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Abstract

More than 90% of birds are socially monogamous, although genetic studies indicate that many are often not sexually
monogamous. In the present study, DNA fingerprinting was used to estimate the genetic relationships between nest-
lings belonging to the same broods to evaluate the mating system in the socially monogamous macaw, Ara ararauna.
We found that in 10 of 11 broods investigated, the nestlings showed genetic similarity levels congruent with values
expected among full-sibs, suggesting that they shared the same parents. However, in one brood, the low genetic
similarity observed between nestlings could be a result of intraspecific brood parasitism, intraspecific nest competi-
tion or extra-pair paternity. These results, along with available behavioral and life-history data, imply that the
blue-and-yellow macaw is not only socially, but also genetically monogamous. However, the occurrence of eventual
cases of extra-pair paternity cannot be excluded.
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Introduction

Even though more than 90% of birds are socially mo-

nogamous (Lack, 1968), genetic studies showed that ex-

tra-pair paternity (EPP) is found in approximately 90% of

species studied (Griffith et al., 2002). Even among socially

monogamous species, over 11% of the offspring are the re-

sult of EPP (Griffith et al., 2002). The occurrence of EPP is

so widespread that recent research has tried to identify fac-

tors explaining its apparent absence in some species (Ar-

nold and Owens, 2002; Griffith et al., 2002).

Although differences in life history and contempo-

rary ecological factors have been proposed to account for

interspecific variation in the level of EPP, there has been

relatively little success in identifying robust biological cor-

relates of this interspecific variation (Birkhead and Møller,

1996; Bennett and Owens, 2002). Phylogenetic analysis of

EPP data has shown that more than 50% of interspecific

variation can be explained by phylogeny (Arnold and

Owens, 2002; Bennett and Owens, 2002; Griffith et al.,

2002), thereby implying that differences in EPP rates are

likely to have been determined in the ancient evolutionary

history of avian lineages (Griffith et al., 2002). However,

the relative importance of phylogenetic constraints on EPP

incidence remains largely unknown (Kingma et al., 2009).

The degree of paternal care appears to be a key pre-

dictor of genetic monogamy (Mulder et al., 1994; Birkhead

and Møller, 1996; Gowaty, 1996). Females that can rear

offspring with little or no paternal care are likely to seek ex-

tra-pair copulations, whereas, whenever paternal care is es-

sential, EPP rates tend to be low (Griffith et al., 2002).

Another ecological factor that has been suggested to

explain interspecific variation in the rate of EPP is the adult

mortality rate (Mauck et al., 1999; Wink and Dyrcz, 1999).

According to Mauck et al. (1999), abandonment of a repro-

ductive event can be nonadaptive in species with short

reproductive lifespans, even in the face of extreme uncer-

tainty of paternity. This is possibly so because a new repro-

ductive event may be very unlikely to occur. It seems that

longevity explains 25% of the variation in EPP rates (Ar-

nold and Owens, 2002; Griffith et al., 2002).

In some non-passeriform groups of birds that display

male parental care and long reproductive lifespans, such as

Sphenisciformes (e.g. Moreno et al., 2000), Procellarii-

formes (Quillfeldt et al., 2001), Strigiformes and Falco-

niformes (Muller et al., 2001), EPP seems to occur

Genetics and Molecular Biology, 34, 1, 161-164 (2011)

Copyright © 2011, Sociedade Brasileira de Genética. Printed in Brazil

www.sbg.org.br

Send correspondence to Renato Caparroz. Pós-graduação em
Ecologia & Evolução, Instituto de Ciências Biológicas, Universi-
dade Federal de Goiás, Campus Samambaia, Caixa Postal 131,
74001-970, Goiânia, GO, Brazil. E-mail: renatocz@yahoo.com.br.

Research Article



infrequently or may even be entirely absent. These studies

indicated that the species studied are both socially and ge-

netically monogamous.

Psittaciformes (parrots and cockatoos) comprise an-

other group of long-lived birds with high levels of parental

investment, wherein most species are considered to be so-

cially monogamous (Forshaw, 1989; Sick, 1997). Data

from genetic analysis of the few so far studied, indicate that

all those with this characteristic appear to be genetically

monogamous (Caparroz et al., 2001; Masello et al., 2002;

Ekstrom et al., 2007; Taylor and Parkin, 2009). Thus, fur-

ther analysis of other socially monogamous parrot species

could contribute towards a better understanding, not only of

the general genetic mating system in these non-passerine

birds, but also the contribution of evolutionary and ecologi-

cal factors determining EPP rates.

In the present work we used DNA fingerprinting to

estimate the genetic relationship between nestlings in the

same brood, in order to gather evidence of EPP in a socially

monogamous species this being the blue-and-yellow ma-

caw (Ara ararauna).

Material and Methods

Blood samples (0.1 mL) were collected from the

brachial vein of 22 nestlings that had been found in 11 nat-

ural nests, thus two chicks per nest, at three localities in

central Brazil (Table 1). Unfortunately, it was not possible

to sample their putative parents, through the extreme diffi-

culty and stress involved in capturing adults. The samples

were stored at -20 °C in 100% ethanol. Total genomic

DNA was extracted from blood incubated overnight at

37 °C in a solution containing 0.1% SDS, 100 mM Tris-

HCl (pH 8.0), 10 mM NaCl, 10 mM EDTA and 10 mg/mL

proteinase K, and subsequently purified using the stan-

dard phenol-chloroform-isoamyl alcohol method (Bru-

ford et al., 1992).

Approximately 6 �g of genomic DNA from each

nestling were digested overnight with the restriction en-

zyme HaeIII at 37 °C. DNA fragments were electro-

phoresed and then transferred onto nylon membranes by

Southern blotting (Sambrook et al., 1989). Each membrane

was hybridized with the human multilocus minisatellite

probe 33.6 (Jeffreys et al., 1985a), and then washed in

0.25 M Na2HPO4, 1% SDS, 2x SSC, 0.1% SDS, and 1x

SSC, 0.1% SDS at 65 °C. The filters were auto-

radiographed at -70 °C, using Kodak RX film with two in-

tensifying screens. Only bands between 4.0 and 23.0 kb

were analyzed, as described by Westneat (1990). Bands

sharing coefficient between individuals (index of similar-

ity) were estimated using the formula: x = 2NAB/(NA+NB),

where NAB is the number of bands shared between individu-

als A and B, and NA and NB the number of bands present in

these same two individuals, respectively (Wetton et al.,

1987; Bruford et al., 1992). Only bands with the same elec-

trophoretic mobility (migration distance of band centers

within 0.5 mm) between two individuals were considered

to be one and the same allele. The frequency (q) of each

scorable band was estimated as: q = 1 - (1-x)1/2 (Jeffreys et

al., 1985b). Assuming the absence of mutations and link-

age, the mean expected similarity index between full-sibs

was estimated by: xi = (4+5q-6q2+q3)/[4(2-q)] (Jeffreys et

al., 1985c). The mean expected similarity index between

half-sibs was considered as half of xi, i.e. xh = xi/2. The sta-

tistical significance of the difference in similarity indexes

between nestlings of the same brood versus other broods

was calculated by using the Mann-Whitney U test as imple-

mented in Statistica 7.1 (StatSoft).

Results

The restriction enzyme/minisatellite probe combina-

tion used here produced band patterns that were exclusive

to each individual (data not shown). The mean number of

bands scored per individual in the three localities ranged

from 19.40 � 5.18 to 23.83 � 2.79 (Table 2). Band sharing

coefficients between nestlings of the same brood varied

from 0.48 to 0.88 (Table 1). These coefficients were similar

to those expected for full-sibs, and statistically higher than

those observed among nestlings from different broods

(considered non-related, p < 0.01; Mann-Whitney U test;

Table 2). The only exception was a nestling-pair found in

nest A08 with a coefficient of 0.22. This value was similar

to those observed among nestlings from different broods

(considered non-related), and to those expected among

half-sibs (Table 2).

Discussion

We found that in 10 of the 11 broods of Ara ararauna

investigated, nestlings showed genetic similarity levels

congruent with those expected between full-sibs, thereby

implying that the majority of nestlings of the same brood
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Table 1 - Sampling localities in Brazil and band sharing coefficients (x)

based on multilocus minisatellite data between nestlings of blue-and-

yellow macaw of the same brood (two nestlings per brood).

Locality (abbreviation) latitude/longitude Nest x

Peixe, southeastern Tocantins (ST) P01 0.59

12° S, 48° W P04 0.73

P06 0.61

Cavalcante, northeastern Goiás (NG) C10 0.48

13° S, 47° W C10B 0.68

C13 0.57

C19 0.61

Corginho, central Mato Grosso do Sul (CMS) A06 0.87

19° S, 54° W A08 0.22

A11 0.61

A13 0.62



were produced by the same parents. As the actual social

parents could not be sampled, it is not possible to rule out

the possibility that both exceptional nestlings were the re-

sult of either intraspecific brood parasitism or intraspecific

nest competition, or even full-brood EPP (with only one

mother and one father involved). To further investigate

this, it would be necessary to develop a methodology for

sampling social parents without causing undue stress.

In contrast, the low genetic similarity observed be-

tween nestlings of one brood (nest A08, Table 1) suggests

that they were not full-sibs. In this case, both social parents

were probably not genetic parents of at least one of the

chicks, possibly the result of either intraspecific brood par-

asitism or intraspecific nest competition, or even, as men-

tioned, EPP. As discussed previously, it would be neces-

sary to obtain samples from the social parents to test these

alternatives. Based on these results, at least 9% of the

broods could not be attributed to both social parents. On

considering three other previously analyzed broods (Capar-

roz et al., 2001), this rate decreases to 7%. To date, there are

only two reported cases of the presence of nonfull sibs in

the same brood, in socially monogamous parrot species,

one in the green-winged macaw (Ara chloropterus, Capar-

roz et al., 2001), and the other in the burrowing parrot

(Cyanoliseus patagonus, Masello et al., 2002). In both

cases, the authors suggested that intraspecific brood para-

sitism (or intraspecific nest competition) was the most

likely explanation.

The blue-and-yellow macaw is a long-lived socially

monogamous species, with male parental care. These bio-

logical traits are assumed to be correlated with low EPP

rates (see Introduction). Once successfully fledged from

the nest, macaws seem to have a high survival rate (Myers

and Vaughan, 2004). Well-documented longevity records

for macaws include a specimen of A. ararauna which was

housed at the Copenhagen Zoo for 46 years (Brouwer et al.,

2000). Therefore, the offspring of a single breeding season

most likely represents a small proportion of the potential

lifetime reproductive production. Any reduction in adult

survival of long-lived species by the investment in raising

current offspring, exerts a larger influence on lifetime re-

productive success than in short-lived bird species (Masel-

lo et al., 2002). Thus, long-lived birds, such as macaws, are

not expected to invest in broods of doubtful paternity

(Mauck et al., 1999). However, the parents in both hyacinth

(Anodorhynchus hyacinthinus, N.M.R. Guedes, personal

communication) and scarlet (Ara macao, D.J. Brightsmith,

personal communication) macaws accept nestlings trans-

located from other broods, i.e. the social parents are unable

to identify chicks from other pairs. In fact, this behavior, as

observed in these two macaws, suggests selective inability

in recognizing EPP offspring, thereby implying that EPP

could be rare or nonexistent in these species. As A. macao

and A. ararauna are phylogenetically related, it would be

expected that A. ararauna parents are also unable to distin-

guish their own biological chicks from unrelated ones that

are eventually in their nest.

The low rate of EPP observed in A. ararauna may be

due to effective male investment in avoiding EPP, as they

are strongly committed to parental care. Two main pater-

nity-guarding strategies have been proposed for birds,

namely, mate-guarding and frequent within-pair copulation

(Birkhead and Møller, 1992). Blue-and-yellow macaws

have nearly always been observed flying in pairs or in fam-

ily groups (Gilardi and Munn, 1998; R. Caparroz, personal

observation), except when females are incubating or brood-

ing. Furthermore, males are always observed hanging in

close proximity to the nest during the egg-laying period,

and seem to follow the female every time she leaves the

nest (R. Caparroz, personal observation). This behavior is

possibly related to mate-guarding by males.

Other contemporary ecological factors, such as

breeding density and breeding synchrony have also been

proposed as correlated with EPP rates (see Griffith et al.,

2002). However, there is insufficient information on breed-

ing density and synchrony in the blue-and-yellow macaw to

permit further analysis. Further investigation of the influ-

ence of these factors is required when the relevant data are

available. Moreover, since there is possibly a large phylo-

genetic component in EPP frequency (see Introduction),

evolutionary inertia may contribute to the low levels or ab-

sence of EPP in this macaw species.

Overall, our genetic results, along with available in-

formation on behavior and life history, testify to the blue-

and-yellow macaw being socially and genetically monoga-

mous. Nevertheless, the occurrence of full-brood EPP in

some of the nests analyzed cannot be excluded. In at least

7% of the broods studied here, one of the nestlings could be

a result of nest parasitism or EPP. Access to parent-samples
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Table 2 - Number of nests of Ara ararauna (Nnests) analyzed per locality, mean number of bands scored (n), mean band sharing coefficients estimated

between nestlings of the same brood (xs) and between nestlings of different brood (xd), the frequency of each scorable band (q) and expected coefficient

between full sibs (xi) and half-sibs (xh).

Locality Nnests n � sd xs � sd xd � sd q xi xh

ST 03 19.40 � 5.18 0.642 � 0.074 0.227 � 0.106 0.121 0.601 0.300

NG 04 22.91 � 3.91 0.585 � 0.085 0.206 � 0.092 0.109 0.591 0.296

CMS 04 23.83 � 2.79 0.580 � 0.268 0.229 � 0.099 0.122 0.602 0.301

sd – standard deviation. Refer to Table 1 for locality abbreviations.



is essential to confirm our findings, as well as to accurately

estimate EPP rates in this species.
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