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Abstract

Bayesian clustering as implemented in STRUCTURE or GENELAND software is widely used to form genetic groups
of populations or individuals. On the other hand, in order to satisfy the need for less computer-intensive approaches,
multivariate analyses are specifically devoted to extracting information from large datasets. In this paper, we report
the use of a dataset of AFLP markers belonging to 15 sampling sites of Acacia caven for studying the genetic struc-
ture and comparing the consistency of three methods: STRUCTURE, GENELAND and DAPC. Of these methods,
DAPC was the fastest one and showed accuracy in inferring the K number of populations (K= 12 using the find.clus-
ters option and K= 15 with a prioriinformation of populations). GENELAND in turn, provides information on the area
of membership probabilities for individuals or populations in the space, when coordinates are specified (K = 12).
STRUCTURE also inferred the number of K populations and the membership probabilities of individuals based on
ancestry, presenting the result K= 11 without prior information of populations and K = 15 using the LOCPRIOR op-
tion. Finally, in this work all three methods showed high consistency in estimating the population structure, inferring
similar numbers of populations and the membership probabilities of individuals to each group, with a high correlation

between each other.
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Introduction

Evaluating population genetic structure is of consid-
erable interest because it is a precursor to addressing many
other issues, such as estimating migration, identifying con-
servation units, and specifying phylogeographical patterns
(Manel et al., 2005).

Various statistical approaches can be used to form ge-
netic groups of populations or individuals. For statistical in-
ferences, model-based approaches are more suitable.
Bayesian clustering (Manel et al., 2005) based on Hardy-
Weinberg and linkage equilibrium, as implemented in the
STRUCTURE (Pritchard et al., 2000) or GENELAND
(Guillot et al., 2005) programs, is widely used for this pur-
pose. These programs can also consider coordinates of
sampling locations. For example, when STRUCTURE is
applied to population genetics, it is often useful to classify
individuals of a sample into populations. In one scenario,
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the investigator starts with a sample of individuals, aiming
to determine something about the properties of populations.
In a second scenario, the investigator begins with a set of
predefined populations, aiming to classify individuals of
unknown origin. Using the estimated allele frequencies, it
is then possible to compute the likelihood of a given geno-
type having originated in each population. Individuals of
unknown origin can be assigned to populations according
to these likelihoods. Therefore, STRUCTURE uses a Baye-
sian clustering approach to assign individuals (probabi-
listically) to populations. A model is assumed in which
there are K populations (where K may be unknown), each of
which is characterized by a set of allele frequencies at each
locus. This method attempts to assign individuals to popu-
lations on the basis of their genotypes, while simulta-
neously estimating population allele frequencies. The
method can be applied to various types of markers, but it as-
sumes that the marker loci are unlinked and in linkage equi-
librium with one another within the populations. It also
assumes that the populations are in Hardy-Weinberg equi-
librium (Pritchard et al., 2000). In other words, the method
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assumes that any disequilibrium found is attributable to
population structuration.

For cases in which the geographic locations of indi-
viduals are known and sampling is relatively even in space,
spatial model-based clustering methods such as
GENELAND (Guillot et al., 2005) are available to identify
clusters of individuals. Assuming that populations occupy
geographically delimited areas, the use of spatial informa-
tion increases the power of correctly detecting the underly-
ing population structure (Bonin et al., 2007). The statistical
model implemented in GENELAND helps inferring and lo-
cating genetic discontinuities between populations in space
from individual multilocus genetic data. The central as-
sumption is that some spatial dependence is often present
among individuals. Based on this sensible assumption, a hi-
erarchical spatial model was developed in which a priori in-
formation on how the individuals are spatially organized is
formally injected. In addition to detecting genetic disconti-
nuities between populations, the method also addresses
other points, such as denoising blurred coordinates of sam-
pled individuals, estimating the number of populations in
the studied area, quantifying the amount of spatial depend-
ence in the data, assigning individuals to their population of
origin, and detecting individual migrants between popula-
tions (Guillot et al., 2005).

One of the shortcomings of Bayesian clustering meth-
ods is related with the assumption of Hardy-Weinberg and
linkage equilibrium within populations. However, in many
cases, this assumption is not tenable. A technical yet critical
limitation is the considerable computation time required for
analyzing large datasets. In order to satisfy the need for less
computer-intensive approaches, multivariate analyses
seem particularly appealing, as they are specifically de-
voted to extracting information from large datasets. This is
how the Discriminant Analysis of Principal Components
(DAPC) was developed. DAPC is based on data transfor-
mation, using principal components analysis (PCA) as a
prior step to discriminant analysis (DA), which ensures that
variables submitted to DA are perfectly uncorrelated, and
that their number is less than that of the analyzed individu-
als. Without necessarily implying a loss of genetic informa-
tion, this transformation allows DA to be applied to any
genetic data. Two options for DAPC are offered, depending
on whether group priors are known or not (Jombart et al.,
2010).

In this context, since plant populations are not ran-
domly arranged assemblages of genotypes, but are struc-
tured in space and time, the above mentioned programs
allow a fine-scale study of the genetic structure of these pop-
ulations. This genetic structure may be manifested among
geographically distinct populations, within a local group of
plants, or even in the progeny of individuals. Ecologic fac-
tors affecting reproduction and dispersal are likely to be par-
ticularly important in determining genetic structure. Also,
spatial and genetic patterns are often assumed to result from
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environmental heterogeneity and differential selection
pressures (Loveless and Hamrick, 1984).

In this paper, we describe a study on natural Argentin-
ean populations of the plant species Acacia caven
(Leguminosae, Mimosoideae). This species is an extremely
wide-ranging one that probably originated in the warm
temperate to subtropical biogeographic region known as
the Gran Chaco of southern South America, due to its great
morphologic diversity. This small legume species is found
in six countries and is considered to have certain potential
as a managed silvopastoral crop (Aronson and Ovalle,
1989). Fruit size and shape are highly variable in 4. caven.
In 1992, Aronson recognized six varieties for this species,
including A4. caven var. caven, A. caven var. dehiscens, A.
caven var. sphaerocarpa, A. caven var. stenocarpa, A.
caven var. microcarpa and A.caven var. macrocarpa, based
on both morphologic traits (Aronson 1992; Pometti et al.,
2007) and molecular markers (Pometti et al., 2010). Argen-
tina is the only country where all varieties cohabit
(Aronson, 1992).

In this context, the main objective of the present work
was to study the genetic structure of 15 populations of the
six varieties of Acacia caven, using a dataset of AFLP
markers. To accomplish this objective, we used two mo-
del-based approaches (STRUCTURE and GENELAND)
and the exploratory method DAPC for estimating genetic
structure and compared the consistency of the three meth-
ods.

Materials and Methods

Description of the dataset

In this study, a real dataset was used to compare the
results of genetic structure analyses made by alternative ap-
proaches. This dataset consists of AFLP patterns of 224 in-
dividuals of the six varieties of Acacia caven
(Leguminosae, Mimosoideac), collected from 15 sampling
sites (Table 1). The distances between the sampling sites
are shown in Table 2.

The AFLP assay was performed as described by Vos
et al. (1995), with a slight modification, as described in
Pometti ef al. (2012). This technique was used to investi-
gate genetic variation within and among natural popula-
tions of A. caven from five eco-regions: Wet Chaco, Dry
Chaco, Espinal, Pampa and Puna (Burkart et al., 1999).
From the individuals studied by means of AFLP markers,
225 bands were obtained. Each AFLP band was considered
as a single biallelic locus with one amplifiable and one null
allele. Bands with the same migration distance were con-
sidered homologous. Data were scored manually as band
presence (1) or absence (0).

Methods to assess population structure

As mentioned before, different approaches were used
here to identify spatial structure in 4. caven populations:
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Table 1 - Populations of Acacia caven sampled in this study.

Genetic structure of Acacia caven

Variety Eco-region Population Population code Latitude (°S) Longitude (°"W) Number of individuals
analyzed
A. caven var caven Pampa Costanera Sur CS 34°38°10.71" 58°42°44.08" 14
A. caven var caven Pampa Gualeguaycht GY 33°22°4.00" 58°44°3.00" 22
A. caven var caven Puna Coiruro Cl 23°53°34.00" 65°27°30.00" 18
A. caven var caven Puna Campo Quijano CQ 24°55°12.00" 65°39°0.00" 13
A. caven var caven Puna Ruta Nueve RN 24°39°48.00" 65°22°49.00" 14
A. caven var macrocarpa Puna El Carril EC 25°4°58.80" 65°28°1.20" 16
A. caven var macrocarpa Puna Tolombén TO 26°11°8.00" 65°56°7.00" 14
A. caven var microcarpa Wet Chaco Vivero Forestal VF 26°16°0.00" 58°17°41.64" 12
A. caven var stenocarpa Wet Chaco Formosa FS 26°16°13.20" 58°17°7.92" 12
A. caven var stenocarpa Wet Chaco YPF YP 26°11°26.76" 58°9°23.82" 12
A. caven var sphaerocarpa Espinal Ibera 1B 28°15°40.13" 56°30°20.38" 18
A. caven var dehiscens Dry Chaco Las Gemelas LG 30°53°26.10" 64°30°13.50" 14
A. caven var dehiscens Dry Chaco Pan de Azlcar PA 31°15°58.90" 64°20°28.60" 12
A. caven var dehiscens Dry Chaco Vaquerias VA 31°23°38.93" 63°51°30.87" 12
A. caven var dehiscens Dry Chaco Valle Hermoso VH 31°7°1.20" 64°28°58.80" 21

Table 2 - Pairwise geographic distances in kilometers between Acacia caven sampling sites.

Pop CQ CS EC FS GY IB LG PA RN TO VA VF VH YP

CI 111.00 1348.53 123.80 768.28 1226.00 1017.75 809.44 832.00 79.21 263.14 833.53 77149 856.92 780.57
CQ 1280.00 25.00  752.46 1166.50 982.49 700.00 749.50 39.28 159.26 74423 751.00 750.71 764.50
CS 1238.29 910.82 185.00 74531 655.00 645.00 1273.21 1155.11 650.00 911.38 664.42 932.57
EC 730.82 1121.00 961.09 674.07 716.00 5033  139.09 701.21 729.25 683.00 743.00
FS 777.15  282.15 77931 801.41 731.84 759.85 780.43  3.00  800.00 15.80
GY 617.17 584.38 574.00 1198.25 1046.00 59330 770.79 593.50 793.76
IB 832.84 827.86 976.03 964.59 794.48 283.43 838.96 282.15
LG 43.50 73831 547.38 29.40 783.78 3520  809.13
PA 798.50 576.00 21.00 79539 2244  823.54
RN 194.06  767.15 730.38 727.22 745.00
TO 593.13  759.56 565.74 774.56
VA 77578  4.00  797.27
VE 799.00 16.41
VH 824.37

two Bayesian-model-based and one exploratory method.
The first one was the spatial cluster model implemented in
the GENELAND package (Guillot et al., 2005) of the R
program (R Development Core Team, 2011). Different sets
of parameters (MCMC, thinning and burn-in) were used in
different test runs, in order to find the optimal parameters
by the time taken for the run. Finally, following the recom-
mendation of the user’s manual, the Markov chain Monte
Carlo (MCMC) repetitions were set at 100,000, thinning
was set at 100, and the burn-in period was set at 200 (we
eliminated the first 200 iterations whenever the curve was
not constant); the number of groups (K) to be tested was set

at 1-15. All individuals were assigned to K populations
(1 £K < 15) based on their multilocus genotype and the spa-
tial coordinates. To ensure that the run was long enough, we
obtained 10 different runs and compared the parameter esti-
mates (K, individual population membership, maps). The
best result was chosen, based on the highest average poste-
rior probability. The other Bayesian-model-based cluster
analysis was performed using the STRUCTURE program
version 2.3.3 (Pritchard et al., 2009). This analysis was per-
formed twice: once without prior information of the popu-
lations to which the individuals belonged, and once with
prior information on the populations (LOCPRIOR model).
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In both cases, the burn-in period and the number of MCMC
repetitions were set, respectively, at 50,000 and 100,000.
An admixture model was used, with correlated allele fre-
quencies. K was set at 1-15, and the highest K value was
identified as the run with the highest likelihood value, as
recommended by Pritchard ef al. (2000). In addition, K val-
ues were averaged across 10 iterations. The exploratory
Discriminant Analysis of Principal Components (DAPC)
was applied, using the adegenet package (Jombart, 2008)
(function dapc) for software R (R Development Core
Team, 2011). This analysis was also performed both with
and without prior information on individual populations.
Whenever group priors were unknown, the number of clus-
ters was assessed using the find.clusters function, which
runs successive K-means clustering with increasing num-
ber of clusters (k). For selecting the optimal number of clus-
ters, we applied the Bayesian Information Criterion (BIC)
for assessing the best supported model, and therefore the
number and nature of clusters, as recommended by Jombart
el al. (2010).

Comparison of individual groupings in the different
methods

The probabilities of posterior population membership
of individuals obtained by all grouping methods used were
converted into between-individual Euclidean distances.
Pairwise comparisons of these distance matrices were per-
formed by means of the Mantel test using the ade4 package
of R (Chessel et al., 2004).

Results

Analysis of the Acacia caven AFLP dataset obtained
using GENELAND yielded a modal number of populations
of 12, varying from 11-13 in different runs (Table 3). The
run with the highest average posterior probability was cho-

Table 3 - Multiple runs for inferring the number of populations using
GENELAND software.

Run Modal number % of modal number Mean of probability
density
1 12 37.20 -62443.26
2 12 37.80 -60538.68
3 11 38.90 -60964.61
4 13 32.80 -60583.12
5 11 36.80 -61215.83
6 13 33.40 -60874.19
7 12 36.40 -60953.19
8 12 36.20 -59999.66
9 12 36.80 -61164.86
10 12 36.00 -60860.80

In bold: highest average posterior probability.
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sen to base the conclusions on. The number of populations
simulated from posterior distribution (Figure 1) displays a
clear mode at K = 12. MCMC clearly converges within the
first 10,000 iterations (Figure 1). Two populations, VA and
PA (belonging to var. dehiscens), were included in one of
the groups produced by GENELAND (Figure 2, row 3, col-
umn 2), and the other group identified comprises the VF,
FS, and YP populations (belonging to vars. microcarpa and
stenocarpa) (Figure 2, row 2, column 2). In both cases, the
populations grouped together are geographically very close
to each other. Each of the remaining groups corresponds to
a single sampling site. The comparison of posterior proba-
bility of assignment of individuals to populations led to un-
equivocal results, assigning each individual to the
population to which it belongs, except for those previously
mentioned individuals that are in the same group of popula-
tions (100% of correct assignation).

Data analysis using STRUCTURE with no prior dis-
tribution specified revealed that K = 11 had the highest
mean probability of density value (Ln P(D) = -16832.60),
after which this value plateaus, suggesting that the optimal
number of K was 11. In this analysis (Figure 3a), individu-
als of populations FS, VF, and YP are grouped together, the
same occurs with individuals of populations PA and VA,
and a third group joins together individuals of populations
CQ and RN that belong to the var. caven and are both lo-
cated in the Puna eco-region (Figure 3a). The assignation of
individuals to populations was 96.4% correct.

When the LOCPRIOR option was used, K = 15 had
the highest mean probability of density value (Ln P(D) =
-17065.30), suggesting that each population corresponded
to a single sampling site (Figure 3b). Moreover, the
STRUCTURE results detected admixture of individuals in
all populations with both models (Figure 3 a, b). The assig-
nation of individuals to populations was 94.2% correct.

Number of populations
along the chain

after burnin
15 I

. L
z 0.3
= 10 >
B 2
= —
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5 —
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T T T T 1 I
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Index of MCMC iteration Nb. pop. along the chain

Whole chain (after a burnin of 200x100 it.)

Figure 1 - Plot of the number of populations simulated from the posterior
distribution obtained with GENELAND.
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Figure 2 - Spatial distribution of each group defined by GENELAND at K = 12. Population codes are given in Table 1.
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Figure 3 - Clustering of individuals by STRUCTURE. Each individual is
represented by a vertical bar that is partitioned into colored segments that
represent the individual’s estimated membership fractions. Same color in
different individuals indicates that they belong to the same cluster. a)
K =11, estimated with no prior distribution of populations; b) K = 15, esti-
mated with LOCPRIOR option. Population codes are given in Table 1.

DAPC analysis was first made without any a priori
group assignment. To obtain the optimal number of clusters
with the find.clusters function, 70 axes that represented

more than 88% of the total variance were retained. The pro-
gram covered a range of possible clusters from 1 to 15. The
lowest BIC value (1137.35) corresponded to K = 12. For
DAPC analysis, 70 PCA axes and three discriminant func-
tions were retained (52.3% of variance). One of the clusters
included individuals of populations VF, FS, and YP, a sec-
ond cluster joined PA and VA, and the remaining clusters
were rather consistent with the rest of the sampling sites.
The scatterplot of individuals on the two principal compo-
nents of DAPC (Figure 4a) showed that the 12 clusters
formed four groups. The consistency between prior and
posterior assignment was 84.8%.

In the second analysis, the clusters were defined a pri-
ori, according to the sampling site. Also in this case, 70
axes of the PCA were retained for DAPC, corresponding to
more than 88.8% of the variance, and three discriminant
functions were obtained (53.9% of the variance). The
scatterplot shows overlapping between the a priori defined
groups (Figure 4b); the consistency between prior and pos-
terior assignment was 88.8%.

The results obtained from the two approaches can
also be compared with the posterior probability plots corre-
sponding to the groups defined by the find.clusters proce-
dure (Figure 5a) and with the groups defined by the
sampling site (Figure 5b).

Regarding the consistency between prior and poste-
rior assignment of individuals to groups (Table 4), the max-
imum corresponded to GENELAND (100%), whereas the
lowest consistency was obtained by DAPC without infor-
mation on population membership (84.8%). Pairwise com-
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Figure 4 - Scatterplot of individuals on the two principal components of DAPC. The graph represents the individuals as dots and the groups as inertia el-
lipses. Eigenvalues of the analysis are displayed in inset: a) obtained with the find.clusters option, b) with clusters defined a priori according to the sam-

pling site. Population codes are given in Table 1.
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Figure 5 - STRUCTURE-like plot of DAPC analysis for a global picture of the clusters composition. Each individual is represented by a vertical colored
line. Same color in different individuals indicates that they belong to the same cluster. a) K= 12, obtained with find.clusters option; b) K = 15, obtained
with a priori information of sampling sites. Population Codes are given in Table 1.

parison of distances between individuals obtained from the
probabilities of posterior assignment of population mem-
bership of individuals resulting from all five grouping
methods (Table 4) revealed highly significant correlations
(p <0.0005, based on 2000 permutations) in all cases. The
highest consistency value (» = 0.811) corresponded to the
groupings obtained by GENELAND and STRUCTURE for
the admixture model without prior information on popula-
tion membership. The grouping obtained by DAPC without
prior information on population membership showed the
lowest correlation estimates when compared with most of
the other grouping methods.

Discussion

The analysis of genetic diversity within species is vi-
tal for understanding the evolutionary processes, both at the

population and at the genomic levels. Several statistical
packages recently developed which offer a panel of stan-
dard as well as more sophisticated analyses have been re-
viewed by Excoffier and Heckel (2006). Most data analyses
require the use of more than one program and should start
with generalist packages to uncover the basic properties of
the data, followed by the use of specialized methodologies
to address more specific questions (Excoffier and Heckel,
2000).

In line with this recommendation, we evaluated the
consistency of different methodological approaches for an-
alyzing genetic properties of Acacia caven populations, a
shrub widely distributed in South America. This species
plays an important role in arid ecosystems, as it contributes
to the fixation of atmospheric nitrogen, provides fruits and
leaves to herbivores, and stabilizes soils by fixing dunes. In
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Genetic structure of Acacia caven

Table 4 - Pairwise comparison of distances between individuals obtained from the probabilities of posterior population membership of individuals, ob-
tained by all five grouping methods. K = number of clusters; » = correlation coefficient; p < 0.0005; STR 1= STRUCTURE analysis without prior infor-
mation; STR 2 = STRUCTURE analysis with LOCPRIOR option; DAPC 1= DAPC analysis with find.clusters option; DAPC 2 = DAPC analysis with a

priori information of populations.

K % of correct assignment GENELAN D STR 1 STR 2 DAPC 1 DAPC 2
Sampling sites 15
GENELAND 12 100
STR 1 11 96.4 0.811
STR 2 15 0.726 0.710
DAPC 1 12 84.8 0.612 0.616 0.577
DAPC 2 15 88.8 0.769 0.673 0.716 0.607

addition, it is an appreciated natural resource for local set-
tlers, because it provides fire wood, charcoal and forage for
livestock. Due to its great plasticity, it is used in the refores-
tation of degraded ecosystems (Karlin et al., 1997).

In this work, we chose one exploratory and two
Bayesian-model-based methods to infer the genetic struc-
ture of 4. caven species from 15 sampling sites. The explor-
atory method used here was DAPC that seeks synthetic
variables, the discriminant functions, which show differ-
ences between groups as best as possible, while minimizing
variation within clusters (Jombart, 2012). Using the
find.clusters option in this analysis, the number of popula-
tions inferred was K = 12, grouping together VF, FS, and
YP and also PA and VA. DAPC analysis is preferred when
groups are often unknown or uncertain and there is a need
for identifying genetic clusters before describing them. In
this work, we found that those sampling sites that grouped
together in the same cluster were the geographically closer
ones. When we defined the prior groups for the DAPC anal-
ysis, the inferred K was 15, the same as the number of sam-
pling sites. In both cases, the percentage of variance
explained by the three discriminant functions was < 54%.
This could be attributed to the reduction of variables
achieved by DAPC; in other words, we had 225 loci or vari-
ables, and this method reduced (in this case) the number of
composed variables to the 70 more informative axes.

Additionally, two Bayesian analyses were applied to
the data to study the genetic structure of the samples
(GENELAND and STRUCTURE). When STRUCTURE
was run with the LOCPRIOR option, the K estimated was
coincident with the number of data sampling sites (K = 15).
When using STRUCTURE, it is usually assumed that all
partitions of individuals are a priori approximately equally
likely. Since the number of possible partitions is immense,
it takes highly informative data for STRUCTURE to con-
clude that any particular partition of individuals into clus-
ters has compelling statistical support. In contrast, the
LOCPRIOR models assume that, in practice, individuals
from the same sampling location often come from the same
population. Therefore, the LOCPRIOR models are set up to

expect that the sampling locations may be informative
about ancestry. If the data suggest that the locations are in-
formative, then the LOCPRIOR models allow
STRUCTURE to use this information (Pritchard et al.,
2010).

GENELAND analysis in turn showed that the 15 4.
caven populations studied could be grouped into K = 12 in-
dependent groups, indicating that each sampling site repre-
sented a single Mendelian population, with the exception of
VA and PA, and FS, YP, and VF, which would correspond
to two clusters. STRUCTURE analysis without prior infor-
mation of populations showed that the optimal number of
populations was K = 11, joining together populations CQ
and RN. The other 10 groups constituted were coincident
with those detected by GENELAND. The slight difference
between analyses regarding the detection of the number of
K could be attributed to the model chosen, since
GENELAND was run with previous information of geo-
graphic coordinates, tending to favor partitions that are spa-
tially organized, while STRUCTURE was not. Similar dif-
ferences in behavior between GENELAND and
STRUCTURE were noted by Guillot et al. (2005) when
comparing the dataset of Montana wolverines (Gulo gulo)
recorded by Cegelski et al. (2003), as STRUCTURE in-
ferred K = 3, whereas GENELAND inferred K = 4. In our
case, GENELAND grouped together 4. caven populations
that were geographically and genetically closer and located
in the same eco-region, such as VA and PA, and FS, VF,
and YP. On the other hand, STRUCTURE detected the ge-
netically similar groups. Variety caven is the most wide-
spread (a generalist, in terms of ecology range), and here
we analyzed five of its populations from two eco-regions.
One could expect to find these populations grouped to-
gether according to the eco-region and the variety they be-
long to. However, the results of the Puna eco-region sug-
gest that there the populations are less connected to each
other by gene flow than the populations of the other eco-
regions, since CI was not grouped together with CQ and RN
in the STRUCTURE analysis. A possible explanation for
this clustering could be that the geographic distances be-
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tween CQ and RN were smaller than that from CI, and the
genetic and geographic distances among the populations
studied here have shown to be significantly correlated (Po-
metti et al., 2012). Moreover, although these three popula-
tions belong to the same variety and the same eco-region,
they were found at different altitudes: RN at 1305 m o.s.1.,
CQ at 1511 m o.s.l., and CI at 2089 m o.s.1. This results in
an environment of patchy vegetation, because of the pres-
ence of mountains that separate CI from RN and CQ. It has
been well documented that marginal populations are often
less variable than populations within the primary range
(Blows and Hoffmann, 1993; Deng et al., 2009). The re-
sults obtained for the variety caven from the Puna eco-
region could be explained by the observations of Hamrick
and Godt (1990) and Maguire et al. (2000) that populations
located at range margins are more isolated from sources of
immigrants and are thus more prone to genetic bottlenecks.

When comparing the number K of populations esti-
mated in the three methods, DAPC using the find.clusters
option proved as accurate in detecting population clusters
as STRUCTURE without prior information of populations
and GENELAND.

When prior groups were defined, the DAPC results
were coincident with those obtained by STRUCTURE with
the LOCPRIOR option, where K = 15. As previously ex-
plained, in both cases the sampling locations were informa-
tive about ancestry.

A significant degree of genetic differentiation among
A. caven populations was observed using the three meth-
ods, since K ranged from 11 to 15, showing a high level of
structuration in the 15 sampling sites studied. The most evi-
dent associations among populations were found for PA
and VA, and FS, VF and YP in all analyses, and for CQ and
RN with STRUCTURE. No other association between pop-
ulations by eco-region or variety was observed consistently
with the tree methods used.

The three methods used here to infer population struc-
ture also provide coefficients of membership probabilities
of each individual to the different groups, based on the re-
tained discriminant functions in the case of DAPC, or based
on ancestry in the case of STRUCTURE and GENELAND.
While DAPC coefficients are different from the admixture
coefficients of softwares like STRUCTURE or
GENELAND, they can still be interpreted as proximities of
individuals to the different clusters. Membership probabili-
ties also provide indications of how clear-cut genetic clus-
ters are (Jombart, 2012). The highest membership
probabilities of each individual for the different groups
were obtained by GENELAND, followed by
STRUCTURE with prior definition of groups,
STRUCTURE without population information, DAPC
with prior definition of groups, and the lowest membership
probabilities were those observed by DAPC without infor-
mation on population membership. This means that the
three methods and their variants provided accurate assign-
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ments of individuals, ranging from 84.8% for DAPC using
the find.clusters option to 100% for GENELAND.

In conclusion, of the three methods used here, DAPC
proved to be the fastest one, showing accuracy in inferring
the K number of populations and the membership probabil-
ities of each individual for the different groups in a short
computational time (only a few minutes, while
STRUCTURE and GENELAND needed four or five days
to perform the analysis). So, DAPC should be preferred as a
starting point when working with large datasets and several
sampling sites, as recommended by Excoffier and Heckel
(2006). GENELAND, on the other hand, provides informa-
tion on the area of membership probabilities for individuals
or populations in space, when coordinates are specified;
moreover, the number of population units is treated as an
unknown parameter (Guillot et al., 2005). STRUCTURE,
in addition to inferring the number of K populations and the
membership probabilities of individuals based on ancestry,
allows a hierarchical analysis of sampling sites from K =2
to K = n, where n is the number of populations estimated
with the highest mean probability of density value
(Tishkoff ef al., 2009; Pometti ef al., 2012). The two latter
analyses present the disadvantage of being more
time-consuming and relying on assumptions, such as the
type of population subdivision and Hardy-Weinberg and
linkage equilibrium inside populations. Finally, in this
work, all three methods showed high consistency in esti-
mating the population structure of 4. caven, inferring simi-
lar numbers of populations and membership probabilities
of individuals to each group, with a high correlation be-
tween each other. This consistency may be interpreted in a
similar way as the consistency between phenetic and
cladistic analyses, which, although being based on different
assumptions, reveal in many cases similar associations be-
tween phylogenetically related groups.
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