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Abstract

Genotype by environment interactions (GEI) have attracted increasing attention in tropical breeding programs be-
cause of the variety of production systems involved. In this work, we assessed GEI in 450-day adjusted weight
(W450) Nelore cattle from 366 Brazilian herds by comparing traditional univariate single-environment model analysis
(UM) and random regression first order reaction norm models for six environmental variables: standard deviations of
herd-year (RRMw) and herd-year-season-management (RRMw-m) groups for mean W450, standard deviations of
herd-year (RRMg) and herd-year-season-management (RRMg-m) groups adjusted for 365-450 days weight gain
(G450) averages, and two iterative algorithms using herd-year-season-management group solution estimates from
a first RRMw-m and RRMg-m analysis (RRMITw-m and RRMITg-m, respectively). The RRM results showed similar
tendencies in the variance components and heritability estimates along environmental gradient. Some of the varia-
tion among RRM estimates may have been related to the precision of the predictor and to correlations between envi-
ronmental variables and the likely components of the weight trait. GEI, which was assessed by estimating the genetic
correlation surfaces, had values < 0.5 between extreme environments in all models. Regression analyses showed
that the correlation between the expected progeny differences for UM and the corresponding differences estimated
by RRM was higher in intermediate and favorable environments than in unfavorable environments (p < 0.0001).
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Introduction

Genotype by environment interactions (GEI) occur

when the genotype responds differently to changes in the

environment (Kolmodin et al., 2002). In recent years, GEI

effects have received increased interest because breeding

programs tend to be more internationally oriented (Mulder

and Bijma, 2005). In addition, the development of molecu-

lar genetics has revealed astonishing aspects of epigenetic

and major gene by gene and gene by environment interac-

tions (Lewontin, 1998; Schlichting and Pigliucci, 1998)

that have revolutionized various genetic concepts (El Hani,

2007). These developments suggest that traditional quanti-

tative genetic models may be underestimating GEI and in-

dicate the need of more precise models for these analyses.

Several studies have examined the importance of GEI

in different traits in beef cattle. Most of these studies have

revealed strong genetic correlations among different re-

gions or countries, indicating an absence of significant GEI

(De Mattos et al., 2000; Johnston et al., 2003). Other stud-

ies that have shown important GEI could be questioned be-

cause they were local studies and the small number of data

used was often a limitation (Bolton et al., 1987; Nobre et

al., 1988). In parallel with these investigations, progress in

statistical methodology has produced different models and

random regression has become increasingly important in

longitudinal data analyses. This approach allows genetic

parameters to be estimated from repeated stochastic data

along a longitudinal variable (Kirkpatrick and Heckman,

1989; Meyer, 1998). The application of these models to

growth and lactation curves using the variable “time” in the

longitudinal axis resulted in more precise estimates in dif-

ferent phases of lactation (Veerkamp and Thompson, 1999)
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and growth (Albuquerque and Meyer, 2001). More re-

cently, random regression has been applied to the analysis

of longitudinal environmental variables, with a reaction

norm concept (De Jong and Bijma, 2002; Kolmodin et al.,

2002), based on the set of phenotypes that can be produced

by an individual genotype exposed to different environ-

mental conditions (Schmalhausen, 1949). Some evolution-

ary studies have introduced the term “adaptive” when

assessing the value of genetic predictions (Schlichting and

Pigliucci, 1998; Sarkar, 1999). Reports describing the use

of reaction norms have become more frequent (Fikse et al.

2003; Kolmodin et al., 2004). In these studies, the environ-

mental variable is considered to be continuous and can be

defined by the proper dataset, thereby avoiding artificial

environmental definitions such as national or political bar-

riers. Since genetic parameters are estimated on an environ-

mental gradient, GEI can be identified more precisely

based on the genetic correlations between different points

on the environmental axis or by the non-parallelism in the

estimates of adaptive reaction norms. Environment

descriptors and data structure can influence these results, as

shown by Fikse et al. (2003), Kolmodin et al. (2004) and

Calus et al. (2004).

The aim of this work was to assess the importance of

GEI in the 450-day adjusted weights of Nelore cattle by us-

ing random regression models and a reaction norm

approach. We also evaluated the usefulness of different

variables as environment descriptors.

Material and Methods

Data were collected from 366 Brazilian herds by the

ANCP (Associação Nacional de Criadores e Pesquisa-

dores) as part of a program for genetic improvement of the

Nelore breed. The original dataset consisted of 234,963 ad-

justed weights for 360 and 450 days (W365 and W450) and

weight gain between 365 and 450 days (G450) for Nelore

cattle born from 1974 to 2006. The relationship matrix was

modified to a sire model because of a constraint of the anal-

ysis since it was impossible to expose the same animal to

different environments during the same developmental

phase. Contemporary groups (CGs) were defined by using

information on sex, year, farm, management and calving

season; CGs with less than six individuals were excluded.

W450 was studied in seven different models: one

univariate single-environment model analysis (UM) and

six random regression model analyses (RRMs). The RRM

differed only in their environmental descriptor. These were

calculated using W450 or G450 contemporary group aver-

ages standardized to a mean of zero and an SD of one. The

standardized values were then multiplied by ten and the en-

vironmental groups (EG) were obtained by considering

only the integer part of those values. The integer format is a

convenience for subsequent software analyses. In the first

and second RRMs, the EGs were based, respectively, on the

average W450 (RRMw) and the average G450 (RRMg) of

farm-year groups. In the third and fourth RRMs, the EGs

were based, respectively, on the average W450 (RRMw-m)

and the average G450 (RRMg-m) of farm-year-season-

management groups. As management has an implicit sex

factor, the records were separated according to sex, and af-

ter definition of the environmental groups as standardized

W450 averages, the data of the different sex groups were

merged by EGs. EG values below -15 were considered in

EG = -15 (bottom limit) and those above +15, in EG = +15

(upper limit) (as shown in Figure 1a). The fifth random re-

gression model (RRMITw-m) used an iterative algorithm

to define the EGs. In the first iteration, the data were ana-

lyzed using RRMw-m and its fixed effect (CG) solutions

were used to position records on the respective EG for the

subsequent analysis. Since this first iteration resulted in a

wide data distribution along the environmental gradient the

EG limits were changed to -20 (bottom limit) and +20 (up-

per limit) from the second to the final iteration (Figure 1b).

The process was stopped when the correlation between the

EG positions in the previous and present analyses was

> 0.999. This convergence was reached after three itera-

tions, in a manner similar to the simulated data used by

Calus et al. (2004). This process tries to avoid bias resulting

from the non-random use of sires or a low number of ani-

mals in some herds. The last random regression model

(RRMITg-m) used G450-based EGs in the first iteration

and repeated the RRMITw-m iterative process.
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Figure 1 - Number of records analyzed in each environmental group for

RRMw, RRMg, RRMw-m and RRMg-m (a) and RRMITw-m and

RRMITg-m (b).



The EGs were defined using the complete dataset, but

additional restrictions were added for parameter estima-

tion. In this case, sires were excluded if (1) they had < 100

progeny weights and (2) the progeny weight distribution

along the environmental gradient was < 20 EG units (before

the first iteration in RRMITw-m and RRMITg-m). After

application of these two criteria, CGs with less than five re-

cords were removed. These restrictions affected data differ-

ently in the different models and resulted in different

numbers of sires and records for the analyses. The UM esti-

mates were based on RRMw data.

(Co)variances of random regression coefficients were

estimated by REML using version 3.0� of the DFREML

package (Meyer, 1988). The DXMRR subroutine in the

program allowed estimation of the heterogeneous residual

variance in five classes. Estimates were obtained by using

Powell, Simplex and AI-REML algorithms, thereby avoid-

ing problems with “derivative-free” possible local max es-

timates. The general model can be represented as follows:
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where yij is the jth progeny’s W450 or G450 from the ith ani-

mal and EGij is the environmental group of the jth progeny

of ith sire (from -15 to +15 in non-iterative models and -20

to +20 in iterative models), �m(EGij) is the mth Legendre poly-

nomial on environmental group, Fij is the CG fixed effect,

�m is the fixed regression coefficient to model the popula-

tion mean (defined only in non-iterative models), �m is the

random regression coefficient for a direct genetic effect, ka

denotes the corresponding orders of fit (one in UM and two

for RRMw, RRMg, RRMw-m, RRMg-m, RRMITw-m and

RRMITg-m) and 	ij is the error effect associated with the

pre-defined classes p that have homogeneous variances.
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with y being the vector of observations, � the vector

of fixed effect attributable to contemporary groups (includ-

ing Fij and �m), s the vector of sire random coefficients, X, Z

the corresponding incidence matrices, and 	 the vector of

residuals. Ks is the matrix of coefficients of the covariance

function for sire effect, A is the additive numerator relation-

ship matrix and R is the diagonal matrix of residual vari-

ances estimated at five levels. The levels of ��
e p

2 , with

p = 1,2,3,4,5 were grouped in EGs from -15 to -9, -8 to -3,

-2 to +2, +3 to +8, and +9 to +15, respectively, for non-

iterative models, and -20 to -12, -11 to -4, -3 to +3, +4 to

+11, and +12 to +20, respectively, for iterative models.

These groups were accommodated by identities matrices of

appropriate order for each level.

Direct additive variance estimates in the random re-

gression sire model were obtained by multiplying sire vari-

ance estimates by four ( � �� �A s

2 24� ). Residual variance esti-

mates were obtained as the difference between phenotypic

variance ( � � �� � �P s e p

2 2 2� � ) and additive variance estimates

( � � � )� � �E P A

2 2 2� � . Expected breeding values (EBVs) were

the double of expected progeny differences (EPDs), the lat-

ter being obtained from the sire model directly by the equa-

tion:
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Results

The distributions of animal weights along the envi-

ronmental gradient in RRMg and RRMg-m (based on

G450) were skewed slightly to the right (skewness of 0.15

and 0.16, respectively). Data distribution in RRMw and

RRMw-m was less symmetric, with skewness of 0.67 and

0.70, resulting in the accumulation of records in EG = +15

(Figure 1a). When EGs were defined based on farm-year

groups the records were concentrated in the central region

of environmental gradient and led to a larger number of

sires being excluded from the analysis compared to the

farm-year-season-management groups (192 and 177 sires

with 85,259 and 79,250 total records in RRMw and RRMg,

and 220 and 242 sires with 89,784 and 90,735 total records

in RRMw-m and RRMg-m and their iterative models, re-

spectively).

Table 1 shows the parameter estimates of the model

(with approximate standard errors for the Legendre polyno-

mial coefficients and residual variances) in different analy-

ses. In UM, there were only single estimates for residual

variance and genetic variance. Hence, in Figure 2 and in the

Supplementary Material, the variances are shown as lines

to allow visual comparisons with RRMs (the lines are par-

allel to the environmental gradient axis).

Heritability estimates (h2) were higher in favorable

and unfavorable environmental extremes (Figure 2). The

minimal heritabilities were always in the middle-left region

on the environmental gradient (EGs from -8 to -5 in non-

iterative models and -13 to 0 in iterative models). We ex-

pected the curves to either increase or decrease (with the

concavity facing out of the environmental gradient range)

since linear (first degree polynomials) regression models

were used. However, this was not observed. A change in the

model altered the sharpness of the concavity and led to

more variable estimates, as in RRMw, with h2 ranging from

0.19 (in EG = -6) to 0.29 (in EG = -15) and 0.42 (in

EG = +15), or less variable estimates, as in RRMg-m, with

h2 from 0.23 (in EG = -7) to 0.29 (in EG = -15) and 0.36 (in

EG = +15). RRMg showed the lowest h2 estimates in unfa-

Reaction norm models for cattle weight 283



vorable environments, but this situation was inverted in the

favorable extreme, where the estimate was highest. The

UM heritability estimate (h2 = 0.24) was lower than the

RRM estimates along most of the environmental gradient,

with larger differences in the favorable extreme. Different

changes occurred when iterative models were applied to

W450- and G450-based environmental variables.

RRMITw-m and RRMw-m had a very similar shape,

whereas RRMITg-m and RRMg-m showed important dif-

ferences in extreme environments, with much higher

heritabilities after iterations. Indeed, RRMITg-m had the

highest heritabilities of all of the models.

Partitioning the estimates of residual variance into

five levels based on a continuous additive genetic variance

created abrupt leaps in the curves of residual and pheno-

typic variance estimates and indicated intense heterosce-

dasticity along EG levels. Phenotypic variance estimates

��� )P

2 tended to increase along the environmental gradient as

a whole and showed stable values within residual estimate

classes. The additive genetic variance estimates ��� )A

2 were

greater at the extremes of the environmental gradient in all

models. Residual variance estimates ��� )E

2 increased

slightly along the environmental gradient but were variable

within classes (they increased when p = 1, were stable when

p = 2, and decreased when p = 3 to 5). The variance compo-

nents estimates are shown in the Supplementary Material

(Figures S1-S3).

RRMs estimated the covariance functions and dis-

played the genetic correlation estimates (rg) between envi-

ronments as surface three-dimensional plots (Figure 3).

The rg were plotted on the z axis based on EG values for the

x and y axes. This resulted in figures with “saddle” shapes

in which rg was minimal between opposite extremes (rang-

ing from 0.08 in RRMw to 0.47 in RRMITw-m) and close

or equal to one among similar environments in favorable or

unfavorable regions. All of the models revealed a marked

284 Pégolo et al.

Table 1 - Random regression sire variance estimates of the Legendre polynomial intercept (I, k = 1) and slope (S, k = 2), covariance (IxS) and residual

variance estimates for different classes (p from 1 to 5) in different models (UM, RRMw, RRMg, RRMw-m, RRMw-g, RRMITw-m, RRMITg-m). The

approximate standard errors are shown below each parameter.

Intercept (I)

(k = 1)

Slope (S)

(k = 2)

I x S ��
e p�1
2

��
e p�2

2
��

e p�3

2
��

e p�4

2
��

e p�5

2

UM 80.6 629.2

5.6 6.9

RRMw 66.9 19.3 14.4 478.1 562.4 590.3 664.0 738.84

6.2 4.7 3.8 11.8 10.1 15.5 26.9 40.6

RRMg 72.0 18.3 16.6 530.1 575.5 636.6 628.4 762.8

6.8 5.3 4.1 12.6 9.8 13.8 22.3 43.8

RRMw-m 71.9 14.5 12.8 479.4 553.8 614.9 657.1 763.7

6.1 3.9 3.5 10.3 9.5 14.4 24.0 43.1

RRMg-m 81.9 11.2 9.6 523.2 592.8 621.9 630.3 750.5

6.6 3.3 3.0 9.5 9.2 11.8 16.4 33.4

RRMITw-m 77.2 16.6 16.6 476.1 564.6 617.3 681.5 854.0

6.9 4.4 4.6 9.4 9.2 16.1 29.4 55.6

RRMITg-m 81.3 12.5 20.8 483.6 575.6 604.2 671.8 839.0

6.5 4.1 4.7 9.4 8.8 13.4 21.4 42.7

Figure 2 - Heritability estimates along environmental group (EG) for UM,

RRMw, RRMg, RRMw-m and RRMw-g (a) and UM, RRMITw-m and

RRMITg-m (b).



GEI between opposite extreme environments. The genetic

correlation value of 0.8, which is indicative of a significant

GEI (Robertson, 1959), separated the black part of the sur-

face with less important GEI (rg > 0.8) from the grey part

with important GEI (rg < 0.8). RRMg, RRMw-m and

RRMITg-m yielded lower correlations between opposite

extremes and had larger grey areas on the surface.

RRMg-m had a higher rg and smaller grey areas. RRMw

and RRMITw-m were intermediate in their ability to iden-

tify GEI.

Adaptive reaction norms (ARN) were defined using

predicted genetic values expressed as expected progeny

differences (EPDs) along the environmental gradient. A

sample of ARNs is shown in Figure S4. The ARN slopes in-

dicate the angular coefficient of the sires’ ordinary polyno-

mials. These values were used in regression analyses to

identify biases in the current selection programs. Regres-

sion analyses of the UM EPDs (constant and independent

of environmental gradient) on RRM EPDs in EGs -15, zero

and +15 in non-iterative models, and EGs -20, zero and +20

in iterative models, as well as on slopes, yielded significant

results (p < 0.0001). The correlation between UM EPDs

and favorable environment RRM EPDs (EG = +15) was

positive and even greater (Table 2). The correlations be-

tween UM EPDs and ARN slopes ranged from 0.64 to 0.72.

The variance of the ARN slope is directly related to

the importance of GEI and reflects the environmental sensi-

tivity (Falconer, 1990), referred to as plasticity (in relation

to larger absolute slopes) or robustness (in relation to

smaller absolute slopes). Regression analyses for ARN

slopes from different RRMs were consistent (p < 0.0001)

and had coefficients of determination between 0.70 (RRMg

X RRMg-w) and 0.98 (RRMw-m X RRMITw-m). Figure

S5 shows the regressions and their equations and coeffi-

cients of determination.

Discussion

The results described here show that different models

generate consistent parameter estimates. The initial aim of

using different environmental descriptors was to maximize

the identification of GEI based on the concept that similari-

ties between independent (EGs of W450 averages) and de-
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Table 2 - Correlation coefficients for the linear regression between expected progeny differences (EPDs) from UM and other models at specific points in

the environmental gradient (EG = -15, 0 and +15 for RRMw, RRMg, RRMw-m and RRMg-m, and EG = -20, 0 and +20 for RRMITw-m and

RRMITg-m). Only sires with progeny weights that were used in the analyses were considered (p < 0.0001 for all regressions).

RRMw RRMg

EG(-15) EG(0) EG(+15) Slope EG(-15) EG(0) EG(+15) Slope

UM 0.77 0.99 0.96 0.76 0.66 0.97 0.92 0.64

RRMw-m RRMg-m

EG(-15) EG(0) EG(+15) Slope EG(-15) EG(0) EG(+15) Slope

UM 0.85 0.99 0.97 0.75 0.88 0.97 0.96 0.72

RRMITw-m RRMITg-m

EG(-15) EG(0) EG(+15) Slope EG(-15) EG(0) EG(+15) Slope

UM 0.86 1.00 0.97 0.76 0.78 0.97 0.94 0.69

Figure 3 - Surfaces of genetic correlation estimates across environmental

groups in different random regression models (RRMg, RRMw, RRMw-m,

RRMw-g, RRMITw-g and RRMITg-m). The black part of the surface

shows rg > 0.8 and the grey part shows rg < 0.8.



pendent (variance components and EPDs for W450)

regression variables would lead to biases and lower signifi-

cance of GEI. This occurred when comparing the

RRMITw-m and RRMITg-m genetic correlation surfaces,

but was not directly observed among non-iterative models

or when heritabilities were considered. The low genetic

correlation among extreme environments suggested that

different groups of genes were being expressed. In agree-

ment with Falconer (1960), we suggest that growth in low

or high nutritional environments results in the differential

expression of genes associated with growth and feed intake

and efficiency. This affirmation, together with the results of

the UM EPD regression analysis, indicates that current se-

lection programs may be selecting for greater growth and

feed intake, regardless of the feed efficiency. Environmen-

tal gradients, when defined by the CG averages, can gener-

ate connections among dependent and independent model

variables that only can be explained by Wright’s path anal-

ysis. This methodology is recommended by Lynch and

Walsh (1997) for studies with related components in which

correlations among indicators of latent (non-measurable)

variables and the path coefficients are defined using struc-

tural equation models with simultaneous dependencies.

Future work could examine the correlations and path coef-

ficients for latent variables (gene group effects related to

different trait components) in different environments. Such

an analysis could help to explain differences in the impor-

tance of GEI and heritabilities in various RRMs since envi-

ronmental descriptors generally correlate with the causal

components of weight trait.

The importance of GEI in weight trait and the useful-

ness of the reaction norm concept as an effective model in

this case need to be emphasized. Even so, choosing the best

environment descriptor apparently depends on the desired

breeding goal. Complex relationships among trait compo-

nents are tied to the breeding goal and the model of choice

can be indicated by larger genetic gains by generation for

the chosen environments. With reaction norms, robustness

and plasticity can be added as additional breeding goals to

generate options for generalist or specialist sires.

In conclusion, we have demonstrated an important

genotype-by-environment interaction in the 450-day

weight trait of Nelore cattle analyzed by random regression

reaction norm models using environmental variables de-

fined by group averages. Genetic correlations were low be-

tween opposite extreme environments. These data indicate

a significant re-ranking of sires in different environments

and show the need to consider GEI effects, not only in large

scale (across countries), but also within a national analysis.

The UM EPDs showed a lower correlation with EPDs in

unfavorable compared to intermediate and favorable envi-

ronments, indicating that selection based on the predictions

of UM genetic values is biased towards favorable environ-

ments.

Although the parameter estimates for the different

models showed a joint variable tendency along the environ-

mental gradient, changes in the environment descriptor in-

terfered with these values. Iterative models amplified the

distribution of data along the environmental gradient and

yielded higher heritabilities. The use of G450-based envi-

ronment descriptors altered the estimates of variance. This

finding suggested the presence of intrinsic correlations

with other genetic variables linked to physiological and

morphological characters that make up the W450 trait.

Such an association would explain the increase in herita-

bility at unfavorable environmental extremes.
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Supplementary Material

The following online material is available for this ar-

ticle:

Figure S1 - Phenotypic variance estimates (in kg.kg)

along environmental group (EG) in UM, RRMw, RRMg,

RRMw-m and RRMw-g (a) and UM, RRMITw-m and

RRMITg-m (b).

Figure S2 - Genetic additive variance estimates (in

kg.kg) along environmental group (EG) in UM, RRMw,

RRMg, RRMw-m and RRMw-g (a) and UM, RRMITw-m

and RRMITg-m (b).

Figure S3 - Residual variance estimates (in kg.kg)

along environmental group (EG) in UM, RRMw, RRMg,

RRMw-m and RRMw-g (a) and UM, RRMITw-m and

RRMITg-m (b).

Figure S4 - Adaptive reaction norms (ARNs) of “top

10 UM EPDs” sires, expressed in EPDs (in kg) plotted

along the environmental gradient (EG) for different models

(RRMw, RRMg, RRMw-m, RRMg-m, RRMITw-m and

RRMITg-m).

Figure S5 - Regressions between 450-day weight

ARN slopes estimated by different models (RRMw x

RRMg, RRMw-m x RRMw, RRMg-w, RRMg x RRMg-m,

RRMw-m x RRMg-m, RRMITw-m x RRMw-m and

RRMITg-m x RRMITw-m), with their respective regres-

sion equations and regression coefficients (R2) (p < 0.0001

for all regressions).

This material is available as part of the online article

from http://www.scielo.br/gmb.
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Figure S1 - Phenotypic variance estimates (in kg.kg) along environmental

group (EG) in UM, RRMw, RRMg, RRMw-m and RRMw-g (a) and UM,

RRMITw-m and RRMITg-m (b).

Figure S2 - Genetic additive variance estimates (in kg.kg) along environ-

mental group (EG) in UM, RRMw, RRMg, RRMw-m and RRMw-g (a)

and UM, RRMITw-m and RRMITg-m (b).

Figure S3 - Residual variance estimates (in kg.kg) along environmental

group (EG) in UM, RRMw, RRMg, RRMw-m and RRMw-g (a) and UM,

RRMITw-m and RRMITg-m (b).



Figure S4 - Adaptive reaction norms (ARNs) of “top 10 UM EPDs” sires, expressed in EPDs (in kg) plotted along the environmental gradient (EG) for dif-

ferent models (RRMw, RRMg, RRMw-m, RRMg-m, RRMITw-m and RRMITg-m).



Figure S5 - Regressions between 450-day weight ARN slopes estimated by different models (RRMw x RRMg, RRMw-m x RRMw, RRMg-w, RRMg x

RRMg-m, RRMw-m x RRMg-m, RRMITw-m x RRMw-m and RRMITg-m x RRMITw-m), with their respective regression equations and regression co-

efficients (R2) (p < 0.0001 for all regressions).


