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Abstract

Prediction of transcription factor binding sites (TFBS) is an example of application of Bioinformatics where DNA 
molecules are represented as sequences of A, C, G and T symbols. The most used model in this problem is Position 
Weight Matrix (PWM). Notwithstanding the advantage of being simple, PWMs cannot capture dependency between 
nucleotide positions, which may affect prediction performance. Acyclic Probabilistic Finite Automata (APFA) is an 
alternative model able to accommodate position dependencies. However, APFA is a more complex model, which 
means more parameters have to be learned. In this paper, we propose an innovative method to identify when position 
dependencies influence preference for PWMs or APFAs. This implied using position dependency features extracted 
from 1106 sets of TFBS to infer a decision tree able to predict which is the best model – PWM or APFA – for a given 
set of TFBSs. According to our results, as few as three pinpointed features are able to choose the best model, providing 
a balance of performance (average precision) and model simplicity.
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Introduction
Embryo development, cancer and stem cell differentiation 

are examples of biological processes regulated by transcription 
regulation (Xiao et al., 2018; Furlong and Levine, 2018; 
Andersson and Sandelin, 2019). These complex mechanisms 
require understanding how cis-regulatory modules (CRM) 
affect expression of gene regulatory cascades. CRMs are 
DNA sequences upstream or downstream of the target 
gene where multiple transcription factors (TFs) can bind 
and trigger mechanisms that can increase or decrease gene 
expression (Spitz and Furlong, 2012). Furthermore, TFs 
recognize and bind to specific short DNA sequences (usually 
6 to 12 nucleotides) called transcription factor binding sites 
(TFBS) and different TFs recognize different patterns of DNA 
sequences to bind (called motifs) (Lambert et al., 2018). 
Therefore, it is important to know which TFs bind to a given 
CRM and the location of their binding sites to associate a 
given target gene with its regulators. In this article, we limit 
our scope to TFBS recognition in high throughput sequencing 
experiments. More specifically, how to choose an appropriate 
model that can predict the pattern of recognition of a given TF.

State-of-the-art molecular biology techniques to uncover 
TFBSs include chromatin immunoprecipitation sequencing 

(ChIP-seq), chromatin immunoprecipitation on chip (ChIP-
chip) and protein binding microarray (PBM). Table 1 shows 
additional information about these techniques.

However, these biological experiments uncover 
sequences containing the TFBSs but not their exact location. 
Frequently, an additional step is necessary for motif discovery, 
in order to identify short similar subsequences shared by these 
sequences (Kulakovskiy and Makeev, 2009; Boeva, 2016).

In addition to the resolution issue, these biological 
experiments are expensive and time consuming. Therefore, 
performing these experiments in all genomes and for all TFs 
are often very expensive. Computational prediction of TFBSs 
is an important strategy to identify high resolution binding 
site locations in a faster and cheaper manner.

The most used model for TFBS prediction is the Position 
Weighted Matrix (PWM) (Staden, 1984). A PWM is a matrix 
W where Wij contains the score associated with the occurrence 
of the nucleotide i = 1,..,4 (representing A, C, G and T) in 
the position j of the binding site of a specific TF. The score 
of a sequence x = x1…xl is the sum of the scores Wij for the 
nucleotides present at each position j = 1,…,l. If the score of x 
is above a predefined threshold, x is considered a binding site 
for that TF. It is a simple and easy-to-train model that achieves 
good results (Wasserman and Sandelin, 2004; Zhao and 
Stormo, 2011). However, PWMs are based on the assumption 
that the occurrence of a nucleotide in a certain DNA’s position 
does not depend on the presence of these nucleotides in its 
vicinity, which is not necessarily true. In fact, some studies 
suggest the existence of positional dependencies between 
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Table 1 – Biological techniques to uncover TFBSs.

Techniques Description

ChIP-seq

ChIP-seq, a powerful in vivo technique investigates TF-DNA interactions along the whole genome (Landt et 
al., 2012; Nakato and Sakata, 2021). The technique sequences several DNA fragments of approximately 150-
500 nt-long that were bound to a specific TF. These sequences are aligned to the source genome to identify 
the location of the statistical relevant “peaks” of these mapped sequences (Nakato and Sakata, 2021). These 
peaks, with hundreds to few thousands of nucleotides in length, are the most probable regions containing 
the binding sites of that TF.

ChIP-chip

ChIP-chip is a technique similar to ChIP-seq where instead of the immunoprecipitated DNA being sequenced, 
it is hybridized into a microarray chip 6. Each spot emits a fluorescence signal when DNA hybridization 
occurs to quantify the signal intensity and identify “peaks” containing the TFBSs (Lee et al., 2006). The 
length of these peaks ranges from hundreds to few thousands of nucleotides.

PBM

Protein binding microarray (PBM) is an in vitro technique that identifies which of several artificially generated 
random DNA sequences are the most recognized by a TF of interest (Berger and Bulyk, 2009). PBM provides 
higher resolution results but is less reliable than in vivo techniques, because this assay does not take into 
account all biological events that simultaneously happen during TF binding to DNA.

nucleotides within TFBSs (Tomovic and Oakeley, 2007; 
Badis et al., 2009; Zhao et al., 2012; Eggeling et al., 2014). 
One possible explanation is the idea that the TFs recognize 
not only nucleotide composition, but also the structure of 
the DNA sequence (Badis et al., 2009; Slattery et al., 2014; 
Schnepf et al., 2020). Notwithstanding the evidence for such 
dependencies, it is still an open question whether this is true 
for all TFs or even for a particular family of TFs (Badis et al., 
2009; Zhao et al., 2012; Weirauch et al., 2013).

Assuming that the TFBS motifs have a fixed length, 
such inter-position dependencies can be modeled by an 
acyclic probabilistic finite automata (APFA) (Ron et al., 
1998). Figure 1 depicts the ability of this model to represent 
conditional position dependence and the inability of PWMs 
for this purpose. The question is: as APFA is a more complex 
model than PWM, will it always outperform PWMs or only 
under certain conditions?

In this article, we answered this question by not only 
comparing the results using PWMs and APFAs for the problem 
of binding site prediction for several TFs, but also inferred a 
decision rule to choose which model to use based on features 
extracted from the training sequences, such as conditional 
position dependence measures. In addition, we analyzed the 
influence of different motif discovery methods to identify the 
training sequences from biological experiments. It is a relevant 
issue because a motif discovery algorithm may consider, or 
not, possible existence of conditional position dependence.

Position Weight Matrix

Position Weight Matrices are matrices W4×l that 
characterize motifs of length l. Each position Wij contains 
a score associated with the occurrence of the nucleotide 
bi, i = 1,..,4 (b1 = A, b2 = C, b3 = G and b4 = T) in position 
j of the TFBS motif (bij). Such score is based on the log of 
the likelihood ratio of a trained TFBS model p̂ and a null 
model q. A typical null model in Genomics corresponds to 
the nucleotide frequencies in the genome of study.

More precisely, we define ( )ˆ ijp b  as:
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where nij is the absolute frequency of the nucleotide bi at 
position j in the TFBS training sample, ( )ibψ  is the value 
of a pseudocount function for bi, which helps smoothing 
probabilities, avoiding zero value in ( )ˆ ijp b  (Wasserman 
and Sandelin, 2004), and n is the number of sequences in the 
TFBS training sample.

The pseudocount ( )ibψ  is arbitrary, but defined here as:

( )i bib fψ α= 	 (2)

with 
1

10n
α = , a proportionally inverse of the TFBS sample 

size (n) and fbi the absolute frequency of bi in the TFBS 
sample (Xia, 2012).

Finally, the score Wi,j of a PWM is defined as:
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where q(bi) is the bi probability according to the null model.

Let s = s1s2…sl be a sequence with length l and sj is the 
specific nucleotide occurring in that position. Therefore, we 
define i(j) = 1,2,3,4 if the sj = A,C,T,G, respectively, i.e., sj = 
bi(j). A PWM ascribes a score W(s) as:
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Acyclic Probabilistic Finite Automata

APFAs are a subclass of Probabilistic Finite Automata, 
that are devices from formal language theory which consists 
of a set of states and state transition rules of stochastic 
nature, defined on an alphabet of symbols, able to attribute 
probabilities to the recognized sequences. Informally, an APFA 
is an automaton where states are organized in levels from the 
start state q0 to the final state qf, and all edges connects the 
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Figure 1 – Example of models trained from a pseudo TFBS sample in order to show how APFA (left) and PWM (right) models estimate their probability 
parameters and how dependencies are, or not, considered. For the sake of simplicity and with no impact in the comparison, the illustrated APFA and 
PWM scores were calculated based on equation 1 with pseudocount = 0.1, ie, before the division by the null model probabilities and log calculation. In 
the APFA, circles represent analysis states that are followed left-to-right during the analysis of an input sequence. Each edge is labeled with a nucleotide 
or EOS (“end of sequence”), and a probability. The sum of the probabilities of all edges going out of each state is one. Here, the PWM matrix has at 
position (i, j) the probability of a nucleotide i is present at TFBS position j. The green box in the TFBS sample shows a dependency between nucleotide 
positions 2 and 3. Whereas APFA was able to represent such dependency, PWM was not able. For instance, the symbol “T” in the third position of the 
sequence “CAT” has a high probability (0.96) in the APFA once it appeared after “CA” (path shown in red), whereas “C” in the third position of the 
sequence “CAC” has a low probability (0.01) also due to their previous nucleotides (last part of the path shown in blue). However, PWM ascribes the 
same probability of 0.49 to each nucleotide “T” or “C” in the third position.

state from one level to a state in the next level (as illustrated 
in the left side of Figure 1) or to the final state qf (Ron et 
al., 1998). Therefore, APFAs with levels l + 1 are suitable 
for modeling the distribution of sequences with a maximum 
length of l. An algorithm for APFA learning (structure and 
probabilities) is described in (Ron et al., 1998).

The probability PA(s) assigned to a sequence s = s1s2…
sl by an APFA A is the product of each state transition rule 
used to generate s. Similar to PWMs, we also calculated the 
log-odd score:

( ) ( )( ) ( )( )2 2A AH s log P s log q s= − 	 (5)

Where q(s) is the probability of s evaluated by a null model:
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Measures of inter-position dependency

Two different methods used in this work to measure 
inter-position dependencies in TFBS samples are Cramér’s 
V (or Φ) and Theil’s U. The advantage of these methods 
in comparison to others used in this context (Tomovic and 
Oakeley, 2007) is that Cramér’s V and Theil’s U have a fixed 
range of values (from zero to one), allowing to compare 
different TFBS samples.

These methods calculate the dependency between two 
positions in a set of sequences. For this, they assume B is a 
random variable that can take values in {A,C,T,G}, and bj is 
a particular value (nucleotide) of B in position j. P(bj) is the 
probability of B at position j taking value bj, and P(bh,bj) is 
the joint probability of B taking value bj at position j and bh 
at position h.

Cramér’s V
Derived from χ2 (Chi-square) statistics, Cramer’s V is 

a measure of association between two categorical variables, 
with zero meaning no association and one meaning total 
correlation (Kim, 2017). We define χ2

jh, the χ2 statistics for 
positions j and h, as:
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Where n is the number of sequences in the sample.

Finally, we define Vjh as:
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where χ2
jh is defined in equation 7, and c and r are the number 

of columns and rows, respectively, in the contingency table 
(c = r = 4 for TFBS samples.)

Symmetric Theil’s U
Symmetric Theil’s U (named as Theil’s U here and after) 

is a normalization of Mutual Information (I), taking values 
ranging from zero to one (Witten et al., 2011). Let I(Bj, Bh) 
be the Mutual Information of Bj and Bh, calculated as:
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Then, U(Bj, Bj), the Theil’s U of random variables Bj and Bh, 
is defined as:
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Where I(Bj, Bh) is the Mutual Information defined in equation 
9 and H(Bj) is the entropy of Bj, defined as:
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Information content

Information Content (IC) is commonly used to measure 
the quality of a PWM (Xia, 2012). It is defined as:
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with Wi,j defined in equation 3, ( )ˆ ijp b  defined in equation 1, 
i = 1,2,3,4 is each PWM row (representing nucleotides A,C,G 
and T, respectively), and j is each PWM column (representing 
the TFBS positions).

Material and Methods
In order to create a decision rule to help choosing which 

model to use – PWM or APFA – based on a TFBS sample, 
we performed the strategy described in Figure 2. First, TFBS 
sequences were obtained using different motif discovery tools. 
Then, the TFBS samples were used for: 1) feature extraction 
and 2) estimation of the performance of PWMs and APFAs. 
Finally, these results were used to create the decision rule. 
In the following sections we give details of each process.

Datasets

All datasets were collected from JASPAR, ENCODE 
and PBM databases. From JASPAR we downloaded, for each 
TF, the most recent version of ChIP-chip or ChIP-seq file 
that had 100 or more sequences. From ENCODE, files were 
downloaded via Bioconductor ENCODExplorer package, 

Figure 2 – Summary of the employed workflow.
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using the option “optimal IDR thresholded peaks,” for genomes 
mm10, hg19, dm6 and ce11. From PBM, both 8-mer (DNA 
sequences of length eight) processed data and raw data were 
downloaded from the project website (Weirauch et al., 2013).

In total, 289 TFBS samples were obtained from JASPAR, 
113 from ENCODE and 73 from PBM experiments. Each 
TFBS sample is composed of TFBS sequences from a specific 
TF from a specific species.

Data processing and motif discovery

JASPAR sequences are already processed by a motif 
discovery step. The exact TFBS sequences were obtained 
trimming lowercase characters. JASPAR uses uppercase to 
describe the exact TFBS sequence and lowercase to describe 
the upstream and downstream sequences. For ENCODE and 
PBM data, different motif discovery algorithms were applied, 
resulting in the creation of different TFBS samples.

There are a variety of available algorithms for motif 
discovery. Basically, they could be divided as considering or 
not conditional position dependencies. As this issue may impact 
the creation of the TFBS samples, we picked a spectrum of 
motif algorithms that could represent all ranges of assumptions 
about inter-position dependencies.

For motif discovery algorithms that consider 
dependencies we used TFFM (Mathelier and Wasserman, 
2013) and InMoDe (Eggeling, 2018), which are based on 
variations of Markov Models. Algorithms that do not consider 
dependencies are RSAT (Nguyen et al., 2018) and STREME 
(Bailey, 2021), both of which are enumeration approaches that 
return a PWM as result. Additionally, the algorithm 8-mer 
align E can be seen as a control case regarding dependencies, 
since it is not based on a model, but solely on PBM signal-
to-noise statistics over 8-mers (Berger and Bulyk, 2009; 
Weirauch et al., 2013).

We independently applied more than one motif discovery 
tool to each experimental dataset (e.g.: ENCODE ChIP-
seq, JASPAR, Weirauch et al. (2013) available PBM data), 
resulting in different TFBS samples for each tool applied 
(see Figure 2). We did not merge TFBS samples obtained 
from the same experiment. Instead, we treated each sample 
as an independent dataset for the 7-fold cross-validation of 
both models (see section Material and Methods – Nested 
k-fold CV and Data S3).

In summary, 1106 TFBSs samples were obtained as a 
result of combining a dataset and a motif discovery tool: 289 
TFBS samples from JASPAR, 113 × 4 = 452 TFBS samples 
from ENCODE and 73 × 5 = 365 TFBS samples from PBM 
(see Figure 2).

Details about the motif discovery protocol are described 
in Data S1 and Data S2.

TFBS sample feature extraction

For each TFBS sample, dependence features were 
extracted based on Cramér’s V and Theil’s U measures (see 
section Introduction – Measures of inter-position dependency). 
Since both measures are defined in terms of a pair of positions, 
we calculated the maximum and the mean value of each 

measure among all position pairs: max_Cramér’s V, mean_
Cramér’s V, max_Theil’s U and mean_Theil’s U. In addition, 
for Cramér’s V and Theil’s U calculation (equations 8 and 
10), we calculated P(bj, bh) and P(bj) as follows.

Consider a TFBS sample of n sequences of length l. 
Let h and j be two arbitrary positions in a sequence, with h = 
1,2,…, l and j = 1,2,…, l and h ≠ j. Let B be a random variable 
that can take values in {A, C, T, G}, and bj a particular value 
(nucleotide) of B in position j.

The joint probability of bj and bh is defined as:
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where N(bh, bj) is the absolute frequency of the joint occurrences 
of bh in position h and bj in position j.

To avoid computation inconsistencies due to zero values 

in probabilities, we added a pseudocount of 
1
n  to each N(bj, 

bh). As there are sixteen combinations of the pair N(bj, bh), the 
denominator should be normalized as 16n as well.

Then, P(bj) is calculated as the marginal probability of 
B in position j taking the value bj:
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Other features were also extracted: the number of 
sequences in the TFBS sample, and the mean Information 
Content (mIC) – a normalization of the IC (see section 
Introduction – Information Content) over the TFBS length l:

ICmIC
l

= 	 (15)

Model performance evaluation

We implemented a nested K-fold Cross Validation (CV) 
for the purpose of training and testing the models PWM and 
APFA, with K = 7, and applied to each of the 1106 positive 
TFBS samples (S+) obtained as described in section Material 
and Methods – Data Processing and Motif Discovery. As PWM 
and APFA models are trained using only positive sequences, 
non-positive sequences are used exclusively for testing. All 
tasks that involved some randomness were performed using 
Python pseudo-random numbers generator (random module) 
and seed set to 11.

Non-positive samples
We artificially generated sequences which were shuffled 

versions of the corresponding genome (of the species of the 
specific TFBS sample) in order to compose the “non-positive” 

sample, used only for testing. We use the term “non-positive” 
instead of “negative” sample because we cannot certify that 
shuffled sequences are not particular instances of motifs from 
a given TF target of study. The generation was performed 
following these steps:
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1.	 using the corresponding genome of each TFBS 
sample, approximately 16,000 random DNA 
fragments were selected out of 1,000 nucleotides;

2.	 each fragment was shuffled (using Python random 
module) and sliced, where each “sliced” sequence 
had the same size of the TFBSs in S+;

3.	 because in the genome there are more “non-positive” 
sequences than actual TFBS for a specific TF, the 
final S¯ is composed of min(500,000; 100 × n), 
where n is S+ sample size.

Nested k-fold CV
We used a 7-fold CV strategy divided in two nested 

steps illustrated in Figure 3 and summarized in Data S3 
(Tables S1 and S2). The purpose of the first step (Figure 3A) 

or “inner loop” is to optimize 1) the hyperparameters of the 
Learn-APFA algorithm (Ron et al., 1998) used to train the 
APFAs (see details below) and 2) the classification thresholds 
for APFA and PWM models. 

We call hyperparameters the adjustable parameters of 
the learning algorithm used to guide the training process. 
The hyperparameters are not the learned values but can 
affect the overall performance of the model. APFA has three 
hyperparameters to be calibrated: 

1.	 mu (μ): this parameter is directly involved in 
the generalization capacity of the model. It is an 
adjustable threshold used by the learning algorithm 
to consider if two subsequences are similar. 
When two subsequences are considered similar, 
the learning algorithm merges the corresponding 
internal states in the APFA, avoiding overfitting;

Figure 3 - Nested 7-fold Cross-Validation. The whole TFBS sample is represented as a bar, and each fold is represented as a disjoint subset (rectangles). 
In A) the first step is illustrated where, in each iteration, train folds (in blue) are used to train the APFA and PWM models, and the calibration fold (in 
yellow) is used to calibrate the Learn-APFA hyperparameters and find the optimal classification thresholds for APFA and PWM. In this phase the test 
fold (in red) is not used. In B) the second step is illustrated, which estimates the performance of the APFA calibrated in the previous step and of the 
PWM, using the threshold values also calibrated in the previous step. In this phase, calibration fold is included in the training folds and the trained 
APFA and PWM models are applied to the test fold (positive sample in red, and additional negative samples). The final performance is the average of 
the performance values calculated in each iteration.
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2.	 m0: this is another threshold that determines if 
the count of each subsequence in the training set 
is enough to be evaluated as similar according to 
the mu parameter mentioned above. Therefore, m0 
verifies if there is enough statistical evidence in data 
to merge distinct states. This is important to control 
the generalization of the model, complementing 
the mu parameter;

3.	 gamma (γ): this parameter can be seen as the 
pseudocount value given to each nucleotide at a 
given position in case there is no observable count in 
the training set. This assures that no probability zero 
is given to a nucleotide during the classification task, 
which could lead to computational issues during 
the scoring of the whole sequence being evaluated.

APFA optimal hyperparameter combination is found 
using a grid search strategy, where the best combination is such 
that maximizes the Average Precision (AP) score calculated 
over the calibration folds, averaged over all iterations. Average 
Precision score is an estimator of Area Under the Precision 
Recall Curve (PRC). Precision Recall Curve and performance 
metrics were computed with scikit-learn (Pedregosa et al., 
2011).

In addition, the optimal threshold that classifies a 
sequence in TFBS or non-TFBS can be also considered a 
hyperparameter. Therefore, the optimal thresholds for APFA 
and PWM models are also calibrated in this first cross-
validation. For each model, the threshold is calculated as the 
average of the threshold values that maximize the F1-score 
calculated on the calibration folds.

In the second step (Figure 3B) or “outer loop” the 
calibration fold integrates the training set to train the 
PWM model, as well as the APFA model using the optimal 
hyperparameters calculated in the first step. In addition, 
optimal threshold values for PWM and APFA, also calculated 
in the previous step, are used to estimate the PWM and APFA 
performance on test samples. Since PWMs and APFAs are 
learned from positive samples only, additional negative 
samples are also used to evaluate the models. The negative 
samples (Sˉ) were also split in 7 folds, each one used in an 
“outer loop” iteration of this nested 7-fold cross-validation. 
The model’s performance is estimated based on the AP score 
over the test samples (positive and negative). This average AP 
score is used for model comparison, as described in section 
Material and Methods – Model Performance and Evaluation, 
topic Model comparison and model preference prediction.

Model comparison and model preference prediction
For each specific TFBS sample, the model presenting 

the highest average AP, calculated (as described in section 
Material and Methods – Model performance evaluation, 
topic Nested k-fold CV), was considered the best model. 
The question is: is it possible to predict which model will be 
the best one for a specific TFBS sample based on some of its 
features, including particularly dependence features?

Sometimes both PWM and APFA present very similar 
performances.

Therefore, to answer the previous question, we 
transformed the problem of choosing a model by categorizing 
the PWM/APFA models for a given TFBS sample with 
Cohen’s D measure, which can discriminate between similar 
and non-similar AP values.

For each TFBS sample, let PWM APFAAP APD
s
−

=  and PWM APFAAP APD
s
−

=  be the 
average AP of PWM and APFA respectively. Cohen’s D, an 
effect size measure, is then defined as: 
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where s is the pooled standard deviation, defined as:
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where si
2 is the variance of AP values over all folds (in k-fold 

Cross-Validation) for each model i, with  { },i PWM APFA∈  
and n is the number of AP values for each i, which corresponds 
to the number of folds in 7-fold Cross-Validation (n = 7).

Comparing the values, D ≥ 0.4 was found corresponding 
to the cases where APˉ

APFA was greater 5% or more than APˉ
PWM. 

Moreover, we found no significant improvement of PWM 
over APFA under any circumstances. Therefore, we defined 
this 0.4 threshold, where D ≥ 0.4 means APFA was the best 
performed model, and D < 0.4 means APFA and PWM were 
similar. Due to PWM simplicity when compared to APFA, 
we recommend PWM when D < 0.4.

Finally, the model preference was transformed into a 
binary classification problem, where each TFBS sample was 
considered an instance represented by its features (extracted 
as described in section Material and Methods – TFBS sample 
feature extraction) and class = 1 if its D ≥ 0.4 and 0 otherwise. 
This new data was visualized using Principal Component 
Analysis (PCA) and also used to train a Decision Tree to infer 
a prediction rule for the model preference.

To measure the performance of this decision tree, a 
stratified 10-fold CV was used, reporting the accuracy averaged 
over all ten iterations.

Results and Discussion

Impact of motif discovery tool on distribution of 
extracted features and model performance

We investigated and confirmed the hypothesis that 
distinct motif discovery tools applied in the same sequences 
can result in different TFBS samples with different dependence 
features. Therefore, we used the TFBS samples resulting from 
all these motif discovery tools in order to have a broader range 
of dependence feature values to compare in which conditions 
APFA is preferred over PWM or vice-versa.

Figure S1 presents the distributions of the extracted 
feature values for each category of TFBS (database and used 
motif discovery tool). As expected, for features based on 
dependency measures, we observed higher median values 
for samples originating from motif discovery algorithms that 
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consider inter-position dependencies – InMoDe and TFFM 
– than those originated by algorithms that do not consider 
dependencies – JASPAR and RSAT-STREME. The mean_
Cramér’s V and mean_Theil’s U values (Figure S1 top) were 
considerably low, with median values ranging from 0.05 to 
0.25 approximately. However, as shown in Figure S1 middle, 
the max_Cramér’s V and max_Theil’s U of each TFBS sample 
is considerably higher than their corresponding mean-based 
features. Together, these results suggest that, in general, there 
are few specific pairs of positions that are strongly dependent, 
but the dependency is low for most pair positions.

In addition, mIC values were higher when the used 
motif discovery tool does not consider position dependencies 
(Figure S1 bottom), which was also expected. Higher mIC 
values are expected when the sample sequences are more 
conserved (similar) in each particular position. Conversely, 
lower mIC values can indicate a more complex relationship 
between nucleotide positions, which independent models 
such as PWM cannot model properly.

Additionally, we analyzed the direct comparison between 
APFA and PWM AP values divided by each TFBS sample 
category (Figure S2). It can be observed that APFA performed 
better than PWM in motif discovery tools that use position-
dependencies. This is evidenced by the fact that no point (i.e. 

TFBS sample) is below the diagonal line. In tools that do not 
use such dependencies, PWM and APFA perform similarly.

PCA and decision rules

Figure 4 shows a PCA plot with two principal components 
using the five features considered in this work and the Cohen’s 
D categories previously used. Despite the mixture of categories 
near the boundaries, there is a solid distinction between 
categories D ≥ 0.4 (APFA preference) and D < 0.4 (PWM 

preference).
Next, a Decision Tree classifier was learned to predict 

the best model (according to the two categories based on 
Cohen’s D) based on the same features. Figure 5 shows the 
decision tree, with depth limited to three levels, providing 
an average accuracy of 0.91 (standard deviation of ±0.03). 
This tree uses only the three features presenting the highest 
importance values: max_Cramér’s V (feature importance 
0.696), mIC (feature importance 0.208) and mean_Theil’s U 
(feature importance 0.096). This result is coherent with the 
distribution of each feature in the two categories of model 
preference (see Figure S3).

Based on Figure 5, we propose the decision rule described 
at Chart 1 to choose the most appropriate model to a given 
TFBS sample based on only these three easily computable 
features — max Cramér’s V, mean Information Content and 
mean Theil’s U.

Figure 4 – Principal Component Analysis using the extracted feature for model preference categories. 
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Conclusion
This study showed that acyclic probabilistic finite 

automata (APFAs) are, in general, better suited models than 
position position weighted matrices (PWMs) when the TFBS 
sample has some amount of position dependency. Moreover, 
we propose a decision rule to choose with high accuracy 
which model to use, APFA or PWM, based on three relatively 
simple features calculated based only on the TFBS sample.

For approximately 70% of the samples tested, PWM was 
an appropriate choice given that APFA performed similarly 
and no additional evidence showed the importance of a more 
robust model. Nevertheless, in the remaining cases, APFA 
significantly outperformed PWM.

Finally, it is noteworthy that the method proposed here 
to compare models and infer decision rules to choose the most 
suitable one for a given training sample can be applied to the 
other applications outside of the scope of biology.

Acknowledgements
This study was financed in part by the Coordenação 

de Aperfeiçoamento de Pessoal de Nível Superior – Brasil 
(CAPES) – Finance Code 001. Also, the authors gratefully 
acknowledge the CEPID-CeMEAI - Center for Mathematical 
Sciences Applied to Industry (grant 2013/07375-0, São Paulo 
Research Foundation–FAPESP) and São Paulo Research 
Foundation (FAPESP) grant 2014-14318.

Conflict of Interest
The authors declare that there is no conflict of interest 

that could be perceived as prejudicial to the impartiality of 
the reported research.

Author Contributions 
GML conceived and executed the methodology, the 

formal analysis and led the software execution and data 
visualization. GML also was responsible for the writing of 
the original draft. MSL contributed to the methodology, the 
formal analysis, the writing and the review of the manuscript. 
LPMA contributed to the methodology, formal analysis and 
the review of the manuscript. AML was responsible for the 
supervision, project administration, conceptualization and 
for the reviewing of the manuscript. AML also contributed to 
the writing. All authors read and approved the final version.

Figure 5 – Decision tree to choose the best model. The leaves represent model preference based on Cohen’s D (D) measure calculated between APFA 
and PWM performance for each TFBS sample, where APFA is preferred when D ≥ 0.4 and PWM otherwise. The label “gini” refers to the gini impurity, 
“samples” is the total number of TFBS samples considered before a decision rule is made, “value” is the number of TFBS samples that reach that node. 
The final level of a Decision Tree is shown (pruned at level 3), where blue leaves represent the majority of TFBS samples classified as PWM-preferred 
and red leaves the APFA-preferred, showing overall good results.

Chart 1 – Decision Rules to choose between PWM and APFA. The 
algorithm shows how to choose between models PWM and APFA based 
on three extracted features, which were calculated using the TFBS sample. 
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