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Abstract

Drought and cold are the primary factors limiting plant growth worldwide. The Ammopiptanthus mongolicus NAC11
(AmNAC11) gene encodes a stress-responsive transcription factor. Expression of the AmNAC11 gene was induced
by drought, cold and high salinity. The AmNAC11 protein was localized in the nucleus and plays an important role in
tolerance to drought, cold and salt stresses. We also found that differential expression of AmNAC11 was induced in
the early stages of seed germination and was related to root growth. When the AmNAC11 gene was introduced into
Arabidopsis thaliana by an Agrobacterium-mediated method, the transgenic lines expressing AmNAC11 displayed
significantly enhanced tolerance to drought and freezing stresses compared to wild-type Arabidopsis thaliana plants.
These results indicated that over-expression of the AmNAC11 gene in Arabidopsis could significantly enhance its tol-
erance to drought and freezing stresses. Our study provides a promising approach to improve the tolerance of crop
cultivars to abiotic stresses through genetic engineering.
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Introduction

Abiotic stresses, such as drought and low tempera-

tures, are the main stress factors affecting the growth and

development of plants. Plants have evolved complex

stress-tolerance mechanisms, including the perception of

stress signals, the transduction of transmembrane signals,

and the generation and transmission of endogenous signal-

ing molecules, which leads to changes in the related genes,

metabolic pathways, and even cellular structures, thereby

protecting plant cells against damage by stresses (Anderson

et al., 1994; Fowler et al., 1996; Chaves et al., 2003). Over

the past decades, thousands of genes and dozens of meta-

bolic and signaling pathways have been identified in re-

sponse to drought and/or cold environments (Flower and

Thomashow, 2002; Xiong et al., 2002; Rabbani et al.,

2003; Shinozaki et al., 2003; Zhou et al., 2007; Gimeno et

al., 2009; Hadiarto and Tran, 2011; Stolf-Moreira et al.,

2011).

Numerous studies have revealed that transcription

factors (TFs) play important roles in the regulation of

stress-related genes. Generally, TFs are molecules located

the downstream of signal transduction pathways or at the

nodes of different stress signaling pathways that confer

stress tolerance to plants by regulating downstream gene

expression (Hussain et al., 2011; Huang et al., 2012). Sev-

eral TF families have been demonstrated to be crucial in

plant stress tolerance, among which the plant-specific NAC

family [(NAM (no apical meristem), ATAF (Arabidopsis

transcription activation facto), CUC (cup-shaped cotyle-

don)] has been the focus of studies in recent years due to its

significant roles in the responses and adaptation of plants to

adverse environments, particularly drought, salt, cold and

heat stresses (Kim et al., 2007; Yoo et al., 2007; Zheng et

al., 2009; Tran et al., 2010; Hao et al., 2011; Skirycz et al.,

2011; Pei et al., 2013; Wang et al., 2013; Mao et al., 2014;

Qin et al., 2014).

The NAC proteins from different plant species typi-

cally possess a highly conserved NAC domain at the N-

termini and a highly variable transcriptional activation re-

gion at the C-termini. The NAC domain contains approxi-

mately 150-160 amino acid residues, including at least five

conserved regions (A-E) related to nuclear localization and

interactions with target DNA elements in the promoter re-

gions of their downstream genes (Ooka et al., 2003). A re-
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cent study showed that NAC TFs function by forming

homo- or heterodimers, and the interaction regions are pri-

marily located in the NAC domain in the N-termini of these

proteins, although some interaction regions have been lo-

cated in the C-termini of a few NAC proteins (Jensen et al.,

2010). The diversified structures not only provide the basis

for the extensive physiological functions of the NAC fam-

ily but also demonstrate the complexity of these proteins

with respect to their regulatory mechanisms.

An increasing number of studies have recently shown

that some NAC genes have potential applications in crop

stress-resistance modification by genetic engineering. The

molecular regulatory mechanism by which NAC TFs medi-

ate plant responses and resistance to abiotic stresses has

been revealed to some extent. In the rose (Rosa rugosa),

RhNAC2 and RhNAC3 could confer petal resistance to de-

hydration by regulating the expression of genes related to

cell wall and osmotic processes, respectively (Jiang et al.,

2014). Banana (Musa nanaLour.) MaNAC1 might be in-

volved in the formation of cold tolerance in the banana fruit

via interactions with the ICE-CBF (inducer of CBF expres-

sion - C-repeat binding factor) signal pathway (Shan et al.,

2014). Rice (Oryza sativa) SNAC1/OsNAC9 and OsNAC10

are probably involved in stress resistance, including roles in

regulating stress responses, preventing cells from dehydra-

tion, detoxification, protecting proteins and other macro-

molecules, oxidation-reduction, and ion balance, thereby

enhancing rice resistance to drought, high salinity, low

temperature, etc. (Jeong et al., 2010; Redillas et al., 2012).

Arabidopsis ANAC019/NAC019, ANAC055, and

ANAC072/RD26 are the first reported NAC genes involved

in abiotic stress responses and are induced by drought, salt

stress, and ABA (abscisic acid). Hence, these genes could

improve drought resistance in transgenic overexpression

lines (Tran et al., 2004; Jensen et al., 2010; Hickman et al.,

2013). Several other NAC genes in Arabidopsis, including

AtNAC2, LOV1 (light, oxygen, voltage1), ANAC096, JUB1

(jungbrunnen 1) and SHYG (speedy hyponastic growth),

also played important roles in the formation of stress resis-

tance, such as low temperature, dehydration, salt, osmotic

and oxidative stresses, heat, and flooding (He et al., 2005;

Mao et al., 2007; Wu et al., 2009; Jensen et al., 2013; Saad

et al., 2013; Xu et al., 2013). However, few studies have

cloned these genes from strongly resistant plants. Most pre-

vious studies on NAC genes have been limited to gene clon-

ing and expression analyses, accordingly, to examine the

regulatory mechanism of NAC gene expression.

Ammopiptanthus mongolicus (Leguminosae) has

strong stress resistance to cold, drought, salt, and alkali

conditions, and this plant maintains leaves under harsh con-

ditions, including cold winters and hot summers (-30 °C to

50 °C), annual precipitation of less than 200 mm, annual

evaporation of greater than 3000 mm, gravelly or sandy

soil, and salty and alkali soil. A. mongolicus is the only

broad-leaved evergreen plant occurring in western Inner

Mongolia and Ningxia, as well as part of the desert areas in

Gansu. This plant provides excellent materials for the study

of plant resistance mechanisms and the data mining of

stress resistance genes. In recent years, a large number of

genes related to stress resistance have been obtained from

this plant by cDNA library construction, transcriptome se-

quencing, and expression profile analyses (Zhou et al.,

2012; Pang et al., 2013; Liu et al., 2013). In our previous

work, two cold- and drought-induced NAC sequences,

namely, AmNAC4 and AmNAC11, were identified in the A.

mongolicus transcriptome by using RNA-seq (Wu et al.,

2014).

In this study, the expression profiles/patterns of

AmNAC11 in response to various abiotic stresses and in dif-

ferent A. mongolicus plant organs were analyzed using

semi-quantitative RT-PCR. The coding region of the

AmNAC11 gene was cloned and functional analyses were

conducted in both transgenic Arabidopsis protoplasts and

plants. This research not only provides important knowl-

edge related to the expression regulation and resistance of

AmNAC11 and its mechanism of action, but also provides

new insights and a basis for analyzing the molecular mech-

anisms of stress resistance to drought and cold in A. mon-

golicus. These results may provide genetic resources for the

development of resistant crops via genetic engineering.

Materials and Methods

Plant materials and abiotic stress experiments

A. mongolicus seeds collected from Hohhot, Inner

Mongolia, China were sterilized and soaked in water at

25 °C for 3-4 days and then cultured at 25 °C under a 16-h

light/8-h dark cycle, according to Wu et al. (2014). One-

and-a-half-month-old A. mongolicus plants were treated as

follows: (1) for drought stress, the plants were subjected to

natural drought at 25 °C (cultured at 25 °C under a 16-h

light/8-h dark cycle without watering); (2) for cold stress,

the plants were maintained at 4 °C in a low tempera-

ture-programmable incubator under dim light; (3) for salin-

ity stress, the plants were dipped in 250 mM NaCl and

maintained at 25 °C with a 16-h light/8-h dark cycle; (4) for

heat stress, the plants were maintained in an incubator at

42 °C. At different time points (0, 2, 6, 12, 24 and 48 h),

stressed A. mongolicus tissues were immediately frozen in

liquid nitrogen. Three independent biological replicates

were performed.

Transformation of Arabidopsis and transgenic plant
materials

The pMD19-T-AmNAC11 plasmid was constructed

by amplifying the entire coding region of AmNAC11 by

PCR with upstream XbaI and downstream SmaI linker

primers and cloned into the XbaI/SmaI site of the binary

vector pCAMBIA 3300. Arabidopsis plants were trans-
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fected with Agrobacterium tumefaciens strain GV3101 by

vacuum infiltration (Bechtold et al., 1993).

Arabidopsis seeds were vernalized at 4 °C for 3-4

days, and then cultured at 22 °C under a 16-h light/8-h dark

cycle. 2-4weeks old Arabidopsis plants were subjected to

the following treatments: (1) for drought stress, the plants

were subjected to natural drought for 7 d; (2) for cold stress,

plants were maintained at 4 °C in a low temperature-

programmable incubator under dim light and maintained at

-8 °C for 8 h under dim light. All vernalized seeds were cul-

tured in 1/2 MS medium and subjected to the same treat-

ments; stressed Arabidopsis tissues were immediately

frozen in liquid nitrogen.

DNA and RNA extraction

Genomic DNA was extracted from young leaves of A.

mongolicus following the protocol in Sambrook and Rus-

sell (2001). Total RNA was extracted from the leaves,

stems, roots, pods and flowers of A. mongolicus using

TRIzol reagent. Purified RNA was treated with RNase-free

DNase I (Takara, Dalian, China) prior to precipitation.

Expression analysis

Approximately 1.5 �g of total RNA was reverse tran-

scribed into cDNA using M-MLV reverse transcriptase

(TaKaRa). The cDNA was amplified by PCR using the fol-

lowing primers: NAC11F: AATGCCACTCCCAATCTC

AACAG; NAC11R: CCTTCAGTCTCGTGCTACCGTG.

To standardize the results, the relative abundance of

Amactin was also determined and used as the internal stan-

dard. PCR for expression analysis was performed with the

following cycling profile: 94 °C for 3 min; 35 cycles at

94 °C for 30 s, 61 °C for 30 s, and 72 °C for 45 s; and a final

extension for 10 min at 72 °C. Aliquots of the PCR reac-

tions were loaded onto agarose gels and, after electrophore-

sis, stained with ethidium bromide.

Gene cloning and protein analysis

Full-length cDNA was obtained by a 3’Rapid Ampli-

fication of cDNA Ends (3’RACE) protocol using the

mRNA extracted from A. mongolicus as template (TaKa-

Ra, Dalian, China). PCR for the cloning of AmNAC11 was

performed with the following cycling profile: 94 °C for 3

min; 30 cycles at 94 °C for 45 s, 63 °C for 45 s, and 72 °C

for 1 min; and a final extension for 10 min at 72 °C. The de-

duced protein sequences were aligned using DNAMAN. A

phylogenetic tree was constructed by MEGA5 using the

Neighbor-Joining (NJ) method, followed by a bootstrap

analysis of 1000 replications.

Subcellular localization

The subcellular localization of the AmNAC11 pro-

tein was examined by adding the green fluorescent protein

(GFP) to the end of the AmNAC11 protein via cloning to

create a fusion protein. The entire coding region of the tar-

get gene was amplified by PCR and inserted into the XbaI

and SmaI sites of the vector pBI 221. The recombinant

plasmid, PBI221-AmNAC11-GFP, was introduced into E.

coli DH5�. Arabidopsis transformation and selection was

performed according to Du et al. (2011). The root tip cells

of transformed Arabidopsis were observed using a laser

confocal scanning microscope (Ti-U, Nikon, Japan).

Expression analysis of AmNAC11-induced genes

Nine-day-old Arabidopsis seedlings grown on agar

medium were transferred to agar medium with or without

stress, and the expression levels of the genes were mea-

sured by semi-RT-PCR. The stress-inducible genes due to

AmNAC11 overexpression were compared using RAB18,

RD29A, RD29B, COR47, COR15A, COR15B, HSF and

P5Sc genes tested in drought stress, and KIN, RD29A,

COR47, COR15A, COR15B, HSF and P5Sc genes tested in

cold stress. The actin gene of A. mongolicus (Amactin) was

used as a reference gene.

Statistical analysis

All experimental data are reported as the average and

standard deviation (SD) of three replicates, and statistical

tests were conducted with SPSS v12.0 (IBM Corporation,

New York, USA). Values are denoted as significant (p <

0.05) or highly significant (p < 0.01).

Results

Responses of AmNAC11 to multiple abiotic stresses

The effects of various abiotic stresses on AmNAC11

expression were examined. For the freezing treatment, the

expression of AmNAC11 increased significantly after 2-6 h

and then decreased gradually, but it was still higher than

that of the untreated group after 48 h. For the drought treat-

ment, a slight increase in expression was also observed in

the middle stage (12 h), and the expression levels reached a

maximum at 48 h. For the heat treatment, the expression of

AmNAC11 was consistently relatively higher than that of

the 0 h control, especially at the early stage (Figure 1A).

The expression of AmNAC11 was analyzed in A.

mongolicus leaves at several key time points under natural

conditions. The results showed that the expression of

AmNAC11 was significantly up-regulated at low tempera-

tures (November to the next March) and was also expressed

under drought stress (July) (Figure 1B), based on the mete-

orological data of Huhhot in 2014 (Table 1). These results

indicated that AmNAC11 responded to low temperature and

drought stresses.

Expression of AmNAC11 in various organs and at
the seed germination stage

The leaves, stems, roots, flowers, and pods of A.

mongolicus were collected from mature plants grown in the

field. Based on a comparison of AmNAC11 expression
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between tissue types for plants collected in the field in May

(Normal growing condition, Figure 1B, C), AmNAC11 ex-

pression was substantially higher in the roots than in other

organs during this period. The plants were not affected by

low temperature, drought, or other environmental stresses

during sampling, suggesting that AmNAC11 likely played

an important role in plant growth, especially in root growth,

and might exhibit some resistance to permeability-related

stresses, such as drought and salt.

An increase in AmNAC11 expression was observed

within 7 days of seed germination in A. mongolicus, and the

expression levels on days 1, 3, and 4 were higher than those

in the control. Thus, AmNAC11 might be involved in root

growth, but not cotyledon development, during germina-

tion (Figure 1D).

Characterization and protein prediction of the
AmNAC11 gene

Using cDNA and genomic DNA of A. mongolicus as

templates, amplified products were obtained with specific

primers for full-length AmNAC11 (Figure 2A). AmNAC11

genomic DNA contained 3 exons and 2 introns (Figure 2B)

and encoded a protein of 292 aa with a predicted isoelectric

point of 6.54. The main secondary structure of the protein

includes �-helix, �-sheet, �-turn, and random coil. The

AmNAC11 secondary structure predicted using SOPMA

(https://npsa-prabi.ibcp.fr/) (Geourjon and Deleage, 1995)

(not shown) indicated that the proportion of random coils in

the protein, which are involved in linking the other second-

ary structure elements, was high (53.77%). In addition, the
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Figure 1 - Variation in AmNAC gene expression. (A) AmNAC11 gene expression in Ammopiptanthus mongolicus among indoor treatments; (B)

AmNAC11 gene expression in Ammopiptanthus mongolicus during field sampling; (C) AmNAC11 gene expression in various organs. F: Flowers; L:

Leaves; S: Stems; P: Pods; R: Roots; (D) AmNAC11 gene expression in Ammopiptanthus mongolicus within 7 days of seed germination. (C and D) CK:

the primers (as shown) were employed by PCR using double-steamed water to replace the cDNA as a blank control.

Table 1 - Climatic index of Huhhot city of Inner Mongolia of China in 2014.

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Temperature (°C) -10.9 -6 2.3 8 18 20.6 21.5 20.6 15.1 7.8 -1.5 -8.1

Relative humidity (%) 59 40 35 33 32 51 69 67 59 50 52 51

Precipitation (mm) 5.2 3.8 3.6 1.9 7.8 96 192.6 144 97.3 9 7.2 7

Sunshine duration (h) 174.2 202.4 253.8 257.1 265.7 209.9 230.9 224.7 215.3 238 171.3 186.5



main secondary structure elements were �-helices

(28.42%) and �-sheets (13.01%). The sub-domains A and E

mainly contained �-pleated sheets and �-helix structures,

the sub-domains B and C primarily comprised �-pleated

sheets, while sub-domain D contained �-helices, �-pleated

sheets, and �-turns. The result of homologous modeling us-

ing SWISS-MODEL (Figure 2C) showed a few helical ele-

ments surrounding a twisted �-pleated sheet structure.

Based on the subcellular localization analysis, in UV

vision (Figure 3A, B), DAPI staining was used to show the

location of the nucleus. The empty vector PBI221-GFP had

no obvious localization in protoplast cells of Arabidopsis

thaliana with green fluorescence in the nucleus, cytoplasm,

and cell membrane (Figure 3C). After transformation of the

recombinant plasmid PBI221-AmNAC11-GFP in proto-

plast cells of A. thaliana, green fluorescence was detected

in the nucleus (Figure 3D). In bright field imaging (Figure

3E, F), the cells exhibited good growth conditions. The

merged image (Figure 3G, H) confirmed that the

AmNAC11 protein had a nuclear localization signal (NLS).

An alignment generated using the online Clustal W2

tool (Figure 4) showed that the amino acid residues of the

AmNAC11 protein at the N-terminus were highly con-

served. Its structural domain comprised approximately 150

amino acid residues with high conservation, which could be

further divided into 5 sub-domains, A, B, C, D, and E. The

five sub-domains constituted the NAC structural domain,

exhibiting typical structural characteristics of NAC tran-

scription factors. The amino acids at the C-terminus were

highly diverse, but a few relatively well-conserved amino

acids, including proline (P), serine (S), and glutamate (E),

were still detected in this region. Phosphorylation has a

great influence on protein function, and the phosphoryl-

ation of protein kinase C plays an important role in metabo-

lism, gene expression, cell differentiation, and prolifera-

tion. The phosphorylation of the AmNAC11 protein occurs

mainly on serine (S) and threonine (T) according to an on-

line NetPhos tool analysis (http://www.cbs.dtu.dk/ser-

vices/NetPhos/).

AmNAC11 transgenic plants showed increased
abiotic stress resistance

To explore the function of AmNAC11 in planta, we

developed transgenic Arabidopsis constitutively express-

ing AmNAC11 genes under the control of the 35S promoter.

Semi-quantitative RT-PCR was used to detect the tran-

scripts of AmNAC11 in the homozygous overexpression

plants. Four representative homozygote lines

(AmNAC11-1, AmNAC11-2, AmNAC11-3 and

AmNAC11-4) with high expression levels were confirmed

(Figure S1). Two of them (AmNAC11-1 and AmNAC11-

2) were used in the following experiments. No notable mor-

phological differences were observed between the wild-

type and transgenic plants throughout their life cycle.
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Figure 2 - Structural analysis of the AmNAC11 gene. (A) Electrophoretogram of AmNAC11 (1. AmNAC11 cDNA full-length 1056 bp; 2. AmNAC11 ge-

nome DNA full-length 1336 bp); (B) structural diagram of AmNAC11 genomic DNA; (C) predicted tertiary structure of the AmNAC11 protein (Arnold et

al., 2006; Benkert et al., 2011; Biasini et al., 2014).

Figure 3 - Subcellular localization of AmNAC11 in transgenic Ara-

bidopsis protoplast cells. Cells were bombarded with constructs carrying

GFP or AmNAC11-GFP. GFP and AmNAC11-GFP fusion proteins were

transiently expressed under the control of the cauliflower mosaic virus

35S promoter in protoplast cells and observed with a laser scanning confo-

cal microscope. Images are dark field (c, d), bright field (e, f), and com-

bined (g, h), and UV field for DAPI nuclear stain (a, b).



The wild-type and transgenic plants were exposed to

different abiotic stresses, including low temperature,

drought, and salt, to determine whether AmNAC11 is in-

volved in plant defense against abiotic stress. Phenotypic

differences among treatments and the defensive response

function of this gene were examined.

Drought stress

To examine resistance to drought stress, wild-type

and transgenic plants were cultured under similar growth

conditions. Within 1-3 hours, the leaves of transgenic and

wild-type plants showed significantly different degrees of

wilting after natural drying at room temperature for 8 h

(Figure 5A). In addition, the above-ground plant parts ob-

tained from transgenic and wild-type Arabidopsis with

similar growth at 2 weeks of age were randomly harvested

and placed in empty Petri dishes under the same conditions,

and the extent of wilting was observed. The wilting degree

of A. mongolicus AmNAC11 transgenic plant leaves was

significantly less than that of wild-type plants in vivo (Fig-

ure 5C and Figure S2A). The result shows that the weight

loss rate of line AmNAC11-1 is 52.24A 2.33% and that of

line AmNAC11-2 is 50.46w 1.28%, otherwise the rate of

WT is 58.74c 2.89%, in the first 3 h of treatment, suggest-

ing that AmNAC11 increases the water retention capacity

of leaves.

In vitro (Figure 5B and Figure S2B, C), the plants cul-

tured for 4 weeks under normal conditions were stopped

watering for drought treatment, the results showed that the

leaves of wild-type plants showed obvious wilting and dry-

ing phenotypes after about 15 days of water deprivation,

however, only some transgenic plants showed similar

symptoms, and most of the leaves of transgenic lines re-

mained green and alive. The survival rate was 3.7 � 0.9% of

wild-type plants after resuming watering 5 days, while the

survival rates of transgenic lines AmNAC 11-1 and

AmNAC11-2 were as high as 53.2 � 4.1% and 61.4 � 5.8%,

respectively.

Since AmNAC11 is a transcription factor, the

drought-inducible gene (RAB18, RD29A, and RD29B) ex-

pression in transgenic plants was much higher than that in

wild-type Arabidopsis without drought treatment, and the

expression of COR47 COR15A, COR15B, HSF and P5Sc

genes was the same. After 8 h of drought treatment, the ex-

pression of RD29B in transgenic lines was higher than that

in wild-type Arabidopsis. The expression of RD29A,

COR15A and COR15B in the transgenic lines was slightly

lower than that in wild-type plants. And the expression of

the other genes was no significant difference between

transgenic and wild-type Arabidopsis (Figure 5D).
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Figure 4 - Alignment of AmNAC11 and NAC protein sequences of other species. ATAF1 (At1g01720), ANAC032 (NP177869), ANAC041

(NP001118435), ANAC083 (NP196822), AtNAC2 (At5g39610), CUC1 (AB049069), NAP (At1g69490), NST1 (At2g46770), OsNAC1 (AB028180),

OsNAC11 (AB028183), OsNAC5 (AB028184), OsNAC6 (AB028185), OsNAC19 (AY596808), NAM (X92205), BnNAC14 (AY245886), GmNAC8

(EU661911), GmNAC14/GmNAC016 (EU661914), GmNAC15 (ACD39373), GmNAC17 (EU661917), TaNAC2 (AY625683), and CaNAC1

(AY714222).



Low-temperature stress

Because the AmNAC11 gene showed high expression

under low-temperature stress (Figure 1A), we compared

wild-type and transgenic plants under low-temperature

stress. The growth status of wild-type and transgenic plants

cultured for 4 weeks was similar prior to the freezing treat-

ment. After treatment at -8 °C for 8 h, the two plant types

showed different degrees of leaf wilting. After 10 days of

recovery, the wild-type plants almost died; except for dam-

age and wilting on individual leaves, most of the transgenic

seedlings had normal appearances and quickly recovered

normal growth (Figure 6A and Figure S3). The survival rate

of wild type was only 2.72 � 0.33%, while those of trans-

genic lines AmNAC11-1 and AmNAC11-2 were

49.741.58% and 57.38 � 3.26% respectively, and the plant

heights were 4.62 � 0.43 cm and 4.78 � 0.32 cm respec-

tively, which are significantly higher than those of wild

type (0.69 � 0.47 cm) (Figure S4). These results showed

that AmNAC11 could significantly increase the freezing re-

sistance of transgenic Arabidopsis.

In the low-temperature-inducible gene expression

analysis, in the CK groups, the gene expression of KIN,

HSF and P5Sc in transgenic plants was much higher than

that in wild-type Arabidopsis, the RD29A gene expression

in transgenic plants was lower in AmNAC11-1 and

AmNAC11-2 than in wild-type Arabidopsis, and the gene

expression of COR47 was up-regulated in transgenic plants

compared to that in wild-type plants. Strikingly, the expres-

sion of all of the genes was up-regulated after cold-

treatment for 8 h in wild-type and transgenic Arabidopsis

plants except KIN-HSF and P5CS (Figure 6B).
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Figure 5 - Phenotypes of AmNAC11 transgenic plants with increased resistance to drought stress. Drought stress tolerance analyses of AmNAC11 trans-

genic Arabidopsis plants. (A) Above-ground plant part drought tolerance analysis of AmNAC11 transgenic Arabidopsis plants. Drought stress:

2-week-old transgenic and wild-type Arabidopsis were randomly harvested at 25 °C; (B) leaf drought tolerance analysis of AmNAC11 transgenic

Arabidopsis plants. Drought stress: 3-week-old wild-type and transgenic plant leaves were treated without watering for 1, 2, 3 and 6 h. The growth status

of treated leaves is shown (a, the wild-type plants; b, the transgenic plants); (C) drought tolerance analysis of 35S::AmNAC11 transgenic Arabidopsis

plants. (D) The drought-related gene expression in AmNAC11 transgenic Arabidopsis plants, CK, all the plants cultured at 25 °C under 16-h light/8-h

dark cycle without drought stress treatment.



Discussion

Hao et al. (2010) found a transcriptional repression

domain consisting of 35 amino acids in the D sub-domain

of the DNA binding domain in NAC in soybeans. This re-

pression domain was named NARD (NAC Repression Do-

main). Since then, NARD-like sequences, containing 17

residues (G**K*LVFY*G**P*G*K**W*MHEYRL)

with 12 conserved amino acids (GKLVFYPWMHER),

have also been found in other NAC proteins. The results of

the amino acid sequence analysis in this study showed that

the AmNAC11 transcription factor contained similar sub-

domain D sequences, i.e.,

GVKKALVFYKGRPPKGVKTNWIMHEYRL. More-

over, the sequences LVFY and MHEYRL were highly con-

served (Figure 4). Therefore, we inferred that sub-domain

D of the abiotic stress-related NAC transcription factor also

contained the transcriptional repression domain.

Hao et al. (2010) proposed that NAC contained both

NARD and activation domains, and the tolerance ability of

plants under abiotic stresses depended on the relative

strengths of NARD and the activation domain. Putative nu-

clear localization sequences have been detected in the C

and D sub-domains of many NAC domains. Tran et al.

(2004) found that the RD26 contained a nuclear localiza-

tion signal, and the NAC domain was essential for the en-

trance of RD26 into the nucleus. A GFP-RD26 fusion pro-

tein was localized in the nucleus, and RD26 lacking the

NAC domain was localized in both the cytoplasm and nu-

cleus. Lu et al. (2007) found that ATAF1 is located in the

nucleus and the nuclear localization sequence was localized

in the sub-domain D.

In this study, the AmNAC11 transcription factor was

localized to the nucleus (Figure 3D), and the sequence

GVKKALVFYKGRPPKGVKTNWIMHEYRL in its

sub-domain D (Figure 4) might play a particularly impor-

tant role in nuclear entry and subsequent functions.

The NAC transcription factors are not only a rela-

tively large protein family in plants but also a specific tran-

scription factor family in these organisms. In our labora-

tory, we constructed a full-length cDNA library for A.

mongolicus in the previous works and obtained the NAC

transcription factor family through plasmid sequencing and

Blastn alignment. Some AmNAC transcription factor genes

involved in stress resistance were screened using a digital

gene expression analysis. The present results showed that

high expression of AmNAC11 was induced by both drought

and low-temperature stresses and was also induced by salt

and heat to some extent. These results indicated that

AmNAC11 might induce broad-spectrum resistance to

multi-abiotic stress.
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Figure 6 - Phenotypes of AmNAC11 transgenic plants with increased resistance to freezing stress. (A) Cold stress tolerance analyses of AmNAC11 trans-

genic Arabidopsis plants. (B) The low temperature-related gene expression in AmNAC11 transgenic Arabidopsis plants. CK, all the plants cultured at 25

°C under 16-h light/8-h dark cycle without low-temperature stress treatment.



The effect of drought stress on the growth of young

plant cells is manifested in the growth of the root system. In

this study, transgenic Arabidopsis overexpressing the

AmNAC11 gene could resist drought stress at the beginning

of germination, indicating that AmNAC11 may be involved

in the response to drought stress at the germination stage by

promoting plant root growth. This conclusion was consis-

tent with the higher expression of AmNAC11 in A. mon-

golicus roots.

Freeze-sensitive plants typically do not absorb melt-

ing water back into the protoplast as temperatures increase,

resulting in dehydration of the protoplasm and dried tis-

sues. For freezing injuries, cell membrane damage affects

the lipids on the membrane and destroys protein structure.

AmNAC11 transgenic Arabidopsis not only had better

freezing resistance compared with that of wild-type plants

but also exhibited less leaf wilting in response to the freez-

ing injury. This result indicated that in the freeze dehydra-

tion process, transgenic plants could maintain cell integrity.

This phenomenon further indicated that the AmNAC11

protein might promote the expression of membrane skele-

ton-related proteins.

The results of this study proved that AmNAC11 could

respond to drought and low-temperature stress and effec-

tively improve the resistance of transgenic plants under

these stresses. Currently, more and more publications re-

ported that NAC TFs interact with other proteins, such as

calcium-dependent protein kinases, WRKY, MYB, and

ATDOF5.8, to participate in the plant stress response (He et

al., 2015; Zeng et al., 2015; Shan et al., 2016), but the NAC

gene expression regulatory mechanism is poorly under-

stood. Its regulatory mechanism and signaling pathway will

be the focus of future research. The present results not only

revealed the expression regulation and stress resistance

function of AmNAC11 and its potential regulatory mecha-

nism, but also provided further insight into the molecular

mechanism of resistance to drought and cold stresses in A.

mongolicus and other plants.
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