in Cit-

rus and open several new avenues for natural product re-

search directed by genome analysis. The expression

patterns of some of the Citrus putative terpene synthases

presented here will be tested in future work by using a com-

bination of in situ hybridization and functional experi-

ments.
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