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This work proposes a procedure to estimate the dynamic damped behavior of fiber reinforced
composite beams in flexural vibrations. A set of experimental dynamic tests were carried out in
order to investigate the natural frequencies and modal shapes. These results are used to evaluate the
damping factors by the program FREQ. These damping factors are then used as input to a damped
dynamic analysis by the Finite Element Method, using Rayleigh Model. A good agreement between
theoretical and experimental results was obtained. Thus, it became possible to validate the proposed
procedure to evaluate dynamic damped behavior of composite beams.
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1. Introduction

The combination of different materials has been used
for many thousands of years to achieve better performance
requirements. There are nowadays many examples in the
aeronautical and automobile industries, and yet the appli-
cation of composite materials is still growing, including
now areas such as nautical industry, sporting goods, civil
and aerospace construction (Umekawa and Momoshima1,
He et al2 and Eslimy-Isfahay and Banerjee3). In order to
achieve the right combination of material properties and
service performance, the dynamic behavior is one of the
main points to be considered. To avoid the typical problems
caused by vibrations, it is important to determine: a) the
natural frequencies of the structure; b) the modal shapes to
reinforce the most flexible regions or to locate the right
positions where weight should be reduced or damping
should be increased and c) the damping factors.

According to the Classical Laminate Theory (CLT), the
stiffness of a component manufactured with composite
laminates can be altered through a change in the stacking
sequence. This allows the tayloring of the material to
achieve the desired natural frequencies and respective
mode shapes, without changing its geometry drastically or
increasing its weight (Tsai and Hahn4) (Tsai5) (Vinson and
Sierakowski6). As a consequence, there is a large number
of works in literature about vibration problems with com-

posite materials and structures, such as Koo and Lee7,
Khdeir8, Rao and Ganesan9, Zapfe and Lesieutre10. On the
other hand, damping modeling of composite materials has
been an issue of great interest for many researchers. It has
been shown that damping of composite components can
also be modified through a change in the stacking sequence.
Some works as Suarez et al.11, Adams12, Cudney and
Inman13, Greif and Hebert14, Hwang and Gibson15 pre-
sented several analysis about damping of composite mate-
rials and structures. The concept of Specific Damping
Capacity (SDC) was adopted in the damped vibration
analysis by Adams and Bacon16 and Lin et al.17. The
concept of SDC was also used by Zabaras and Pervez18 in
experimental data to define an average modal loss factor,
in order to obtain a Rayleight damping matrix for further
use in the Finite Element Analysis (FEA). Hu and Dokain-
ish19 used two approaches for the damping models: Viscoe-
lastic Damping Model (VED) and SDC. They concluded
that both models yielded to non significant differences in
the natural frequency, damping and mode shapes, if the
system is slightly damped. More recently, Qian et al.20 and
Finegam and Gibson21 proposed more accurate models due
to the complex phenomenon of damping in composites.
Chandra et al.22 presents a review on recent works in that
area.
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The main objective of this work is to propose a numeric-
experimental procedure to estimate the dynamic damped
behavior (natural frequencies, mode shapes and damping
factors) of fiber reinforced composite beams in flexural
vibrations.

2. Materials and Methods

Glass fiber was used as reinforcement in the form of
bi-directional fabric (Plain weave E-glass cloth with
0.20 x 10-3 m thickness and epoxy resin (Vantico XR-
1553) with catalyst addition (HY - 956) as matrix for the
composite material.

The elastic properties of the composite were calculated
analytically applying informations from Hull23 and www.
matweb.com into the simple rule-of-mixtures (Tsai and
Hahn4). The density and fiber volume fraction of the com-
posite were calculated using formulation shown by Agar-
wal and Broutman24 (Table 1).

Where the subscripts x, y and z denote the directions
along the length, across the width and through the thickness
of the beam, respectively (local on-axis system coordi-
nates). Two set of symmetrical beam laminates with thick-
ness of 1.8 x 10-3 m and total mass equal to 0.028 kg were
studied. The Case 1 had ten layers of plain weave E-glass
cloth with eight outer layers oriented at ±45° and with two
inner layers oriented at (0/90)°. The Case 2 had ten layers

of plain weave E-glass cloth with all layers oriented at
(0/90)°.

After the finite element analysis, the composite were
molded using the hand lay-up process. The composite was
molded in a metal mold which was closed under pressure
(2.0 MPa). The molded composite was cured in a stove at
50 °C during 24 h. Afterwards the cured composite was
removed from the mold and the specimens (beams) were
cut in the dimensions for the impulse test (length equal
0.4 m and width equal 0.025 m). Thus, they are measured
natural frequencies and damping factors of the beams.
Further, these results were compared with undamped and
damped frequencies from the FEA.

2.1. Finite element analysis

Initially the beams were modeled in order to get a initial
estimation of the undamped natural frequencies and mode
shapes. The beams were discretized using fifty finite ele-
ments (type shell99) (Fig. 1), available in the commercial
package ANSYS®25. This element has 8 nodes and is
constituted by layers that are designated by numbers (LN -
Layer Number), increasing from the bottom to the top of
the laminate; the last number quantifies the existent total
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Table 1. Material properties (International System - SI).

Material Properties Symbol Value

Glass fiber Elasticity modulus Ef
(*) 76.00x109

Density ρf
(*) 2.56x103

Poissons coefficient νf
(**) 0.2

Epoxy resin Elasticity modulus Em
(*) 4.00x109

Density ρm
(*) 1.10x103

Poissons coefficient νm
(*) 0.38

Laminae
(orthotropic)

Elasticity modulus
Fiber direction
Normal to fiber

Exx = Eyy
(***)

Ezz
(***)

24.40x109

10.66x109

Density ρc
(iv) 1976

Shear modulus Gxy
(***)

Gyz
(***)

Gxz
(***)

4.94 x109

4.47 x109

4.47 x109

Poissons coefficient νxy
(***)

νyz
(***)

νxz
(***)

0.28
0.20
0.20

Fiber volume
fraction

Vf
(iv) 60%

(*) Hull23; (**) www.matweb.com; (***) Rule of mixture; (iv) Agarwal
and Broutman24. Figure 1. Element shell99 and cantilever beam model (Ansys25).



number of layers in the laminate (NL - Total Number of
Layers). Thus the model of laminate was carried out using
ten layers and the engineering constants for the laminae are
obtained from Table 1.

Once the problem has been discretized , the next step
was to determine the matrices which represent it, starting
with the elementary matrices. The elementary mass matrix
is given by (Bathe26):

[M](e) = ρc ∫[N]T

vol

 [N] dvol (1)

where ρc is density and [N] is the matrix of interpolation
functions. The elementary stiffness matrix is calculated by
using:

[K](e) = ∫[B]T

vol

[D] [B] dvol (2)

where [B] is a matrix of elasticity operators applied onto
the shape functions. The [D] laminate elasticity matrix (in
this case, orthotropic) are calculated by using:

[D]-1=

1/Ex -νxy/Ex -νxz/Ex 0 0 0

(3)

-νyx/Ex 1/Ey 0 0 0

-νzx/Ex 1/Ez 0 0 0

0 0 0 1/Gxy 0 0

0 0 0 0 1/Gyz 0

0 0 0 0 0 1/Gxz

where E, G and ν are the classical elastic constants and x,
y and z indicate a local on-axis system coordinates.

Finally [N](e), the elementary damping matrix, is ob-
tained from the stiffness and mass matrices.

The assembly of the global matrices leads to the system
equation:

[M]{δ
..
} + [C]{δ

.
} + [K]{δ} = {F(t)} (4)

where [M], [C], [K] are the global mass, damping and
stiffness matrices respectively and {F(t)} the load vector.
Besides {δ

..
}, {δ

.
}, {δ} are global accelerations, velocities

and displacement vectors respectively.
For the determination of the natural frequencies of an

undamped system with N degrees of freedom, the solution
is sought by solving:

[M]NxN{δ
..
}Nx1 + [K]NxN{δ}Nx1 = 0 (5)

By assuming an harmonic solution, the latter equation
leads to:

[−ω2
r[M] + [K]].{φr} = {0} (6)

where ωr is the rth circular natural frequency and {φr}is the
rth modal shape of the system.

By using the described procedure, it was possible to
determine the undamped natural frequencies and the modal
shapes within 0 to 400 Hz.

2.2. Impulse testing

Through an impulse testing, FRFs (Frequency Re-
sponse Functions) were determined, the response given by
the specimen when dynamically loaded, allowing the de-
termination of the natural frequencies and damping factors,
as shown in Fig. 3. Initially, the most attractive points to
excite (input) and to get the response (output) from the
specimens were investigated. Due to their high flexibility,
the points 1 (input), 2 and 3 (output) were selected for the
determination of two FRFs (H21 e H31) as shown in Fig. 3.
Two output points (2 and 3) were measured in order to
choose the best results. Since the specimens are very flex-
ible and light, special care was given for choosing the
accelerometer to avoid undesirable influences. Another
special care was given for the clamping boundary condition
of cantilever beam. This condition is extremely easy to
simulate in a theoretical analysis, simply by deleting the
appropriate coordinates. However, it is much more difficult
to implement in the practical case. The reason for this is
that it is very difficult to provide a base or foundation to
attach the beam which is sufficiently rigid to provide the
necessary grounding. All structures have a finite imped-
ance (or a non-zero mobility) and thus cannot be regarded
as truly rigid. Thus, the natural frequencies of the base
structure itself must be out of the frequency range for the
test in order to guarantee that its mobility is much lower
than the test structure at the point of attachment. This
condition must be satisfied for all the coordinates to be
grounded to the base structure. Therefore, the specimens
were clamped using a joint fixed to the metal block by using
screws (Fig. 2).

The Figure 3 shows that the laminate specimen was
fixed in a rigid support (1) with one of its side free to
vibrate, as a cantilever beam. The instrumented impact
hammer (2) was used to give the input load (pulse). The
output was then captured by the accelerometer (3) and read
by the spectrum analyzer Bruel & Kjaer (B&K) (5), which
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Figure 2. Details of specimens clamping.



gives the FRFs (Amplitude and Phase). These data was then
transferred to a personal computer and the damped natural
frequencies and damping factors were estimated by using
Kennedy and Pancus method with the program FREQ
(Lirani27, Lirani28, Baptista29), developed at University of
S. Paulo, S.Carlos.

Kennedy and Pancu’s method is used to fit a circle
around the polar graph of the output Spectrum Analyzer
B&K 2032. For determination of the fit circle, the user must
select three points on the polar graph as shown Fig. 4. Thus,
modal parameters (modal mass, modal stiffness and damp-
ing factors) were obtained from the fit circle.

Figure 4 shows that the program Program FREQ user
interface is divided in two parts. On the left side is there the
Main Menu (“Menu Principal”) with six options:

1) Manager (“Gerenciamento”): this module allows the
reading of the input files (from experimental test) and print
chosen graph;

2) Graph Type (“Tipo grafico”): six different type of
graphs can be plotted (conservative output; real part of
damped output, imaginary part of damped output; module
of damped output, phase and polar graph)

3) Representation (“Representacao”): it can represent
graphs using straight line, points, straight line with points,
spline, spline with points or all options together;

4) Limits (“Limites”): it allows to modify the limits in
the axes;

5) Dynamic Analyse (“Analise Dinam”): it allows to
identify modal parameters using the Kenneddy and Pancu’s
method;

6) Finish (“Termina”): it allows to exit the program
FREQ.

And finally, the type of chosen graph can be observed
by the user on the right side.

3. Results and Discussion

3.1. Natural frequencies and modal shapes obtained
from the FEA

The Table 2 shows the values numerically obtained for
the undamped natural frequencies and modal shapes. Fig-
ure 5 presents some modal shapes obtained from AN-
SYS®. From the results of Table 2 it is possible to verify
the influence of the stacking sequence on the laminate: case
1, with fibers at ±45° in the external layers, has in general
smaller natural frequencies than the laminate of the case 2,
with fibers at 0° and 90°. This can be explained by the fact
that the fibers oriented at 0° are more appropriate to flexural
loads.

3.2. Natural frequencies from impulse testing

Table 2 also shows the experimental damped natural
frequencies obtained. It is seen a good agreement with the
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Figure 3. Impulse testing.

Figure 4. Program FREQ user interface.

Table 2. Natural Frequencies from FEA and experimental test.

Mode FEA
ωn (Hz)

Experimental (H31)
ωn (Hz)

% Error (*)

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

1st Flexural mode 4.66 5.11 4 5 16.5 2.2

2nd Flexural mode 29.17 31.96 26 29 12.1 10.2

3rd Flexural mode 81.60 89.40 74 85 10.3 5.2

4th Flexural mode 159.92 174.96 150 195 6.6 10.3

(*) % Error=
ωFEA − ωExperimental

ωExperimental



numerical values (maximum error equal 16.5%), proving
that the stacking sequence, as expected, has influence on
the dynamic behavior of the structure. Based on these
results, it is considered that fifty finite elements (type
shell99) are enough to represent this problem.

From these results it is already possible to verify the
influence of the stacking sequence of the laminate: the case
1, with fibers at ±45° in the external layers, has in general
smaller natural frequencies than the laminate of the case 2,
with fibers at 0° and 90°. This was expected, since the
natural frequencies are related to the stiffness of the struc-
ture and the case 1 is much less stiffer on flexural than case
2. Therefore, when considering bending loads, the case 2
is stiffer since 50% of the fibers are oriented at 0°, direction
appropriate for bending (Flexural Modes).

With relation to the deviations of the numeric results in
relation to the experimental ones, some possible measure-
ment errors can be pointed out such as: measurement
noises, positioning of the accelerometers and their mass,
non-uniformity in the specimens properties (voids, vari-
ations in thickness, non uniform surface finishing). Such
factors are not taken into account during the numeric analy-
sis, since the model considers the specimen entirely perfect
and with homogeneous properties, what rarely occurs in
practice. Another aspect to be considered is that the input
properties in the model came from the application of the
rule-of-mixtures and they do not take into account effects
of the fiber-matrix interface as well as the irregular distri-
bution of resin on the fibers. Also, these models did not
include damping effects, which can have a large influence
on the structure behavior.

3.3. Damping

The damping phenomenon, despite its importance, is
rather difficult. Microplastic or viscoelastic phenomena
associated with the matrix and the relative slipping at the
interface between the matrix and the reinforcement are
main sources of internal damping in a composite material14.
These sources are quite difficult to be evaluated, yielding
to deviations of the numeric results and the experimental
ones.

FRF (Function Response Frequency) was measured by
B&K 2032, as shown in Fig. 6, and the results were trans-
ferred to program FREQ, whose user interface is shown in

Fig. 4. The calculated damping ratios ζn includes every
mechanisms related with damping phenomenon in the spe-
cific mode (Table 3). These damping factors were trans-
ferred to ANSYS® in order to calculate the theoretical
damped natural frequencies. Five forms of damping input
are available in the ANSYS® program: Rayleigh damping,
material-dependent damping, constant damping ratio, mo-
dal damping and damping elements. Rayleigh damping was
used in this work, and the Eq. (7) was solved by na appro-
priate damping algorithm (Ansys23):

[M]{δ
..
} + [C]{δ

.
} + [K]{δ} = 0 (7)

The Table 3 shows damping ratios obtained from pro-
gram FREQ. The higher damping ratios were in the case 1
(1stand 2nd flexural mode). This fact can be attributed to the
lay-up used in the composite specimens of case 1, where
the fibers at ±45° on bottom and top of laminate improve
the capacity of the matrix to deform and dissipate energy
on flexural modes. These results are in a good agreement
with those obtained by Greif and Hebert14.
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Figure 5. Mode shapes (1st and 2nd Flexural Mode).

Figure 6. Frequency Response Function (FRF) corresponding to H31.



The theoretical damped natural frequencies are shown
in Table 4, which shows a better agreement with the experi-
mental values than those from undamped frequencies
shown previously in Table 2. It is seen a slight reduction of
the errors since the damping ratios are smaller in this case.
It is expected a larger reduction for the cases where higher
damping ratios are presented. Although the improvement
obtained in the results are not much significant, they vali-
date the proposed procedure to estimate the damping be-
havior of composite structures.

4. Conclusions

The theoretical results from FEA (ANSYS®) showed
in general a good agreement with the experimental values
because the maximum error equal to 16.5% and when the
procedure was used this error was reduced to 15.3%. Al-
though, this improvement is small, it shows that the pro-
posed procedure can be used to evaluate the dynamic
analysis of composite structures, mainly when the viscoe-
lastic effects of matrix are higher.

Theoretical and experimental results show clearly that
changes in the laminate stacking sequences yield to differ-
ent dynamic behavior of the component, that is, different
natural frequencies and damping factors for the same ge-
ometry, mass and boundary conditions. In practical appli-
cations, it means that if a natural frequency excites the
structure, the designer can change the material properties
by changing the laminate stacking sequence, instead of
re-design the complete structure.

By using the program FREQ, which allows the estima-
tion of the damping factors, it is possible to perform a
damped dynamic analysis. The results shown in Table 3
demonstrate the coherence of the results from freq. There-
fore, engineers can use these results associated with finite
element analysis to have an estimation of natural frequen-
cies and mode shapes of damped composite structures. As
a final remark, the use of finite element analysis associated
with experimental procedures can give the designer tools
to estimate the dynamic performance of the component,
giving the designer the possibility to tailor the dynamic
behavior of the component to its requirements.
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