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The fractals theory has been increasingly applied in the field of materials science and engineer-
ing. Models of fractal lines and surfaces have been generated to describe the microstructural features
of materials. Special interest is placed upon a description of the fracture surface based on a fractal
geometry in order to understand the crack path in materials. Several papers have demonstrated the
relationship between the fractal dimension of a fracture surface and the values of roughness and
fracture toughness. In this work an extension of the theory of fractals for ceramic materials is
proposed, to which the crack deflection toughening mechanism is thought to be related. In order to
accomplish this objective, a review describing the concept of fractals and its relationship with the
fracture toughness is presented. In the following part, a correlation between fractal dimension, total
energy of fracture and the average resistance to crack propagation is proposed; all these parameters
being dependent on the history and on the complexity of crack propagation path.
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1. Introduction

The importance of overcoming problems related to the
brittleness of ceramic materials has been constantly empha-
sized in the technical literature. In the last two decades
several toughening mechanisms have been designed, mak-
ing the ceramics much more appropriate to certain practical
applications, namely those which require thermal shock
resistance. The most common toughening mechanisms in-
clude microcracking branching, crack deflection and stress
induced phase transformation.

Advances in understanding the fracture process has
been possible through fractographic techniques. Equally
important is to find out new characterization techniques to
evaluate brittleness, which could provide information on its
origin. As pointed out by Lin and Lai1, in 1977 Mandelbrot
proposed a new characterization technique for fracture
surfaces applying fractal theory concepts.

This new concept was extended by Hornbogen2, who
published a review on the use of fractal structure to describe
microstructural features of metals relating a large number
of parameters, such as the distribution of phases, martensi-
tic and dendritic configuration, dislocation arrays, slip
bands, grain boundaries, and fracture surface roughness.

There are several works in the literature which investi-
gate the relationship between fractal dimension of a frac-
ture surface and experimental values of the corresponding
fracture toughness, KIc, following suggestions of Mandel-
brot, Passoja and Paullay3. The most frequent properties
and features reported in these works are impact energy3,
fracture toughness1,4-6, type of fracture along the crack
propagation7 and roughness8.

Basic relationships found in the literature are shown in
this paper. An extension of the fractal theory for ceramic
materials which predominantly display geometric toughen-
ing mechanisms (crack deflection) is proposed, based on
relationships between fractal dimension and total energy of
fracture, as well as on the average value of the crack
propagation resistance.

2. Concepts of Fractals

The fractal geometry is a mathematical concept that
describes objects of irregular shape9. Some natural geomet-
rical shapes, that can be irregular, tortuous, rough or frag-
mented, can be described using concepts of fractal
geometry3 as long as the requirement of self-similarity is
satisfied. The latter term implies that the geometrical fea-
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tures of an object are independent of the magnification or
observation scale.

An artificial manner to generate a fractal line comprises
application of a known criterion, such that of the Koch’s
line2,9. It is useful to simulate a progressive tortuosity in a
straight line as a mean to model a crack propagation path
in a brittle material6.

The structure of Koch’s line is based on a figure consti-
tuted of four straight segments of same length
(Ls1 = (1/3) Lp). This figure defines an object whose pro-
jected length equals Lp, as shown at the top of Fig. 1. The
first object that is formed is not flat. Instead, it exhibits a
low degree of tortuosity described by its hilly profile. In a
recurrent manner it is possible to increase the tortuosity on
the original line by adding new smaller straight segments,
repeating the same picture, but progressively in a smaller
scale.

Let us establish a reduction index n = 1/3 and designate
x as the number of applied reductions (iterations). The

bottom part of Fig. 1 shows the aspect of Koch’s line after
four iterations (x = 4).

An important consequence of the geometry of a fractal
line is that its true length depends on the size of the
measuring ruler. It is possible to demonstrate that, after
each iteration, the total true length of the line increases in
accordance with the following relation

L x+1 = L x N  n (1)

where x is the number of iterations, N is the number of
elements in the basic picture (x = 1) and n is the applied
reduction. Thus, the true length of a fractal line after x
iterations is given by:

L x  =  L p  ε (d−D)
x       (2)

where εx = nx represents the fractional measuring unit,
which, for practical purposes, will be associated either to
the magnification and resolution used in the microscope2

or to the relative length of a typical constructional segment
of that line5,6. The parameter d represents the Euclidean
dimension of the object (d is equal to 1 for a line or equal
to 2 for a surface) and D is denominated fractal dimension.
Lines totally contained in a plane display D-values between
1 and 2. The higher the D-value the greater will be the
tortuosity of the line.

The parameter εx has two important meanings. Firstly,
it can represent the size of the measuring ruler. However it
is known that for real objects; a fracture surface, for in-
stance; its fractal features are limited between minimum
and maximum bounds. For brittle materials, it is assumed
that the minimum εx-value is associated to the atomic
spacing and the grain size to the maximum one6. Secondly,
εx can be represented by a segment or an area, which are
typical features of a fracture surface. This later assumption
leads to equations relating properties and fractal dimension,
as shown in the following sections.

The following equation, which expresses the general
definition of fractal dimension, can be used to work out the
dimension of an artificial fractal object,

D = 
log (N)
log (1⁄n)

(3)

Applying this equation to Koch’s line, assuming N = 4
and n = 1/3, the D-value will be equal to 1.2618.

The same approach can be used to treat a surface.
Starting at an Euclidean dimension equal to 2, fractal
dimensions greater than this value will represent rough
surfaces, similar to the fracture surface of polycrystalline
ceramics. As a reference, either the cleavage of a single
crystal or the fracture of a glass can generate a plain fracture
surface with D = 2.0, when observed in a microscopic scale.
In fact, cleavage steps will be found in a nanoscale.
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Figure 1. Koch’s line showing different degrees of iteration. The line at
the top highlights the shape of the basic picture constituted of four straight
segments.



3. Determination of Fractal Dimension of
Fracture Surfaces

One of the most commonly employed techniques for
determination of fractal dimension of a fracture surface was
introduced by Mandelbrot et al.3. In this method, named the
‘‘slit island method’’, the fractured specimens are firstly
mounted in resin. The following step consists of careful
polishing of the surface parallel to the fracture surface in
order to highlight the ceramic ‘‘islands’’. The island struc-
ture has a correlation with the relief of the fracture surface
topography. A schematic view of this procedure is shown
in Fig. 2. For each polishing depth the enclosed areas of the
islands are measured and plotted against the corresponding
perimeter of the contour of the islands.

It is shown in the literature that the log-log plot of the
measured area versus its corresponding perimeter, genera-
tes a straight line whose slope is related to the fractal
dimension of the fracture surface. Therefore, it is possible
to find out the correlation between the independently meas-
ured KIc parameter and the fractal dimension obtained by
the slit island method.

Furthermore, it is possible to obtain D from Eq. 2
through measurements of sectional profiles of the crack
surface, as illustrated in Fig. 3, after cutting the sample
perpendicularly to the fracture surface or using an image
analysis technique which is able to digitally track the
profile. However one must be aware that slit island method
and perpendicular profile analysis might generate different
values for D.

As an example10, a simulated profile represented by a
Koch’s line with Lp = 0.30 m and x = 4 was used. The true
length of the line, L, was measured using rulers of different
sizes, equal to Lp and to fractional values of this. The result
is shown in a plot of relative length, L/Lp, vs. the measuring
unit, εx, in Fig. 4. In a log-log plot, a linear relation is
obtained and the value of D is equal to 1.24 presenting a
good agreement with the theoretical value for Koch’s line.

Also in Fig. 4, the line reveals some peaks that are related
to the length of characteristic segments of Koch’s line. This
suggests that the method is able to indicate the charac-
teristic lengths of a fracture surface which, in turn, can be
related with microstructural features6.

4. Fracture Aspects

4.1. General concepts

Important basic relationships that describe the role of
fractal theory for fracture can be found in works reported
by Lin and Lai1, Mu and Lung5, Tanaka6, Xin et al.8,
Nagahama11 and Lung12.

For a fracture surface such as those observed in single
crystals or in glass (which could be microscopically flat but
not in a nanoscale), the driving force for crack extension
can be represented by the intrinsic elastic energy release
rate, GIco, and can be written as

G Ico  =  2  γo  =  
K 2

Ico

E’
(4)

where γo is the surface energy per unit area, expressing only
the thermodynamic surface energy (in practice, the energy
necessary to break chemical bonds). KIco is the plaine strain
intrinsic fracture toughness for mode I of stressing and E’
is defined as E/(1 - ν2), where E is the Young’s modulus
and ν is the Poisson’s ratio of the material.

Nevertheless, at room temperature, even a ceramic ma-
terial exhibits some microplasticity in the crack tip, which
causes stress release. This contribution for the fracture
energy is symbolized by γp. In this paper, it is assumed that
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Figure 2. Schematic view of the procedure employed to reveal the ‘‘slit
island structure’’. t1, t2 and t3 represent the evolution of the slit islands for
increasing polishing times.

Figure 4. Relative true length versus the measurement unit for a Koch’s
line with x = 4 and Lp = 0,30 m (ad. = non-dimensional)10.

Figure 3. A fracture surface and its corresponding cutting profile.



γp is independent on the direction of crack propagation and
can be defined per unit of fracture area. Therefore, effec-
tively the crack propagation initiates when

G Ic  =  2 γeff.  =  
K 2

Ic

E’
(5)

where GIc is the effective elastic energy release rate, KIc is
the fracture toughness (effective critical stress intensity
factor) and γeff. = γo + γp. Usually, KIc and, in turn, γeff. are
experimentally measured through fracture testes under
catastrophic crack propagation condition.

Back to Fig. 3 the resulting tortuous line (profile) on the
fracture surface corresponds to crack path along the cut
plane. Therefore, the more tortuous is the line (i.e. rougher
fracture surface) the longer will be its true length, regarding
to its constant projection Lp.

Recent papers do not present details on how to incorpo-
rate the effect of true area increase on γeff., since they do not
consider the concept of fractal structure. Davidge and
Evans13 mentioned in their publication that the surface
energy criteria for crack propagation must consider a num-
ber of effects, namely, plastic flow, the work needed to
generate cleavage steps, the energy consumed in creating
subsidiary cracks, and, obviously, the γo itself. The referred
researchers pointed out that γo should be multiplied by a
geometrical factor to account for the roughness of the
fracture face, but no further efforts were done to express it
in a quantitative way.

The description of the true path of a crack profile is
obtained when d = 1 is applied to Eq. 2. The same increas-
ing factor in the true length of the crack path is also verified
in the true area of the fracture surface. Let γo be constant
and equal to the average of different crystallographic
planes in a certain crystal (as reference, it could also be
thought in the fracture of a glass). For a larger true fracture
area more energy for fracture will be consumed. Neverthe-
less, the area that is included in the practical calculation of
the surface energy is the projected one. The consequence
is that the resulting surface energy will be higher than γeff.

defined in conditions of Eq. 5. The surface energy calcu-
lated in this manner continues to be named ‘‘effective
surface energy’’, but it includes a term related to the area
increment due to tortuosity (or roughness).

Considering a situation where a ceramic material has
only the contributions of γo, γp, and those due to the fractal
nature as an additional microstructural mechanism, as
shown bellow:

G Ic  =  2 γeff.  ≈  2 (γo + γp)  ε(1−D)
x    

  ≈  
K 2

Ic

E’
(6)

the greater the fractal dimension of the crack path profile
(or of the fracture surface) the larger will be the KIc-value.

Equation 6 is a comprehensive representation of some
ideas reported in the literature. Some authors use the equal-
ity sign to relate terms in the equation whereas some others
use the proportionality sign (≈). In the opinion of the
authors, the proportionality sign is more adequate, since the
same increment factor of fracture area does not necessarily
correspond to an increase of K2

Ic and, consequently, of γeff..
The total increment of fracture area is associated with the
total process of fracture, but KIc is a property related only
with the beginning of crack propagation under catastrophic
condition. Another important point is that, rigorously
speaking, Eq. 5 is somewhat imprecise when applied to
rough fracture14.

In the simplest situation, roughness of fracture surface
can have its origin during intergranular fracture. The latter
consists of an intrinsic crack deflection mechanism that
imposes a greater stress intensity factor for crack propaga-
tion initiation.

Still, in Eq. 6 it must be observed that the relationship
between the two last terms is frequently verified in experi-
ments with several different materials. Usually the plot of
log(KIc) vs. D can be represented by a straight line5,6,8,11,15,
confirming Eq. 6.

Based on Griffith-Orowan-Irwin relation
(GIc = (K2

Ic / E’) = 2 γeff.), which is valid for flat fracture
surfaces, Nagahama11 showed that the dependence of KIc

on D can be predicted from the degree of brittleness of the
tested material. Therefore, it has been found11 that KIc

decreases with the increase of D for ductile materials,
whereas for brittle materials KIc scales with D. Equation 6
establishes a new insight11 in which fracture occurs when
the elastic energy release rate is greater than the effective
energy of fracture corrected by the fractal effect.

4.2. The roughness of the fracture surface

Taking into account a flat fracture surface, such as a
single crystal cleavage, it is correct to assume γeff. = γo + γp,
where γp is related to the contribution of possible micro-
plasticity that can occur in the frontal zone of a crack in a
ceramic material. Considering a brittle polycrystalline ce-
ramic, for which γp = 0, the term γeff. in Eq. 6, besides γo,
should be also associated to the fact that real fracture
surface is rough and therefore, it also affects crack propa-
gation initiation. It must also be emphasized that γp mark-
edly depends on the temperature.

Roughness is a fracture surface parameter that has a
clear physical meaning. Based on Xin et al. work8, rough-
ness can be defined as the ratio Q between the real area of
fracture surface, Ar, and the projected area of fracture, Ap.
Therefore, similarly to Eq. 2 it is possible to write this
relation as
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Q  =  
A r (εx)

A p
  =  ε(2−D)

x    
(7)

which establishes a relationship between roughness and
fractal dimension. Compared with Eq. 2, the number 2 in
the above equation replaces the number 1, since the
Euclidean dimension of a smooth surface is equal 2.
Consequently, the value of D is equal, or greater than 2 in
Eq. 7.

As previously noted, Eq. 5 is valid for fracture along a
flat surface. Consider now a fracture that generates a rough
surface (polycrystalline ceramics, for instance), in which
the surface energy per unit area of projected surface is γeff..
Then, combining Eqs. 5, 6 and 7 it is possible to write:

G Ic, rough

G Ic, flat
  =  

K 2           
Ic, rough  

K 2           
Ic, flat

  =  
γ eff., rough

γ eff., flat
  ≈  

     
(γo + γp)  ε (2−D)

x    

(γo + γp)
  =  Q  =  

Ar

Ap
  =  ε (2−D)

x    (8)

Equation 8 summarizes the main relationships found in
the literature.

4.3. The new proposal

The fractal dimension expresses the fracture surface
roughness and also represents the complexity of the crack’s
path. Since the total energy of fracture, γwof., represents the
average difficulty for crack propagation (in J/m2), it must
also be associated with the fractal dimension. This propo-
sition is more adequate for ceramic materials that display
purely geometrical toughening mechanisms, since γwof.

brings into consideration the history of stable crack propa-
gation, whereas γeff. is related to the beginning of cata-
strophic crack propagation.

Pezzotti et al.16 carried out an interesting work which
established an experimental correlation between KIc, γwof

and a fractal parameter for hot isostatically pressed
Si3N4/SiC composites. Using a profilometric analysis of the
fracture surface, the authors generated log-log plots relat-
ing linear roughness of surface profiles to the measuring
unit. The resulting curves are sigmoidal-like and the corre-
sponding fractal parameter can be extracted from the slope.
The observed changes in KIc, γwof and in the fractal parame-
ter were due to differences in the microstructures, which
changed the average size of SiC platelets in a Si3N4-matrix.

Another paper by Pezzotti et al.15, reports the work
carried out with heat treated Si3N4/SiC composites. It de-
scribes extensive efforts to obtain the R-curve of these
composites. However, in this article, the authors do not
quantitatively correlate any R-curve parameter to the frac-
tal parameter.

Several other works have described important experi-
mental correlations between Kic or γwof and a fractal pa-

rameter, although without establishing direct relations be-
tween any of the fractal parameters and the R-curve17. The
present work also correlates R (average R-value of an
R-curve) and the fractal dimension.

It is known that the R-curve expresses the history of
instantaneous difficulties for crack propagation. Pan-
dolfelli et al.18 proposed that R, calculated over all points
of an R-curve, should represent an average difficulty for
crack propagation, therefore, R equals to 2γwof. could be
assumed.

The value of R is evaluated with basis on the mathe-
matical definition of average, i.e.

R
____

  =  ( 1
a − ao

)  ∫ R((a))
ao

a

 da (9)

where (a - ao) defines the integration interval for crack
length, a. Equation 9 is applied on experimentally
determined R-curves.

For ceramic materials where only geometrical toughen-
ing mechanisms are verified, it should be expected that the
increase in total energy of fracture is simply due to the
increase in true area of fracture surface. Hence, there would
exist a correlation between R, γwof, Q, and D.

Assuming the additive concept of Davidge and Evans13,
the following relation is proposed:

γwof  =  γo + γp + ∆
__

γ
_
  =  γeff.  +  ∆

__
γ
_

(10)

which can be further expressed in the following form

γwof  =  (γo + γp) + (γo + γp) (ε(2−D)
x    

  −  1) (11)

In Eq. 10 a common notation ∆γ was used to express a
geometrical microstructural mechanism that contributes
for toughness increment. Equation 11 refers to a straight
crack path energetically represented by the term
γeff. = (γo + γp). In this equation, the fractal contribution of
true surface area appears in ∆γ, which is written as (γo + γp)
(ε(2−D)

x      −  1). It can be verified that for D = 2 (flat fracture

surface) γwof = γeff., since there is no microstructural contri-
bution. This situation resembles a transgranular fracture or
the fracture of a glass.

The terms γeff. appearing in Eqs. 6 and 10 differ numeri-
cally from each other, since the experimental procedure
used to determine them are also distinct. Although, the
reference states (smooth fracture surface) are the same for
both Eqs. 6 and 10, the γeff.-value in Eq. 6 is determined
through KIc-tests, which require a catastrophic fracture
condition. On the other hand, Eqs. 10 and 11 are associated
to propagation under quasi-static crack extension.

Therefore, considering Eqs. 7 and 11, an extended
proposition is given:
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Q  =  
A r
A p

  =  
γwof

γeff.
  =  

R
____

R o
  =  1 + 

∆
__

γ
_

γ eff.
  =  ε(2−D)

x    
(12)

In Eq. 12, the reference is the average γeff. either for all
crystallographic cleavage planes of a single crystal or for
fracture of the corresponding vitreous state. It is also im-
plicit in Eq. 12 the acceptable assumption that Ro ≅ 2γeff..

Experimental work is being carried out in order to
verify the validity of this proposal and experimental results
will be submitted shortly. Comparison of different micro-
structures in materials of identical chemical composition
(amorphous and totally crystallized) might be used to vali-
date Eq. 12, if interlocking and friction between grains
could be minimized.

5. Conclusions
• It is pointed out the importance of concept of fractal

structure in physical characterization of materials.
• The fractal dimension is closely related to roughness

of the fracture surface and to mechanical properties such as
fracture toughness.

• The fractal analysis can reveal characteristic lengths
of a fracture surface and contribute to a better under-
standing of the influence of microstructure on fracture
processes.

• It is proposed that the fractal dimension is related to
γwof and to R when a purely geometrical toughening mecha-
nism takes place.
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