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We are currently studying microstructural responses to diffusion-limited coarsening in two-
phase materials. A mathematical solution to late-stage multiparticle diffusion in finite systems is
formulated with account taken of particle-particle interactions and their microstructural correla-
tions, or “locales”. The transition from finite system behavior to that for an infinite microstructure
is established analytically. Large-scale simulations of late-stage phase coarsening dynamics show
increased fluctuations with increasing volume fraction, V , of the mean flux entering or leaving
particles of a given size class. Fluctuations about the mean flux were found to depend on the
scaled particle size, R/<R>, where R is the radius of a particle and <R> is the radius of the dispersoid
averaged over the population within the microstructure. Specifically, small (shrinking) particles
tend to display weak fluctuations about their mean flux, whereas particles of average, or above
average size, exhibit strong fluctuations. Remarkably, even in cases of microstructures with a
relatively small volume fraction (V= 10*), the particle size distribution is broader than that for
the well-known Lifshitz-Slyozov limit predicted at zero volume fraction. The simulation results
reported here provide some additional surprising insights into the effect of diffusion interactions
and stochastic effects during evolution of a microstructure, as it approaches its thermodynamic
end-state.
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1. Introduction

Phase coarsening is a spontaneous kinetic process in late-
stage microstructural evolution that leads to the decrease in
the interfacial energy of two-phase systems. The biphase
system consists typically of individual dispersed domains,
crystallites, or particles, distributed more-or-less at random
through another contiguous matrix phase. During phase
coarsening, the transport of atoms via lattice diffusion pro-
ceeds through the intervening matrix phase from solute
sources at particle-matrix interfaces with high mean curva-
ture towards solute sinks at particle-matrix interfaces with
low mean curvature. Typically, in such systems, larger par-
ticles tend to grow at the expense of small particles. Over
time, as the smallest particles dissolve, the “competitive”
multiparticle diffusion process among particles results in
an increase in the average size of their population, and in a
concomitant decrease in their number. When matrix diffu-
sion is the rate-limiting atomic transport process, the aver-
age particle size increases with sub-linear kinetics (cube-
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root of time) and the particle number density decreases re-
ciprocally with time. These kinetic “signatures”, observed
in many aging microstructures, are so robust and funda-
mental as to be virtually independent of the physical model.

The particle size and microstructure representative of
many cast and liquid-phase sintered alloys are known to
depend on similar phase coarsening processes. Moreover,
the physical and chemical properties of these materials, such
as their strength, toughness, ductility, electrical conductiv-
ity, and corrosion resistance all depend on the material’s
average particle size and particle size distribution (PSD).
Understanding and controlling microstructures in two-phase
systems are materials science topics with broad technologi-
cal implications. Indeed, predicting microstructure evolu-
tion in general remains a cornerstone of modern materials
science.

Predicting microstructure evolution quantitatively from
first principles has an interesting 40-year history. Todes!
published the seminal paper on formulating the phase coars-
ening dynamics. However, the initial theory of capillary-
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mediated phase coarsening was completed by Lifshitz and
Slyozov?, and, then independently, by Wagner®. These theo-
ries collectively are often referred to as “LSW theory”. A
major assumption in LSW theory is that particles with equal
size experience the same time-rate of change of their vol-
ume or mass. LSW theory predicts that (1) the average vol-
ume (or cube of the radius) of the particle population in-
creases linearly with time-a fact borne out by numerous
careful experiments in many different systems; and (2) that
the PSD predicted from LSW theory is self-affine, which
implies that the particle patterns at later times appear statis-
tically similar to those observed at earlier times, apart from
a uniform global increase of size scale. However, the rate
constant controlling the kinetics of the evolving length
scales, and the PSD predicted from LSW theory, both disa-
gree with the preponderant body of quantitative experiments
on coarsening microstructures*,

LSW theory is a “limit law”, insofar as it applies strictly
to microstructures with zero volume fraction of dispersoid
phase. The predicted PSD and coarsening rate based on LSW
theory therefore ignores all interactions occurring among
particles. For any volume fraction of the dispersoid phase,
other than zero, the particles would have neighbors posi-
tioned at finite distances. Interactions among them clearly
become possible. Recently, Glicksman, Wang and Marsh®
reviewed the interaction effects among dispersed particles,
and described how such interactions influence the PSD and
the kinetics of coarsening. Another source of error in the
predicted PSD and coarsening rates at finite volume frac-
tions is that caused by influences of the unique microstruc-
tural environment encountered by each particle — i.e., its
“locale”. Locale differences are ignored when adhering to
the tenets of mean-field theory, whereas, in fact, it is known
that particles of the same size located at different positions
in a microstructure may exhibit different growth rates.

The subject of stochastics in late-stage phase coarsen-
ing, although still in an early stage of development, has been
discussed recently by Glicksman et al.”®. The interactions
among particles and the fluctuations in their individual
growth rates induced by their “locale” are complicated in-
fluences, so it is not surprising that it is difficult to treat
stochastics either analytically or experimentally. It is for
this reason that to gain even limited heuristic insight into
the stochastics of microstructures, large-scale simulations
must play a central role. The earliest study of multiparticle
phenomena in micorstructures was published in 1973 by
Weins and Cahn’, who used a few particles to simulate some
basic coarsening interactions during sintering. Their study
was followed by Voorhees and Glicksman'® who systemati-
cally studied the behavior of several hundred particles ran-
domly placed in a periodic, three-dimensional, unit cell to
simulate coarsening. Later, Beenaker!! further improved
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multiparticle simulation procedures and was able to increase
the total number of particles during simulation. More re-
cently, other investigators®!>!5, continued to improve the
accuracy of large-scale simulation of microstructural coars-
ening processes. Studying the interactions among many
particles and including the statistics of their fluctuations
during growth and dissolution, even in the case of very small
volume fractions, can contribute important facts required
in the understanding of real microstructures. In this paper,
we shall focus on early progress being made on these is-
sues at our laboratory.

This article is organized as follows: The theories for a
finite system with nonzero volume fraction, along with
that for an infinite system with zero volume fraction (LSW)
are presented in section 2. In section 3, details of the
modeling and numerical simulations are given. The results
for the observed growth law for particles, their steady-state
PSD’s, and the characteristics of the statistical fluctuations
in individual particle growth rate are presented in section
4. Finally, a few conclusions are presented in the last sec-
tion.

2. Theoretical Analysis

2.1 Theory for finite microstructures with nonzero volume
fraction

One can simulate only finite microstructural systems,
due obviously to the finite nature of computing power and
memory. A theoretical approach to treat a finite system com-
prises the first essential step to improve the extent and ac-
curacy of numerical simulations. We proceed with an analy-
sis of a system consisting of a large but finite number of
polydisperse spherical precipitate particles suspended
throughout the volume of a three-dimensional, isotropic
matrix phase. Although we begin this analysis with a set of
microstructural definitions more aptly applied to an infinite
system, eventually we restrict and apply the mathematical
results to finite microstructures. The sizes of the domains
comprising the population of dispersed particles are de-
scribed with a distribution function, F(R, t), defined here
conventionally as the number of particles per unit volume
at time ¢, with radii in the range R to R + dR. The normaliza-
tion for F' (R, t) is based on the total number of particles per
unit volume, N » that is,

IF(R, )dR =Ny, )
0

where N, is the number density of spherical particles. With
this normalization the corresponding volume fraction, V,,
of the dispersed phase (total volume of dispersoid per unit
volume of the microstructure) is defined consistently as
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Equation 2 may be rewritten as

V= 4?TCNV<R >, 3)

where <R*> represents the average of the cube of the parti-
cle radii, R.

The biphase microstructure under consideration is aged
sufficiently so that the supersaturation of the matrix solu-
tion may be assumed to small. Thus, it follows, that nuclea-
tion of new particles within the aged microstructure is pre-
cluded. This condition constitutes the chief thermodynamic
requirement for “late-stage” phase coarsening.

The continuity equation for smoothly growing and dis-
solving dispersed particles in size space is

oF ;’: L [ (RYF(R.1)]=0 @)

Here v(R) is the time-rate of change of the radius, R, of
a particle. Equation 4 precludes “non-smooth” changes in
the microstructure such as nucleation, particle splitting, and
agglomeration, To obtain v(R), some additional simplify-
ing assumptions are needed: (1) the kinetics of coarsening
is determined by volume diffusion through the matrix; and
(2) the diffusion transport to or from each particle occurs
slowly enough to be considered quasi-static. These addi-
tional assumptions justify approximating the diffusion equa-
tion with Laplace’s equation to describe the concentration
fields, C(r), in the matrix. Thus, the diffusion field surround-
ing a particle may be described by

ViC(@r)=0, ©)

where C(r) = (c(r) - c,)/c, defines a dimensionless diffu-
sion potential, c(r) is the concentration at any point defined
by the position vector, r, and ¢ denotes the equilibrium solu-
bility at a flat interface between the matrix and particle
phases.

The boundary conditions at the spherical interface of
the i particle are specified through the Gibbs-Thomson (or
Thomson-Freundlich) local equilibrium solubility relation,
namely,

C(R)=I./R;, (6)

where [_is a capillary length, usually of near atomic dimen-
sions, defined by

In Eq. 7, v denotes the specific interfacial free energy
between the particle and matrix,  is the particle’s atomic
volume, kB is Boltzmann’s constant, and 7 is the absolute
temperature.

The solution to Laplace’s equation for n particles (some
acting as sources and some as sinks) distributed as a three-
dimensional polydispersion throughout the matrix may be
represented as the superposition of n dimensionless con-
centration fields summed over the microstructure.

- 1.B;
C(’)zz_;n-r,.ﬁcw ®)

The vector r appearing in Eq. 8 is the field point, always
located in the matrix, whereas r, is a vector that locates the
center of the i particle in the microstructure.

The i particle’s volume flux equals 4B, and the far-
field potential C_, comprise together, for all n particles, a
total of n + 1 unknowns that must be determined in solving
Eq. 8 for the microstructure’s diffusion field. The far-field
potential C_ is found by using global mass conservation.
The following conservation law may be written for a dis-
crete system consisting of n spherical particles each com-
peting for, but also conserving, the solute transported via
diffusion through the matrix phase:

; B, =0. )

Substituting the expression for the diffusion potential,
Eq. 8, along with the mass conservation condition, Eq. 9,
one obtains after a few steps of algebra

27 (10)

%k Tk

(R n(R) =

where r, is the distance between the centers of any pair of
partlcles j and k. The relationship, Eq. 10, used to define
C_, is employed to interpret microstructure responses for
the first time. Eq. 10 clearly demonstrates that the far-field
potential, C_, depends explicitly on the size of the micro-
structural system, i.e. , on the number of particles, n, and on
local information concerning particle positions and the dis-
tances between pairs of them. In fact, Eq. 10 establishes an
important bridge between detailed computer simulations
carried out for a finite, discrete system of n particles, and
the averaged behavior predicted for an infinite, continuous
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systems. Equation 10, in fact, includes enough detailed en-
vironmental information to describe the “locale” of every
particle, and, most importantly, its subtle influence on the
particle’s diffusion-limited growth or shrinkage. The envi-
ronmental information built into Eq. 10 is normally excluded
from mean-field descriptions of microstructure evolution,
but if included, adds important microstructural physics to
the diffusion solution.

The assumption of describing C(r) using a quasistatic
(conservative) diffusion field requires that the mass trans-
fer to or from a particle is equal to its change of mass. Thus,
using Eq. 8, the time-rate of change of a particle’s radius,
dR/dt, is directly connected to the volume flux, B, as

dR;, —21.Dyc,Q,B;
v(R,-)E;=$, (11)
where D, appearing on the right-hand side of Eq.(11), is
the interdiffusion coefficient for solute in the matrix.

In principle, the volume fluxes, B, can be determined
by substituting both the Gibbs-Thomson local equilibrium
relation, Eq. 6, and the far-field potential, Eq. 10, into Eq. 8.
However, one cannot obtain a useful analytical result for a
finite system, excepting the limiting case of an infinite sys-
tem with zero volume fraction. We can determine numeri-
cally the volume fluxes from Egs. 6, 8, and 10, and then
substitute the values of the B,” s into the growth rate rela-
tionship, Eq. 11. In this manner, one may solve Eq. 11 nu-
merically, and find the so-called “kinetic” equation for par-
ticle growth and shrinkage, enabling prediction of the par-
ticle size distribution. The details for accomplishing this are
provided in the next section.

2.2 Theory for infinite systems with zero volume fraction

If the number of particles comprising a biphase micro-
structure rises without limit, so n — o , but the matrix vol-
ume is allowed to increase sufficiently to become diluted to
an infinitesimal particle density, so that V. =0, (i.e., dis-
tances, r,, between particle pairs increase indefinitely) then
Eq. 10 reduces to the limiting form

l

—_¢

C.. :
(R)

Eq. 12 was derived originally by Todes' under his as-
sumption of an “infinite system” with zero volume fraction
of particles. For the case of such an infinite, yet infinitely
diluted system, one may substitute Eq. 12 and Eq. 6 into
Eq. 8 and show that the volume fluxes per steradian, B,’s,
reduce to the linear form

(12)

B =1-5
(R)

13)
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If it is assumed that <R> = R*, where R* is the “critical
radius” defined later in Lifshitz and Slyozov’s paper?, then
Eq. 13 reduces to the usual LSW formulation. Substituting
Eq. 13 into Eq. 11, the LSW growth rate for a particle be-
comes
dR, _ =2 DocVy (R |
dr R? (R) " (14)

v(R;) =

Substituting Eq. 14 into Eq. 4, finding the self-similar
solution to Eq. 4, and then applying the LSW stability argu-
ment based on mass conservation for the particle popula-
tion that 1 there exists some maximum particle size and 2
that the time rate of change of the maximum sized particle,
relative to the growing average, must vanish, yields the (di-
mensional) growth law of any particle of radius R as

4
(R’ —(R(0))* = o Duleco)r. (15)

Equation 14, which provides the basis for Equation 15,
is a deterministic growth rate law, insofar as the rate of
growth or shrinkage of every particle is solely a function of
its radius. Indeed, in such an infinitely-diluted microstruc-
ture, each particle would exist perhaps somewhat illogically-
in total isolation from all its “neighbors.” LSW theory also
predicts that the particle size distribution (PSD) is affine, or
self-similar. If the particle sizes are expressed as radii nor-
malized to the growing average, or critical, radius, then the
affine form of the PSD does not change with time. Self-
similarity of coarsening quasi-spherical microstructures has
been demonstrated experimentally in Pb-Sn alloys by Hardy
and Voorhees'*.

2.3 Microstructural interactions

In order to extend LSW theory to cases of non-zero vol-
ume fraction, a number of markedly different approaches
were developed. Marqusee and Ross'® were the first to model
the effects of non-zero volume fraction on phase coarsen-
ing kinetics by using active-medium theory to describe the
quasi-static diffusion fields. The emission of solute from
dissolving particles, or absorption of solute from growing
ones, are modeled by using point sources or sinks of solute
distributed within the matrix. Furthermore, those investiga-
tors limited the spatial extent of diffusional interactions by
allowing “diffusional screening” to occur active-medium
approach led to the use of Poisson’s equation to replace the
Laplace approximation for quasi-static diffusion,

V2 C(r) = -4no, (16)

where the source or sink density, ¢, appearing in Eq.(16) is
given by
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6 =Ny (.~ (R)C(r)). (17

Re-organizing these Eqs. 16 and 17 yields the diffusion
analog of the Debye-Hiickel equation, namely!?

ViC(r)-x*(C(r)-C_)=0, (18)

Here x = (4nN <R>)"" is introduced as the diffusion
analog of the reciprocal of the Debye screening length, and
C_=1/R*=I |<R> is the far-field diffusion potential.
Eq.(18) is well known from theories of ionic solutions and
plasmas. In three dimensions, the general solution to the
Debye-Hiickel equation for diffusion around a spherical
source or sink, subject to the Gibbs-Thomson boundary
condition, may be expressed in the form of the well-known
Yukawa potential. The spherically symmetric diffusion so-
lution being sought may be written in terms of the volume
fluxes as

n B
Clr)= . ——exp(—x|r-r.)+C._,
(r) Z‘Ch—rﬂ p(—x|r—r;p+C. (19)
where now the B,” s are defined as

R.
B, =( —Rfi)(l +KR;). (20)

The diffusion fields obeying Eqgs. 19 and 20 surround-
ing spherical particles embedded in an “active” matrix phase
are shown plotted in Fig. 1. For illustrative purposes, the
critical particle size, R*, used in Fig. 1 to normalize all length
scales, was chosen to be lc, so that the mean concentration,
or diffusion potential, C_ = 1. (In reality, dispersoids in aged
microstructures usually have critical radii between circa 103
lc to 10° lc , so that our choice of R*/lc merely introduces a
convenient scale factor of unity into the diffusion poten-
tial). In addition, the dispersoid volume fraction is arbitrar-
ily set to be 0.05, which is sufficiently small so that
R* = <R>, but large enough to have interactions occurring
among the particles. Note that the fields plotted in Fig. 1
show that the gradients are negative around all particles
smaller than the average, i.e., those for which p < I, and
that these gradients increase sharply in magnitude as the
particles become smaller and more curved. Also, the gradi-
ents adjacent to larger particles-those for which p > I -re-
main relatively small when compared to the gradients around
smaller particles. The gradients surrounding “critical” par-
ticles are, by definition, zero, because at the instant depicted
in Fig. 1, “critical” particles-those for which p =1 -are con-
ditionally stable, and would neither be growing nor shrink-
ing. The scheme of relative diffusion potentials and their
gradients depicted in Fig. 1 makes clear the “competitive”
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nature of multiparticle diffusion. Specifically, at every in-
stant, small particles (relative to the average-size particle)
are forced to shrink rapidly; larger than average-size parti-
cles grow at the expense of dissolving smaller particles, and

T

Diffusion Potential / C(r/R*)

L " " Il il

4 2 0 2 4

Normalized Radial Distance / r/R*

Figure 1. Diffusion fields, C(; p; V), based on Debye-Hiickel
theory during phase coarsening in a microstructure with a dispersoid
volume fraction of V,=0.05. The dimensionless potential plotted
here represents the expression for the normalized field,
C(G p; Vy) =(1- p) exp(p V3 V,, Dexp(-{V3 V)/ § +1, where
€ =r/R" is the running (distance) variable. Each field is labeled by
the value of the scaled particle radius, p = R/R", with which it is
associated. Note that the field gradients are negative for particles
less than critical size (p < 1), and positive for particles greater than
critical size (p = 1). The critical sized particle (p =1) is shown sur-
rounded by a constant field (zero gradient) at the average diffusion
potential, C_=1, in the matrix phase.
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average-size (critical) particles themselves are condition-
ally stable and neither grow nor shrink. What makes the
overall kinetics of competitive multiparticle aging so inter-
esting is that the average-size particle in the population it-
self increases with time, in accord with Eq. 15. Thus, the
polydisperse population of particles is constantly in “com-
petition” with average-size particles that inexorably grow
as the cube-root of time. The net result of this coupled com-
petitive diffusion process is a microstructural population that
maintains an affine distribution for all time. That is, the PSD
remains identical except for a scale factor that increases as
the cube-root of time.

Glicksman, Wang and Marsh® recently proved that the
diffusional Debye screening length L, ('), which effec-
tively limits the distance over which the diffusion potential
of one particle affects another, is related to the ratio of mo-
ments of the PSD and to the reciprocal square-root of the
volume fraction of the system,

(RY)
XRYV,

Ly=

1)

Equation 21, in fact, can be employed to gauge the in-
teraction length scale in a three-dimensional microstruc-
ture undergoing diffusion-limited coarsening, and compare
the results with computer simulation or experiment. Moreo-
ver, as indicated in Eq. 21, the volume fraction of the micro-
structure, V , is the main factor that acts to reduce the Debye
screening length. The population of dissolving and grow-
ing particles collectively act to “cuts off”” the diffusion field
emanating from each particle beyond the Debye screening
distance, L,. This interesting screening effect is shown in
Fig. 2, where the diffusion potentials for a small particle
(p <1),acritical particle (p =1) , and a large particle (p = 1)
are plotted for several values of the volume fraction. A vol-
ume fraction of zero denotes the behavior expected in the
LSW model, where the screening distance becomes infi-
nite, and the Yukawa potential reduces to the Laplace po-
tential. At non-zero volume fractions, the gradients steepen,
especially around larger particles, and the diffusion fields
drop off to the mean potential (C_= 1) much faster than for
the limiting case where V = 0. Thus, Debye screening tends
to speed up diffusive transport in a microstructure, and in-
creases the kinetics of phase coarsening.

3. Modeling and Simulation of
Microstructures
3.1 Modeling

The microstructure is modeled by placing n particles of
the dispersoid phase in a cubic box. The contiguous spaces
between the particles represents the matrix phase in which
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the dispersoid population is embedded. Particles are located
by specifying the positions of their centers with three ran-
dom coordinates representing the Cartesian vector, r,, and
by their radii, R, chosen initially from a relatively narrow
Gaussian distribution. These radii are non-dimensionalized
by the capillary length, /, a material property based on ther-
modynamic data, and the microstructure evolution time is
non-dimensionalized by a characteristic diffusion time, an-
other property based on the materials transport coefficients,
defined as 7,=-1 /(L2 D c,). The dimensionless form of the

Diffusion Potential / C(r/R*)

Normalized Radial Distance / r/R*

Figure 2. Influence of dispersoid volume fraction, V., on diffu-
sion fields. Fields are shown for a small particle (p = 0.5), a large
particle (p = 1.5), and for the critical particle (p =1). The field
labeled V= 0 is that predicted from LSW theory. As V increases
from zero to represent real biphase microstructures, the diffusion
fields decay more rapidly with increasing distance from the parti-
cle centers. In addition, increasing the volume fraction steepens
the gradients near larger particles, but has a relatively minor influ-
ence on the gradients surrounding smaller particles. The Debye
screening distance, not shown here, provides a measure of the av-
erage field-decay distance for the population of particles compris-
ing the microstructure.
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growth rate, Eq. 11, can be written as

dR; _
d

i

—F (i=1.2,..n),

(22)

where R, is known at the time 7. Assuming that all the B,’s
are known, numerical integration of the growth rate, Eq. 22,
can be used in a forward marching scheme to evolve the
radii. The Runge-Kutta technique, was used to evaluate R,
(t + At). Here, At represents each subsequent time step in
the marching integral. One, of course, must re-determine
the volume fluxes, B, at each subsequent time step.

Introducing Eq. 8 into Eq. 6, along with the non-
dimensionalized system of linear equations, one may cast
these equations into matrix form as follows:

Ae*B=U, (23)
where A is the (n + 1) by (n + 1) matrix
(/R 1/n, 1/n, 1/n, 1]
1r, 1R, 1/ry, 1r, 1
Ury 1/ry, 1R, U, 1
A=
|, 24)
Ury Ury Urs . . . 1/R,
| 1 1 I ... 1 0f

and where r, represents the separation between a pair of
particles i and j. B and U are (n + 1) by 1 column matrices,
namely,

, (25)

and

[1/R, ]
/R,
/R,

_ (26)
/R,
0

Equation 23 represents (n + 1) linear equations. Substi-
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tuting Eq. 10 into Eq. 23 and eliminating the (n + 1) row
and column in matrix A, allows reduction of Eq. 23 to n
linear equations, which may be written as the matrix equa-
tion

A'eB =U, (27)
where A’ is the n by n matrix
'i_l R n R, 11 " R;
R, n(R) AT Ky n(R) #21 o n, MR) #nr,
i_l nﬁi_] nRj L_l nRj
By Ry &z, R, n(R)&=iz2r, Ty, 1R) &=ljznr,,
A'=
i_]‘ n&i_]‘ nﬁ“‘i_].nRj
ha MRSy ny,  n(R) &, R, R U™
(28)
_Bl_
B,
B'=
, (29)
_Bn
and
11
R, (R)
1_1
R, (R)
U'=
(30)
RS
R, (R)]

The Gauss-Seidel method was employed to solve this
system of linear equations, Eq. 27, yielding at each time
step values for the B,’s. Substitution of the up-dated B,’s
back into Eq. 22 dynamically advances the microstructure
by up-dating the radii of all the particles and their coordi-
nates at any time step.

3.2 Simulation of microstructures

As described briefly above, the simulation of the evolv-
ing microstructure is initiated by defining an assembly of n
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particles obeying some initially chosen size distribution.
These initial particles are placed randomly within a cubic
box to comprise the initial microstructure. The box size may
be determined from the specified volume fraction, V, the
initial number of particles, n(0), and their starting distribu-
tion.

The choice of time-step in performing the integration of
Eq. 22, is crucial. Large time-steps that allow the system to
evolve quickly do not permit sufficiently accurate solutions
to the microstructure evolution equation, Eq. 22. Too large
a time step may result in an unsatisfactory PSD. At each
time step, the computational program checks the radius of
every particle. If any became smaller than 0.1/<R>, they
are removed from the simulation box and considered “dis-
solved”. Equivalently, the column and row corresponding
to a dissolved particle is struck from the matrix, Eq. 28. The
initial number of particles forming the microstructure in-
fluences the total run time. Specifically, data are collected
from each simulation throughout the time period for which
mass is conserved and the volume fraction remains con-
stant to within a prescribed tolerance. It is observed, not
surprisingly, that the greater the number of particles form-
ing the initial microstructure, the better is the accuracy of
the simulation, the longer the run may be evolved, and the

0.2 T r T T
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»
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.(
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o
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Dimensionless Time / t

Figure 3. Average of the radius of the particle population cubed,
versus time. The predicted linearity of <R>?against time develops
only after the PSD develops its affine form. Before becoming aff-
ine, or “self-similar,” the PSD evolves through the transient evolu-
tion of the microstructure’s dispersoid population. Dashed line
provided only as a guide to judge the achievement of the predicted
linear behavior.
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faster the statistics for the data settle to steady trends. How-
ever, numerical difficulties are eventually encountered as
the number of particles, n, and thus the number of linear
equations, n?, increase. The larger the number of particles,
the greater is the required computer memory, and the longer
is the CPU time required to evolve the system. Ultimately,
the increasing CPU time limits the practicality of these
simulations for large microstructural assemblages.

4. Results

Simulation of microstructural coarsening was carried out
for volume fractions covering the range 10* <V < 10"
Figure 3 shows that for values of the time, ¢, larger than
about 0.3, the cube of the average radius of the particles
increases linearly with time. The “cube-root of time” kinet-
ics, is a well-known prediction from LSW theory for diffu-
sion-limited coarsening, and is confirmed by numerous ex-
periments. Figure 4 displays the PSD developed in the simu-
lated microstructure. The radii plotted here are scaled by
the average radius of the particle population for a volume
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Figure 4. Particle size distribution (PSD). Plot of the probability
density, G(p), of finding particles of radius fi in a small range of
sizes, dp, versus normalized particle radius. Data are for a small
but non-zero volume fraction (V,, =10). At finite, non-zero values
of V, the PSD broadens toward larger radii, drops in height, and
becomes slightly more symmetrical than predicted from LSW
theory. Multiparticle interactions are responsible for these changes.
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fraction of V =10 The PSD predicted from LSW theory
(V,=0) is shown in Fig. 4 for comparison. Neither prior
theoretical, experimental, nor simulation results are avail-
able for V =10 Figure 4 clearly indicates that microstruc-
tures with even a small volume fraction of particles exhibit
detectable broadening of the PSD and a marked decrease
its peak height, as compared with that predicted from LSW
theory.

Figure 5 displays the form of the computed volume
fluxes, B(p) for zero volume fraction and for V = 10*. LSW
theory predicts that the volume flux has a linear variation
with the scaled particle radius, that is, B(p) = 1 - p. How-
ever, as is also indicated in Fig. 5, the simulation for V = 10+
shows clearly that particles of identical size actually exhibit
a small range of flux values scattered around the LSW pre-
diction. The growth rate experienced by a particle of radius
p, even at a relatively small volume fraction, is not a purely
deterministic quantity as predicted by mean-field theory.

Figures 6 through 8, show the volume fluxes B(p) simu-
lated for V =107, V =102, and 10", respectively. These
figures demonstrate that the B(p)’s steadily deviate from
the linear LSW prediction. It is also evident from these
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Figure 5. Volume flux per steradian, B(p), versus scaled particle
radius, p. Data are simulated from the multiparticle diffusion model
for a microstructure with a dispersoid volume fraction V,, =10,
The associated microstructural noise distribution for these fluxes
is shown by the scatter of the simulation data relative to the noise-
free linear flux function (dashed line) predicted from LSW theory.
Even at this small (but non-zero) volume fraction, discernible fluc-
tuations, or “locale noise”, are evident.
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Figure 6. Volume flux per steradian, B(p), versus scaled particle
radius, p. Data are simulated from the multiparticle diffusion model
for a microstructure with a dispersoid volume fraction V, =10°.
Note the broadened noise band as compared to that in Fig. 5.
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Figure 7. Volume flux per steradian, B(p), versus scaled particle
radius, p. Data are simulated from the multiparticle diffusion model
for a microstructure with a dispersoid volume fraction V,, =107,
Note that the noise band continues to broaden when compared to
the simulation data shown in Fig. 6, and that the fluctuations are
noticeably asymmetrical with respect to the linear LSW predic-
tion (dashed line). Broadening of locale noise is especially evident
for larger particles.
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Figure 8. Volume flux per steradian, B(p), versus scaled particle
radius, p. Data are simulated from the multiparticle diffusion model
for a microstructure with a dispersoid volume fraction V,, = 10™".
Locale noise, except perhaps for the smallest particles exhibits
strong stochastic behavior. That is, particles, particularly those close
to the average size within the simulated microstructure, act unpre-
dictably by occasionally growing or dissolving rapidly. Were the
average size particles to act deterministically, they would hardly
grow or shrink at all. The fluctuations at this volume fraction also
exhibit non-linear departures from the LSW prediction (dashed
line).

simulations that the fluctuation, or “noise” band for the
volume fluxes increases with increasing volume fraction.

5. Conclusions

Microstructure evolution in a two-phase system was
simulated by solving a large linear matrix equation that de-
scribes multiparticle diffusion. Particles interacted in the
simulated microstructure under conditions close to steady-
state, or affine, coarsening. The far-field diffusion potential
used in these simulations is derived here for a finite system
[c.f. Eq. 10] in this paper. The effects of system size and
microstructure locale information for each particle were
included in the far-field diffusion potential. As the volume
fraction becomes small, our results approach those of Todes!
and LSW?23, exclusive of the weak interactions that persist
among particles.

Simulations of diffusion-limited coarsening carried out
on sparse to moderately dense microstructures
(10*<V <10") display classical coarsening kinetics that

Materials Research

is the cube of the average radius increases linearly with
time. However, the PSD computed for a biphase micro-
structure as sparse as V, = 10 remains somewhat broader
and more symmetric than that predicted by LSW. This is
the first PSD derived using simulation at such a small vol-
ume fraction.

Mean-field theory treats the growth rates of particles as
a deterministic kinetic process that depends only on the size
of a particle relative to the average size of the entire micro-
structural population. In addition, mean-field theories ig-
nore environmental information for individual particles.
From the simulations reported here, however, we find that
the fluctuation band for a particle’s volume flux widens with
the increase of volume fraction. Larger particles experience
stronger fluctuations, or locale noise, in their growth rates
than do smaller particles. The non-linear character of the
particle volume flux versus particle size increases steadily
with increasing volume fraction. Finally, this work suggests
that stochastic effects must always be present in real biphase
microstructures and may play an important role in micro-
structure evolution. Once the statistical nature of microstruc-
tural fluctuations are understood, then theories of micro-
structure evolution can be modified to include their effect.
The authors hope that this work will stimulate quantitative
experiments that focus on systems at small volume frac-
tion, to help achieve firmer understanding of multiparticle
interactions within evolving biphase microstructures.
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