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Surface rolling is a process extensively employed in the manufacture of ductile cast iron crankshafts, specifically 
in regions containing stress concentrators with the main aim to enhance fatigue strength. Such process hardens 
and introduces compressive residual stresses to the surface as a result of controlled strains, reducing cyclic tensile 
stresses near the surface of the part. The main purpose of this work was to apply the residual analysis to check 
the suitability of the S-N approach to describe the fatigue properties of a surface rolled cast iron. The analysis 
procedure proved to be very efficient and easy to implement and it can be applied in the verification of any other 
statistical model used to describe fatigue behavior. Results show that the conventional S-N methodology is able to 
model the high cycle fatigue behavior of surface rolled notch testpieces of a pearlitic ductile cast iron submitted 
to rotating bending fatigue tests.

Keywords: surface rolling, fatigue, residual stress, statistical model, residual analysis

1. Introduction

Ductile cast iron is produced through the addition of a metallic 
alloy containing Fe-Si-Mg to a base cast iron in order to produce 
nodular graphite, instead of flake graphite as found in grey cast irons1. 
This process allows the manufacturing of materials with improved 
mechanical strength and ductility which are extensively used in the 
fabrication of mechanical parts such as crankshafts. Strength and 
ductility are dependent on the matrix microstructure2. Depending on 
the chemical composition and heat treating, the matrix can be either 
ferritic, pearlitic, ferritic-pearlitic, bainitic, martensitic or austenitic3. 
Size and distribution of the graphite nodules in the matrix are also 
important to the mechanical properties4.

The fatigue strength of a cast part depends not only on the 
microstructure and chemical composition, but also on the surface 
finishing and geometry of the part. Dimension gradients and notches 
are stress concentrators which are prone to fatigue crack nucleation 
and if they cannot be avoided in the design of part, they must undergo 
special treatments5. For example, in order to eliminate sharp ends 
in automotive crankshafts, notches are machined with a minimum 
radius which is subsequently surface rolled6. The main aim of such 
procedure is to reduce notch sensitivity in these regions and thus 
reducing fatigue crack nucleation probability in critical regions of 
mechanical parts7.

Although statistical models are largely used in fatigue data analy-
sis, a verification of the suitability of the model is not always checked. 
The main purpose of this work was to apply the residual analysis to 
check the suitability of the conventional S-N approach to describe 
the fatigue properties of a surface rolled cast iron. Additionally, the 
authors expect that this paper is capable of introducing a step-by-
step procedure for the implementation of the residual analysis to any 
statistically significant model.

2. Residual Analysis

2.1. S-N curve

The most usual way of representing fatigue results is the S-N 
curve, where S is the applied stress amplitude or the maximum ap-

plied stress and N is the number of cycles for failure. In this curve, 
N values are plotted on the abscissa axis and S values are plotted on 
the ordinate axis8. Generally, these results are plotted in bi-logarithmic 
scale resulting in a curve which can be expressed by:

log(N) = A + B
 
log(S)	 (1)

where A and B are the regression coefficients to be determined.
Although Equation 1 is normally used to model fatigue life, the 

number of cycles for failure, N, may depend not only on S values 
but also on other independent variables which can be statistically 
significant. In the particular case of surface rolled parts, the presence 
of surface compressive residual stresses can potentially affect the 
model. Cyclic loading may cause residual stress relaxation which is 
closely related to the level of applied stresses. Experimental work and 
theoretical models have shown that higher applied loads are likely to 
cause both higher relaxation rate and higher relaxation levels9,10. Thus, 
there could be non-linear relationships such as quadratic and exponen-
tial that would better describe the fatigue properties of surface rolled 
parts. In this sense, these considerations raise a few questions:

1.  How to identify that the assumed independent variables of the 
model are statistically significant?

2.  How to check that the proposed model is adequate to describe 
the fatigue behavior of the material?

Normally, the answer to these questions is obtained by using a 
residual analysis of the statistical model.

2.2. Statistical model

A statistical model is a mathematic model which contains a 
random error with a specific probability distribution. Usually, this 
model is used to predict the value of one of the variables when the 
other is known, under specific conditions11. In a statistical model, two 
or more variables are correlated using regression analysis equations. 
These equations are mainly used to predict the dependent variable, 
Y, as a function of the independent variable, X. In the analysis, some 
assumptions are necessary12,13:
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The independent variable, X, is considered free of errors because 
X is not a random variable.

There is a linear relationship between Y e X and the statistical 
model that relates Y

i
 to X

i
 is given by:

Y
i
 = A + B X

i
 + ε

i	
(2)

for i =1, …, n, where n is the number of observations.
In Equation 2, A and B are unknown constants to be estimated 

and they are called parameters of the regression model. ε
i
 is a random 

value, denominated random error. The value of ε
i
 for any observa-

tion will depend on both a possible error of measurement and other 
variables different from X

i
 that were not measured that could affect 

Y
i
. The values of ε

i
 are random variables, assuming the following 

assumptions:
1.  The average of ε

i
 values is equal to zero and its variance, σ2, is 

unknown and constant for 1 ≤ i ≤ n.
2.  ε

i
 values are not correlated.

3.  The distribution of ε
i
 values is normal for 1 ≤ i ≤ n.

Second and third assumptions imply that ε
i
 values are mutually 

independent.
The regression line is, in general, unknown and therefore must 

be estimated through the sampling data. In the particular case where 
the regression of Y in relation to X is linear, the best fit line can be 
written as:

^Y
i
 =  ^A +  ^Bx

i
	 (3)

where the symbol “caret” (^) denotes estimate (estimator),  ^A������  �����and  ^B 
are determined by the least squares method and  ^Y

i
 are the estimated 

values of �Y
i
 using Equation 3 and the differences between Y

i
 and��  ^Y

i
 

shall be minimum. �������������������������������������������������      Generally, these differences are known as residu-
als, i.e., errors associated to the predicted values of  Y

i
 corresponding 

to each X
i
 value and which can be calculated through the following 

expression:

 ^e
i
 = Y

i
 –  ^Y

i
	 (4)

2.3. Verifying the adequacy of the linear model

One of the most important tools for the verification of the ad-
equacy of a regression model is the residual analysis. Values obtained 
by Equation 4 are the base for this procedure13. In this analysis, it is 
possible to check if the assumptions about the residuals of the model, 
given by Equation 1, are satisfied, i.e., to verify that equal variance, 
normality and independence are accomplished. The validity of such 
assumptions can be verified through graphical analysis. 

In order to evaluate the assumption of equal variance, in general, 
the residuals are plotted against the estimated  ^Y. This assumption will 
be valid if the dispersion of residuals in such plot does not reveal any 
obvious pattern. In Figure 1, a valid graph to accept the suitability of 
the model is presented, where the residuals are randomly distributed 
with equal variance. 

If a funnel shape graph is obtained (Figure 2), the variance 
increases, indicating non - constancy. When inconstancy is found, 
data in both axes should be plotted in a logarithmic scale in order to 
stabilize the variance.

The verification of residuals normality can also be analysed by 
plots, such as normal score and normal probability graphs. In these 
graphs, the assumption of normality is valid if the points in the graph 
are localized approximately along a straight line. However, in case of 
doubt, the linearity can be confirmed using a statistical test of normal-
ity, such as the one proposed by Shapiro and Francia14.

The assumption of independence can be checked by a graph of 
residuals against time (order of data collection). If the residuals are 
randomly distributed along the time axis, the independence assump-

tion will be valid.  On the other hand, if a cyclic pattern, for example, 
is present in the graph, it means that the data is not independent.

Another tool to analyse the suitability of the regression model is 
the coefficient of determination, R2. However, the residual analysis 
must always be performed because it allows identifying the lack of 
correlation and indicates possible adequate models. The coefficient 
of determination is given by: 
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where the symbol “overbar” ( - ) denotes average.
Once the suitability of the model given by Equation 2 is checked, 

it is possible to infer and create prediction intervals more reliably 
and hence to estimate fatigue life (or stress levels for a given life) 
with greater confidence.Within the range of experimental points, 
the prediction interval 100(1 – α)% for a particular variable Y

o
 is 

estimated by:
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For points outside the testing interval, the prediction interval is 
given by:
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where,

 ^Y
0
 =  ^A +  ^Bx

e�	
(8)
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Figure 1. Example of a graph of residuals ( ^e
i
) against the estimated values 

( ^Y
i
) when the regression model is adequate.
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Figure 2. Example of a graph of residuals ( ^e
i
) against the estimated values 

( ^Y
i
) showing that the variance is non-constant.
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and X
e
 is a specific value of X outside the interval of observed val-

ues, α is the significance level, t
(α/2)

 is determined from a t Student 
distribution with n-2 degrees of freedom and ^j is √

_

(^j2).

3. Experimental Procedures

In this work, bending rotating high cycle fatigue tests were 
performed in surface rolled notch testpieces of ductile cast irons. 
The matrix microstructure presented on average 85% of pearlite 
and 15% of ferrite; more than 80% of the graphite nodules were 
type I and II, according to ASTM A2474. Average results of tensile 
tests indicated that the material is a 100-70-03 class material, accord-
ing to ASTM A53615. All tests were performed in room temperature 
and in as-cast condition. Average chemical composition is presented 
in Table 1.

For the bending rotating fatigue tests, notched testpieces were 
manufactured according to ASTM E46616, as seen in Figure 3. The 
notch was surface rolled prior to fatigue testing. Bending rotating 
fatigue tests were performed according to ASTM E46817, under a 
frequency of 92 Hz. Testpieces were considered non-failed when 
lives exceeded 107 cycles. The number of stress levels and the number 
of testpieces tested at each stress level were determined according 
to ASTM E7398, in order to obtain a replication between 75% and 
88%. The apparatus used for surface rolling the notches consists 
basically of 3 rollers disposed at 120° in relation to testpiece axis, 
as seen in Figure 4.

Rolling load was applied to the notch by a hardener roller which 
had a diameter of 15 mm, thickness of 5 mm and curvature radius 
of 1.3 mm. The other support rollers consisted of a 26 mm diameter 
sphere. The hardener roller was fixed to an apparatus used for surface 
rolling of crankshafts which was adapted for this work. 

The apparatus was fixed to the tool post of a lathe and load was 
applied through the movement of the tool post perpendicularly to 
the testpiece axis which had both ends fixed to the lathe. Load was 
measured by a 10 kN load cell attached to the support rollers which 
were fixed to the base of the lathe. Load readings were acquired by 
a Transdutec-TMDE model digital reader. Testpiece notches were 
surface rolled under an applied load of 2.39 kN, frequency of 50 rpm 
and 250 revolutions. 

4. Results and Discussion

Results of the fatigue tests are presented in Table 2. All data 
presented refer to fractured testpieces. Data analysis of the number 
of cycles for failure of the testpieces initiates with the verification of 

Table 1. Average chemical analysis results (in weight %).

C Si Mn Cr Cu P S Mg

3.56 2.36 0.45 0.016 0.46 0.046 0.010 0.050

12
.5

6.
3 7.
7R 58

R
 1.232

70

102

Figure 3. Notched testpiece for bending rotating fatigue tests.

Figure 4. Surface rolling apparatus: a) Schematic representation; b) photo-
graph of the equipment.

(b)

Rolling load
direction

Hardener roller Notch

Notched testpiece
Support rollers

120°

(a)

Table 2. S and N values for surface rolled notch testpieces of ductile cast iron.

S (MPa) N (cycles for failure)

550 117900

550 148000

550 260700

550 264300

550 272100

525 222700

525 249500

525 312900

525 367400

525 1143900

500 2319900

500 1350000

500 2607300

500 1290100

500 695300

475 902800

475 4892000

475 1499900

475 4234300
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Table 3. Regression coefficients of Equation 7 with their respective standard 
deviations s and to ratios.

Regression Coefficients s to

A = 54.599 7.079 7.71

B = - 17.992 2.611 - 6.89

the suitability of the model through the residual analysis. Estimated 
values and the residuals are obtained by Equation 3 and Equation 4, 
respectively. In this work, all residual analysis calculations were 
performed using a statistics software package.

The graph of normal scores against the residuals was used to 
check if the normal distribution is attained (Figure 5). It is observed 
that the data results approximately in a straight line, indicating that 
the residuals of the model in principle follow a normal distribution. 
However, when the graph of residuals against estimated values is plot-
ted (Figure 6), it is possible to observe a funnel shape which indicates 
an increase in variance. Therefore, the equal variance assumption is 
not attained and a modification of the model is necessary.

Therefore, a logarithmic conversion of both S and N data is 
performed to check if the assumptions of equal variance and nor-
mality are obtained. As seen in Figure 7, the variance is constant. 
In Figure 8, the residuals can be approximately fitted by a straight 
line and the assumption of normality is attained. Hence, from the 
residual analysis it can be concluded that the stress level S is the only 
independent variable statistically significant and the model given by 
Equation 2 is adequate to describe the high cycle fatigue properties of 
surface rolled notch testpieces of the ductile cast iron of the present 
work. It is important to emphasize that if the assumptions of equal 
variance and normality were not attained even after the logarithmic 
transformation of both S and N scales, either the proposed model 

would have to be described by a different mathematical function or 
an additional statistically significant independent variable would have 
to be included in the model.

Once the suitability of the model is checked, it is possible to 
obtain the linear relationship between logN  and logS, as presented 
in Equation 11: 

log(N) = 54.6 –18.0 log(S)	 (11)

This model shows a standard deviation (s) of 0.2632 and a coef-
ficient of determination (R2) of 73.6% for n = 19 observations. Ad-
ditionally, Table 3 presents the regression coefficients of Equation 11 
with their respective standard deviation s and t

o
 ratio.

Figure 9 presents the S-N curve with a prediction interval of 95%. 
Observe that in this curve the independent variable S is plotted in 
the ordinate axis while the dependent variable N is presented in the 
abscissa as usually found in conventional S-N graphs8. Equation 11 
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Figure 5. Graph of residuals against normal scores values for rolled notch 
testpieces.
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Figure 6. Graph of residuals against estimated values for rolled notch tes-
tpieces.
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Figure 7. Graph of residuals against estimated values for rolled notch test-
pieces (after applying logarithmic scales).

Figure 8. Graph of residuals against normal scores for rolled notch testpieces 
(after applying logarithmic scales).
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Figure 9. S-N curve and 95% prediction intervals for the surface rolled notch 
testpieces.

allows estimating accurately both the number of cycles for failure 
for a given applied stress level and the corresponding 95% predic-
tion interval. However, in some cases it is necessary to determine 
the stress level at which failure will take place for a given number of 
cycles, in other words, it is necessary to obtain the endurance limit.  
According to Equation 11, for 2.106 cycles for example, the endurance 
limit for the notch surface rolled testpieces of the ductile cast iron of 
the present work is approximately 483 MPa and the 95% prediction 
interval ranges from 459.8 MPa to 522.7 MPa.

5. Conclusions

A residual analysis procedure was successfully applied to analyze 
high cycle fatigue data of surface rolled notch testpieces of a pearlitic 
ductile cast iron tested under bending rotating fatigue. The procedure 
proved to be very simple and easy to implement and it can be applied 
to any statistical fatigue model. The residual analysis showed that 
the conventional bi-logarithmic model of S-N data is able to describe 
the fatigue properties of the cast iron, showing an endurance limit of 
approximately 483 MPa at 2.106 cycles calculated according to the 
regression equation obtained from the model. 
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