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Resumo

Um dos principais objetivos dos estudos 
epidemiológicos é a estimação de efeitos 
causais. E a inferência causal deve ser discu-
tida tanto por estudos experimentais quanto 
por estudos observacionais. Uma importan-
te limitação na interpretação causal de es-
tudos observacionais é a possível presença 
de confundidores não observados (hidden 
bias). Uma estratégia para avaliar o possível 
efeito de um confundidor não observado é 
através de uma análise de sensibilidade, que 
determina quão forte deveriam ser os efei-
tos de um confundidor não observado de 
modo a explicar uma aparente associação. 
A proposta deste artigo é rever e integrar 
dois métodos independentes de análise de 
sensibilidade: um devido a Greenland, sob 
uma perspectiva epidemiológica; e outro 
devido a Rosenbaum, sob uma perspectiva 
estatística. A combinação de questões es-
tatísticas e epidemiológicas torna a análise 
de sensibilidade mais completa e direta, e 
deve estimular sua necessária difusão e mais 
aplicações. Como os estudos observacionais 
são mais sujeitos a vieses e confundimento, 
uma análise de sensibilidade considerando 
aspectos estatísticos e epidemiológicos 
fortalece o processo de inferência causal. 

Palavras-chave: Análise de sensibilidade. 
Confundidor não-observado. Confundi-
mento. Estudos observacionais.



189 Rev Bras Epidemiol
2010; 13(2): 188-98

Sensitivity analysis for an unmeasured confounder: a review of two independent methods
Luiz, R.R. & Cabral, M.D.B.

Abstract

One of the main purposes of epidemiolo-
gical studies is to estimate causal effects. 
Causal inference should be addressed by 
observational and experimental studies. 
A strong constraint for the interpretation 
of observational studies is the possible 
presence of unobserved confounders (hid-
den biases). An approach for assessing the 
possible effects of unobserved confounders 
may be drawn up through the use of a sen-
sitivity analysis that determines how strong 
the effects of an unmeasured confounder 
should be to explain an apparent associa-
tion, and which should be the characteris-
tics of this confounder to exhibit such an 
effect. The purpose of this paper is to review 
and integrate two independent sensitivity 
analysis methods. The two methods are 
presented to assess the impact of an unme-
asured confounder variable: one developed 
by Greenland under an epidemiological 
perspective, and the other developed from 
a statistical standpoint by Rosenbaum. By 
combining (or merging) epidemiological 
and statistical issues, this integration beca-
me a more complete and direct sensitivity 
analysis, encouraging its required diffusion 
and additional applications. As observatio-
nal studies are more subject to biases and 
confounding than experimental settings, 
the consideration of epidemiological and 
statistical aspects in sensitivity analysis 
strengthens the causal inference.

Keywords: Sensitivity analysis. Unmeasured 
confounder. Confounding. Observational 
studies.

Introduction

One of the main purposes of clinical 
or epidemiological studies is to estimate 
causal effects. Causal inference should be 
addressed by experimental and observatio-
nal studies. However, observational studies 
are more subject to biases and confounding 
factors than experimental studies. A strong 
constraint for the interpretation of obser-
vational studies is the potential (possible) 
presence of unobserved confounders (hi-
dden biases or unmeasured confounding), 
namely variables that were not observed 
owing to unavailable data or even lack of 
knowledge, because such omissions may 
distort the existence or magnitude of the 
association of interest.

Confounding is an epidemiological 
phenomenon that causes a bias in the esti-
mation of the causal association of interest, 
characterized by the lack of comparability 
between exposed (or treated) and unex-
posed (or untreated) subject. This can be 
detected in terms of the variables that have 
a causal relationship with the outcome, the 
association (causal or not) with the exposure 
(or treatment), and the association between 
exposure and outcome in which they are 
not intermediate. The level of confounding 
is a joint function of the prevalence of the 
exposure, the confounder, the association 
between the confounder and outcome, and 
the association between the confounder 
and exposure; however, none of these terms 
are open to consideration individually if the 
purpose is a quantitative construct1.

In analyses of observational studies, 
the measured potential confounders (overt 
bias) are “adjusted” analytically using sta-
tistical techniques, such as stratification, 
modeling, etc. Quantitative techniques are 
used infrequently to determine the poten-
tial influence of unmeasured confounders. 
Most of the statistical methods used in clini-
cal or epidemiological studies focus on the 
assessment of random errors and confoun-
ders measured during the data generation 
process, which are often only a fraction of 
the total error and rarely the only important 
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source of uncertainty when estimating a 
causal effect measurement2. Consequently, 
the development of statistical tools that are 
also appropriate for unmeasured confoun-
der situations that allow such errors to be 
assessed, has become important. Besides, 
in nonrandomized intervention studies, 
quantitative assessment of unobserved 
confounding should be mandatory3 if the 
purpose is to discuss causal inference.

An approach for assessing the possible 
effects of unmeasured confounders may 
be drawn up through the use of a sensiti-
vity analysis that determines how strong 
the effects of an unmeasured confounder 
should be to explain an apparent associa-
tion, and the characteristics of this con-
founder, which can produce such an effect. 
The purpose of this paper is to review and 
integrate two independent sensitivity analy-
sis methods – one developed by Greenland2 
and the other developed from a statistical 
standpoint by Rosenbaum4. These methods 
focus on assessing the impact of an unmea-
sured confounder variable by maintaining 
the analysis as simple as possible and viable 
for healthcare workers and researchers. 
Nevertheless, nowadays, more advanced 
integration strategies and sophisticated 
methods are also available5–9.

Rationale of Sensitivity Analysis for 
an Unmeasured Confounder

The sensitivity analysis of an unmeasured 
confounder is a statistical technique, which 
assesses how the inferences on the effects of 
exposures can be altered through an unme-
asured variable, under various simulations. 
The sensitivity analysis is a quantitative 
extension of the qualitative considerations 
that characterize a proper discussion regar-
ding the findings of a study2. The process 
of addressing biases quantitatively is called 
bias analysis10, and an analysis that examines 
how strong the effects of an unmeasured 
confounder should be to explain an apparent 
association and what the characteristics of 
this confounder should be is called target 
adjustment sensitivity analysis11.

Cornfield et al12 were the first to formally 
establish a sensitivity analysis for an un-
measured confounder in an observational 
study examining the association between 
smoking and lung cancer. In this study, 
they asked whether the association found 
between smoking and lung cancer arose 
from an effect that was actually caused by 
smoking, or whether this was owing to a 
bias originating from an unmeasured con-
founder variable. Can cancer be prevented 
if there was no exposure to cigarette smoke? 
Or are the high rates of lung cancer found 
among smokers owing to some inherent 
difference between smokers and nons-
mokers? In their efforts to analyze this issue, 
they derived an inequality for the apparent 
risk of death caused by lung cancer, based 
on a risk ratio defined as the ratio of the 
probability of death owing to lung cancer 
among smokers by the probability of death 
owing to lung cancer among nonsmokers. 
More specifically, Cornfield’s condition can 
be stated as follows: “If an agent, A, with 
no causal effect upon the risk of a disease, 
nevertheless, because of a positive correla-
tion with some other causal agent, B, shows 
an apparent risk, r, for those exposed to A, 
relative to those not so exposed, then the 
prevalence of B, among those exposed to 
A, relative to the prevalence among those 
not so exposed, must be greater than r.”12 
Thus, if cigarette smokers have nine times 
the risk of nonsmokers for developing lung 
cancer, and if this is not because cigarette 
smoke is a causal agent, but only because 
cigarette smokers produce hormone X, then 
the proportion of hormone-X-producers 
among cigarette smokers must be at le-
ast nine times greater than that among 
nonsmokers. If the relative prevalence of 
hormone-X-producers is considerably less 
than nine-fold, then hormone X cannot 
account for the magnitude of the apparent 
effect. As shown in the following paragraph, 
this argument is the basis of the Rosenbaum 
sensitivity analysis method.

Based on the work by Cornfield et al, 
sensitivity analysis became an area increa-
singly explored in the literature, particularly 
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by Bross13, Gail et al14, Rosenbaum15,16, and 
Lin et al17. The other recent contributions 
and developments comprise the work 
carried out by Fewel et al18, McCandless et 
al19, Arah et al20, and Rothman et al10. More 
formally, Rosenbaum4 and Greenland2 de-
veloped two sensitivity analysis methods 
applied to dichotomous variables, which 
allow for the analyses of the changes in the 
findings obtained in a study.

In fact, this strategy reflects an im-
portant conceptual advance in terms of 
uncertainty in observational studies. The 
progress consists of complementing a ge-
neral qualitative assessment that is applied 
to all observational studies through a quan-
titative assessment that is specific to what 
is noted in the study of interest. Instead of 
affirming that an association between an ex-
posure and a given outcome does not imply 
causation, or that unmeasured biases might 
explain the observed associations, it can be 
stated that to explain the association found 
in a specific study, a bias of a specific magni-
tude is required. If the spurious association 
is strong, then a large magnitude of unme-
asured bias is required. This indicates that 
the magnitude of the required association 
between an unmeasured confounder and 
the exposure of interest may be quantified 
to alter the conclusions reached through a 
clinical or epidemiological study, suggesting 
a cause-and-effect relationship.

Although sensitivity analysis is a topic 
that has been under discussion since the 
seminal ideas developed by Cornified et al12 
and the paper presented by Greenland2, its 
application to the validation of the findings 
obtained in observational studies is still very 
limited. Modan et al21, Margolis et al22, and 
Cabral and Luiz23 are a few who carried out 
health-related studies. Groenwold et al24 
used a different strategy to quantify the 
potential role of unmeasured confounders.

The Greenland Method

When noting an association between a 
certain exposure and a specific outcome, an 
important question that should be asked is 

how to quantitatively assess the potential 
for the association observed owing to the 
presence of an unmeasured confounder 
variable. The Greenland method2 strives to 
answer this question, by speculating about 
the magnitude of the association between 
the unmeasured confounder variable with 
the exposure and the outcome required 
to deny the association previously found 
between the exposure and the outcome of 
interest.

To carry out this, at least two items of 
information that are not directly observed 
in the available data are required: 
·	 the confounder prevalence by exposu-

re level specifically for individuals not 
presenting the outcome, expressing the 
association between the confounder and 
exposure variable; and 

·	 the magnitude of the association betwe-
en the confounder and the outcome.

In fact, these magnitudes are not di-
rectly observed in the study, and may be 
“obtained” only through speculations based 
on other sources of information (surveys, 
literature, systematic reviews, etc.). By 
considering the various plausible values for 
these magnitudes, the methods estimate 
the strength of the association between 
the exposure and the outcome, adjusted by 
the confounder variable specified for each 
combination taken into account. Thus, the 
method allows an assessment of the varia-
tions in the association of interest observed, 
considering a range of plausible values of 
the association between the unmeasured 
confounder and the exposure variable.

On observing the notations found in 
the paper by Greenland2, it is assumed that 
an observational study is conducted to as-
sess the association of a certain exposure 
variable (E) and an outcome (D) of interest 
in the presence of a potential unmeasured 
confounder (Z), with these three variables 
(E, D, and Z) being dichotomous. The data 
available from the study are assumed to 
have been arrayed as presented in Table 
1. It is also believed that the data do not 
present any confounding for the covariates 
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measured in the study, or have already been 
adjusted for the measured confounders. 
With no loss of generality, it is presumed 
that the measurement of interest is the Odds 
Ratio (OR).

For sensitivity analysis, the data given 
in Table 1 are virtually stratified by Z, the 
dichotomous unmeasured confounder 
variable, as shown in Table 2.

By assuming a common OR for asso-
ciating the exposure to the disease, or by 
considering that there is no modification 
of the effect of E on the outcome owing to 
the unmeasured confounder variable Z, it 
appears from Table 2 that the OR between 
the exposure and the outcome, adjusted by 
this variable, can be given by:

It is assumed that the prevalence of Z 
for individuals not presenting the outco-
me - among the exposed and non exposed 
populations to exposure level E - is known 
or assumed to be P

Z1
 and P

Z0
, respectively, 

by considering individuals who do not 
present the outcome as representing the 
reference population. Thus, B

11
 = P

Z1
B

1+ 
 

and B
01

 = P
Z0

B
0+ 

 . Now, one can assume that 
the OR associating the confounder to the 
outcome is the same for each exposure level 
E, and is given by OR

DZ
. As the values of B

11
 

and B
01

 have already been obtained, the next 
step is to determine the values for A

11
 and 

A
01

. To carry out this, the following pair of 
equations should be solved:

For E=1,  and 

for E=0, 

with the following solutions2

 and 

Having obtained the values for A
11

, A
01

, 
B

11, 
and B

01
, Table 2 can be completed by 

directly calculating the OR for the Exposu-
re/Outcome OR

DE
 for each of the Z strata. 

The estimated OR
DE

 is said to be “adjusted 
indirectly by Z,” because it is the estimate 
that would be obtained if data on Z were 
observed, and which presented the charac-

Table 1 - General scheme of the frequencies observed for exposure (E) and outcome (D) - (1 = 
Presence; 0 = Absence)
Tabela 1 – Esquema geral de freqüências observadas para exposição (E) e desfecho (D) (1=presença; 
0=ausência)

Outcome Exposure Total

E=1 E=0

D=1 A1+ A0+ M1+

D=0 B1+ B0+ M0+

Table 2 – General scheme (expected data) for sensitivity analysis and external adjustment for an unmeasured 
dichotomous variable Z.
Table 2 – Esquema geral (dados esperados) da análise de sensibilidade e ajuste externo de uma variável dicotômica Z não 
medida.

Outcome Adjusted for Z=1 Adjusted for Z=0

Exposed 
(E=1)

Not Exposed 
(E=0)

Total Exposed 
(E=1)

Not Exposed 
(E=0)

Total

D=1 A11 A01 M11 A1+ - A11 A0+ - A01 M1+ - M11

D=0 B11 B01 M01 B1+ - B11 B0+ - B01 M0+ - M01



193 Rev Bras Epidemiol
2010; 13(2): 188-98

Sensitivity analysis for an unmeasured confounder: a review of two independent methods
Luiz, R.R. & Cabral, M.D.B.

teristics assumed for the calculations. The 
term suggested by Greenland2 for the OR

DE
 

estimate is “adjusted externally” because it 
uses the OR

DZ
 obtained externally from the 

study data.
To offer a numerical illustration of the 

use of this method, the data for a hypothe-
tical observational study are presented in 
Table 3, covering an association between 
exposure to a factor E and a given outcome 
of interest D, in the presence of an unme-
asured confounder variable Z. Moreover, it 
is also assumed that these data do not need 
adjustment for the measured variables. 
The data summarized in Table 3 present an 
unadjusted OR

DE
 of 2.57.

The findings for the sensitivity analysis 
(Table 4) were obtained by applying the 
Rosenbaum method to the hypothetical 
data presented in Table 3, by taking 5, 
10, 15, or 50 as the “plausible” values for 
the OR between the confounder and the 
outcome, which already represent strong 
associations (probably not reproducing the 
most authentic clinical situations) between 
the confounder and the outcome, and by 
considering a broad-ranging set for the 
confounder prevalences varying between 
0.10 and 0.90, with a set of values for the 
prevalences between the non exposed 
defined in a manner whereby the OR of the 
confounder with the exposure reaches the 
values of 1.5, 2, or 3. These results can be 
obtained by formulas given in the work by 
Greenland2 or Greenland et al10, and easily 
implemented in a spreadsheet25.

The sensitivity analysis applied in this 
hypothetical study shows that the OR of 
interest, OR

DE
, “adjusted” by the unmeasu-

red confounder and based on the various 
specifications considered “plausible” for this 

confounder, varies between 1.17 and 2.48 
(Table 4). The association observed appears 
to be more sensitive to an unmeasured con-
founder, indicating that its value “adjusted” 
by the confounder moves further away from 
the unadjusted value when the confounder 
has an OR of at least 3 for the exposure 
variable and an OR of at least 15 for the ou-
tcome of interest. Depending on the study of 
interest, a reasonable conclusion would be 
that it is very likely that a confounder of this 
magnitude is not taken into consideration, 
suggesting that the hypothetical association 
observed proved to be “insensitive” to an 
unmeasured confounder.

The Rosenbaum Method

The Rosenbaum method is based on 
the following: many statistical procedures 
are derived as the consequence of ran-
domization in clinical trials. In a simple 
randomized trial, all individuals are equally 
likely to receive the treatment, because they 
receive the treatment on a random basis. 
In contrast, in observational studies, some 
individuals are more likely to receive the 
treatment than others, because the alloca-
tion of the treatment depends on individual 
characteristics, some of which could not 
have been measured. Let us assume an 
observational study in which each unit is 
associated with a covariate vector, X, that 
contains the measured covariates of interest 
for that study. If the study is free of unme-
asured confounding, then the probability 
of an individual being exposed, although 
unknown, depends only on this covariate 
vector. Thus, two units with the same obser-
ved covariate X present equal probabilities 
of exposure. According to Rosenbaum4, in 

Table 3 - Hypothetical data on exposure to factor E and outcome D.
Tabela 3 – Dados hipotéticos sobre a exposição ao fator E e desfecho D.

Outcome Exposure Odds Ratio

E=1 E=0 Total

D=1 A1+=63 A0+=92 M1+=155 ORDE=2.57

D=0 B1+=248 B0+=930 M0+=1178
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an observational study free from unmeasu-
red confounding, a stratification of X leads 
to a distribution of allocation to exposure, 
similar to that obtained in a uniform ran-
domized experimental trial, indicating that 
a study with a probability of allocation to 
exposure given by the stratification is known 
and constant throughout all possible fin-
dings, although with unknown parameters. 
This process was called “covariates vector 
randomization” by Rubin26.

When considering an observational 
study with the presence of an unmeasured 
confounding, two units with the same ob-
served covariate X may present different 
odds for exposure. This is because the odds 
of a unit being exposed do not depend only 
on the observed covariates vector, but also 
on an unknown parameter associated with 
an unmeasured confounder variable. The 
main idea behind the Rosenbaum method 

is to establish a quantitative measurement 
of the difference between randomized trials 
and observational studies. This is carried out 
using the parameter Gamma (Γ).

The unknown Γ parameter measures the 
extent to which a study differs from a ran-
domized trial, that is, the number of units 
that may differ in their odds of receiving 
the treatment. This is a measurement of the 
extent to which the odds of receiving the 
treatment may vary from person to person. 
In randomized trials, all individuals have the 
same odds of receiving the treatment Γ = 1, 
and hence, they do not differ. A study with 
Γ = 2 is very different from a randomized 
trial, because one person may be twice more 
likely to receive treatment than the other, 
owing to unmeasured characteristics. An 
observational study is said to be insensitive 
to an unmeasured confounding when the 
conclusions of the study are essentially the 

Table 4 - Sensitivity of an external adjustment for the hypothetical example, in the presence of an unmeasured 
confounder Z, given in Table 3.
Tabela 4 – Sensibilidade de um ajuste externo para o exemplo hipotético, na presença de um fator de confundimento Z, 
mostrado na Tabela 3.

OREZ PZ1 PZ0 “Adjusted” ORDE

For ORDZ=5 For ORDZ=10 For ORDZ=15 For ORDZ=50

1.47 0.90 0.86 2.48 2.47 2.46 2.46

1.49 0.70 0.61 2.32 2.28 2.27 2.25

1.50 0.50 0.40 2.23 2.15 2.12 2.07

1.52 0.30 0.22 2.19 2.07 2.01 1.93

1.54 0.20 0.14 2.23 2.07 2.00 1.87

1.48 0.10 0.07 2.35 2.20 2.12 1.93

1.98 0.90 0.82 2.39 2.36 2.36 2.34

1.99 0.70 0.54 2.14 2.06 2.04 2.00

2.03 0.50 0.33 1.99 1.85 1.80 1.73

1.95 0.30 0.18 2.01 1.82 1.74 1.61

2.02 0.20 0.11 2.05 1.83 1.72 1.52

2.11 0.10 0.05 2.20 1.96 1.82 1.50

3.00 0.90 0.75 2.23 2.19 2.17 2.15

2.97 0.70 0.44 1.87 1.74 1.70 1.64

3.00 0.50 0.25 1.71 1.52 1.44 1.33

2.87 0.30 0.13 1.77 1.51 1.39 1.21

2.88 0.20 0.08 1.88 1.58 1.43 1.17

2.67 0.10 0.04 2.13 1.84 1.67 1.29
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same, even when Γ is not close to 1, that is, 
even when people differ in their odds of 
receiving the treatment.

According to Rosenbaum4, when using 
stratification on X in an observational 
study with hidden bias (unmeasured con-
founding), there is at least one Γ ≥ 1 value, 
whereby:

 

for units with the same X covariates vector.
In contrast to the Greenland method 

that considers the classic confounding 
scheme, the Rosenbaum method works only 
with the association between confounder 
and exposure. It determines the magnitude 
of the association between the unmeasured 
confounder variable and the exposure, suffi-
cient for this confounder variable to be res-
ponsible for the association found between 
the exposure and the outcome of interest, 
implicitly assuming that the confounder is 
a “quasi-perfect” outcome predictor, sho-
wing that the magnitude of the association 
between the confounder and the outcome 
is sufficient for the confounding to depend 
only on the association between this con-
founder and the exposure variable.

A technique that is widely used for 
analyzing the findings of observational 
studies is stratification. When considering 
stratification at a data-analysis stage, Rosen-
baum proposed to apply a sensitivity analy-
sis technique in which the measurement of 
the association to be used is the OR given 
by the Mantel-Haenszel statistic T, based 
on the number of individuals exposed and 
presenting the outcome. This procedure is 
used frequently in analyses considering a 
third variable that may “mask” the associa-
tion found between the exposure and the 
outcome of interest27. The procedure for 
conducting the sensitivity analysis sugges-
ted by Rosenbaum is applied to each stra-
tum, considering the expected T value, and 
establishing all margins observed for those 
exposed and those presenting the outcome; 
under a null hypothesis (H

0
), that exposure 

would have no effect on the outcome of in-
terest. The calculation of the T expectation 
and variance values is carried out under H

0
, 

by combining the expectation and variance 
values obtained in each stratum through a 
normal approximation of the distribution 
of statistics, whose formulas consider the 
unknown l  parameter through G, as deve-
loped by Stevens28.

Under the null hypothesis stating that 
there are no effects of exposure on the ou-
tcome of interest, the Rosenbaum method 
considers many possible values for G and 
determines the lowest G value that makes 
the association between E and D statisti-
cally nil.

To illustrate the application of the me-
thod, the data presented in Table 3 are used 
again. By establishing G = 1.0; 1.5; 1.8; 1.9; 
2.0 and 3.0, the p-values of the upper and 
lower limits obtained through the Rosen-
baum method are given in Table 5. These 
calculations are not easy to obtain manually, 
but they can be promptly executed using an 
electronic spreadsheet, as can be found in 
the study carried out by Cabral and Luiz25.

The lowest value for G to remove all sta-
tistical significance from Mantel-Haenszel 
is G = 1.9, at a 95% confidence level. Thus, 
according to the Rosenbaum method, the 
association between exposure and outcome 
proves “sensitive” to an unmeasured con-
founder that increases the odds of exposure 
of the units by 90% or more.

Proposed Integration of the 
Greenland and Rosenbaum 
Methods

As may be noted in the presentation of 
the two methods, Rosenbaum developed his 
analysis on the basis of criteria that are stric-
tly statistical, while Greenland concentrated 
more on the standpoint of the epidemiolo-
gist in the proposed analysis. Rosenbaum 
did not discuss whether the unmeasured 
variable causes confounding or interaction 
in the findings, because he was interested in 
determining whether the value obtained is 
statistically significant or not. On the other 
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hand, Greenland was concerned about the 
epidemiological construct of the findings, 
and hence, proposed an analysis that takes 
the existence of confounding into conside-
ration, and does not apply the hypothesis 
of interaction. As the considerations of 
both models are important when asses-
sing the potential effect of an unmeasured 
covariate in an observational study, it has 
been proposed to merge them to perform 
a sensitivity analysis that integrates these 
two approaches.

As a way of integrating these two me-
thods, it is suggested that the findings of 
the application of the Rosenbaum model 
should be taken as the starting point for the 
use of the Greenland method. Rosenbaum 
presented a minimum G value that makes 
the association between exposure and ou-
tcome statistically insignificant, but did not 
estimate the magnitude of this association. 
However, by using the Greenland approach 
and determining the values for the associa-
tion between the unmeasured confounder 
variable and the outcome that are equal 
to or greater than the lowest G value of the 
Rosenbaum method (OR

EZ
 ≥ G values), the 

magnitude of the “quasi-perfect” associa-
tion between the unmeasured confounder 
(Z) and the outcome of interest (D) can be 
estimated (OR

DZ
) through speculations on 

this association. In addition, the variations 
in the “adjusted” estimates of the asso-
ciation of interest (OR

DE
) arising from the 

presence of confounders defined by the 
speculated values can also be estimated.

This indicates that the Rosenbaum 
method can be used to reduce and guide 
the speculations considered for the asso-
ciation of the confounder with the exposure 
variable (OR

EZ
), by stipulating values for this 

association that are equal to or greater than 
the G value found (OR

EZ
 ≥ G values). In turn, 

the Greenland method may be used to cal-
culate the variations in the OR

DE
 estimates 

arising from the consideration of the various 
possible distributions of the confounder, 
which also determine the magnitude of the 
“quasi-perfect” association between the un-
measured confounder and the outcome of 
interest, which is implicit but not quantified 
through the Rosenbaum approach. Hence, 
this approach can be useful to reduce the 
methodological efforts to establish causal 
relations by considering unmeasured con-
founders.

In parallel, from a conceptual view to 
estimate the causal effects, but using a 
different method, MacLehose et al.29 deve-
loped similar ideas to complement standard 
sensitivity analyses.

Final Remarks

In the analysis of the findings of the 
study showing an association consistent 
with a causal hypothesis, the researcher 
should always discuss all possible explana-

Table 5 - Sensitivity analysis (Rosenbaum technique) for the association between exposure 
factor E and outcome D, considering an unmeasured confounder.
Tabela 5 – Análise de sensibilidade (técnica de Rosenbaum) para a associação entre o fator de 
exposição E e desfecho D, considerando um fator de confundimento não medido.

G p-value

Upper Limit Lower Limit

1.0 < 0.0001 < 0.0001

1.5 0.0016 < 0.0001

1.8 0.0281 < 0.0001

1.9 0.0548 < 0.0001

2.0 0.0951 < 0.0001

3.0 0.2177 < 0.0001
The p-value recorded for the Mantel-Haenszel statistics, based on the number of cases, for the several possible G values.
O valor p registrado para a estatística Mantel-Haenszel, baseado no número de casos, para vários possíveis valores G
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tions for these findings (including different 
hypotheses and biases in the findings), par-
ticularly in observational studies, where the 
association of interest may never possibly 
be measured with full accuracy, because in 
most cases, it would be unethical to con-
duct a study for this purpose. Even when it 
is not possible to lessen this uncertainty, it 
is possible to be careful in arguing its mag-
nitude; that is, even when it is not possible 
to remove the bias through adjustments 
or avoid biases through careful designs, a 
sensitivity analysis may provide a quanti-
tative expression of the level of uncertainty 
about the presence of a potential bias. Some 
descriptions of the possible unobserved 
predictive variables are generally desirable, 
and essential if they represent confounders.

If it is necessary to stratify for a measured 
confounder using the Greenland method, 
the calculations presented in the descrip-
tion of the method should be repeated for 
each stratum, and the findings should then 
be merged through this integrated approa-
ch. In this paper, we have assumed that only 
one (a single) unmeasured confounder is 
present, and all the variables are dichoto-
mous. Moreover, multiple unmeasured con-
founders may certainly coexist and interact, 

altering the association of interest. These 
analyses are more complex, because they 
must consider the odds of the associations 
between each unmeasured confounder and 
both the predictor and the outcome, requi-
ring more complex calculations that have 
not been covered in this paper. Propensity 
score calibration has been argued as a me-
thod of adjusting for multiple unmeasured 
confounders30. Thus, the important limi-
tations of both the methods of sensitivity 
analysis for epidemiological purposes are 
that they consider only the presence of 
one unmeasured confounding, absence of 
effect modification, and the considerations 
of dichotomous exposures and outcomes.

A limitation of the Rosenbaum method 
is that the p-values are not of primary 
interest in observational studies to infer 
causality. However, they are very common 
in clinical literature and frequently misinter-
preted. Hence, although possible scenarios 
for the Greenland method are based on 
current knowledge, common sense, and/
or plausibility, a combination of clinical 
or epidemiological quantitative guesses 
and statistical significance in a sensitivity 
analysis can be useful and attractive.
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