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The aim of this work was to study the effect of austenitic grain size (GS) reduction on the structural parameters 
of the ε

hcp 
- martensite in stainless shape memory alloy (SMA). Rietveld refinement data showed an expansion 

in c-axis and a reduction in a and b-axis with thermo-mechanical cycles for all samples analyzed. Samples with 
75 ≤ GS (µm) ≤ 129 were analyzed. It was also observed an increase of the unit cell volume in this phase with 
GS reduction. The smallest grain size sample (GS = 75 µm) presented a c/a ratio of 1.649, and approximately 
90% of total shape memory recovery.
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1. Introduction 

Iron-based shape memory alloys have been extensively studied in 
the last years due to their good shape recovery properties compared 
to other materials1-12. In stainless alloys, the shape memory effect 
(SME) is the result of a γ(fcc)↔ε(hcp) martensitic transformation1-3. 
The γ(fcc)→ε(hcp), γ(fcc)→α’(bcc) and γ(fcc)→ε(hcp)→α’(bcc) 
transformations can also occur and they depend on factors such as 
chemical composition and thermo-mechanical cycles. The forward 
and backward movements of Shockley partial dislocations on alternate 
{111} austenite planes promote the reverse ε(hcp)→γ(fcc) transfor-
mation resulting on the shape recovery of these materials4,7,9-13. Ac-
cording to the literature4,7, the thermo-mechanical treatment, chemical 
composition, and grain size (GS) reduction are some factors that have 
a strong influence on the SME, mechanical properties and structural 
parameters of austenitic and martensitic phases. In particular, the 
influence of GS on the shape recovery is a very important parameter 
to be studied, since some authors believe that the changes in austenitic 
grain size do not affect the shape recovery performance in stainless 
shape memory alloys14. 

Recent works reported by our group7,13,15 showed that the GS 
reduction contributed to the increase of the total shape recovery 
(shape memory recovery + elastic recovery) and also it changed the 
mechanical properties in Fe-Mn-Si-Cr-Ni-(Co) SMA. Previous works 
have analyzed other properties and it was concluded that the grain 
size reduction improves the SMA in these alloys16,17.

When the ε
hcp 

- martensite lattice parameters are associated to 
other parameters (such as mechanical properties) they can control 
the SME in stainless alloys. The literature states that an increase in 
the c/a ratio, strongly affected by chemical composition, makes the 
ε(hcp)→γ(fcc) transformation easier16,18. This work is a complement 
to the data reported previously by our group7,13,15, where we relate the 
structural changes of the martensitic phase to GS reduction, shape 
memory properties and thermo-mechanical cycles. 

2. Experimental 
The effects of GS reduction and thermo-mechanical cycles on 

the structural parameters of stress induced ε
hcp

-martensite were 
analyzed for the following composition: Fe (balance) - 0.009 C - 
8.26 Mn ‑ 5.25 Si - 12.81 Cr - 5.81 Ni - 11.84 Co (wt%). The material 
was hot rolled at 1473 K followed by a heat-treatment at 1323 K for 
different times to obtain different austenite grain sizes samples7. 

In order to induce the γ(fcc)↔ε(hcp) martensitic transformation, 
the samples were submitted to six thermo-mechanical cycles (train-
ing). Each cycle consisted of 4% compression (to induce ε

hcp 
- mar-

tensite) and heating to 873 K during 30 minutes (to allow the shape 
recovery), and then cooling to room temperature. The specimen initial 
dimensions were 9 mm in length by 6 mm in diameter7. 

The austenite average grain size was determined using optical 
microscopy. The specimen surface was mechanically polished and 
then etched with the solution: 2 mL HNO

3
 + 2 mL NHCl in order 

to reveal the grain boundaries. To enhance the morphology of stress 
induced ε

hcp
-martensite, the samples were electrolytic polished19. The 

color etching, K
2
S

2
O

5
 + NH

4
HF

2
 in distilled water, was used to reveal 

the austenitic and martensitic phases20. In this work, this etching was 
adapted for different GS and volume fraction ε

hcp 
- martensite7,19. 

X ray diffraction (XRD) data were colleted between 10 and 100° 
(2θ) at room temperature using a Philips diffractometer (PW1710) with 
Cu target and a graphite diffracted beam monochromator, step sizes 
of 0.02° and 2 seconds of counting time. Structural parameters were 
analyzed by Rietveld method21 using the FullProf-suite software22. Peak 
shape, width parameters and background parameters were considered. 
All these parameters were refined adopting the iterative least-squares 
method through minimization of residual parameter. Two structure types 
were considered: a) cubic symmetry, space group Fm-3m for austenite 
phase, and b) hexagonal symmetry, space group P63/mmc (γ  = 120°) 
for the martensite phase. Lattice parameters correspond to a similar 
composition alloy, AISI-304 steel. The thermal parameters (B’s) initially 
used for both phases were B

overall
 = 0.5 and the peak shape function used 

was the pseudo-Voigt.
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The mechanical4,7 and shape recovery7,15,19 properties presented 
here were obtained in our previous investigations. 

3. Results and Discussion

The samples heated at 1323 K presented grain sizes between 
75  and  129 µm. Before thermo-mechanical treatment cycles, the 
samples showed a whole austenitic matrix. The features showed in 
Figure 1a for GS = 106 µm were observed for all samples analyzed in 
this work. The average austenitic grain size was measured using similar 
images as the ones obtained in Figure 1a, where the grain boundaries 
revealed by the etching can be seen clearly, as explained in previous 
works19,23. Stress induced ε

hcp 
- martensite started to appear with the 

thermo-mechanical cycles. Figure 1b shows the optical microscopy of 
a sample with small grain size (GS = 75 µm), six thermo-mechanical 
cycles, and deformed state (no recovery). The band structure cor-
responded to the thin ε

hcp 
- martensite plates (dark region) distributed 

inside the austenitic grain (bright region). The samples with larger grain 
size have also presented a similar microstructure. The morphology of 
this phase was not affected by GS reduction and/or training cycles, 
remaining the band structure observed in Figure 1b.

Optical microscopy analysis of large GS samples has shown that a 
stress cycle (≤ 2%) has induced α’ - martensite (bcc-cubic symmetry 
and space group Im-3m). Several studies showed that this phase appears 
with the increase of the deformation or chemical composition9-11,13,18. 
This phase was detected in regions of crossing plate ε

hcp 
- martensite in 

large grain size samples7. The α’(bcc) martensite formation is caused by 
double shear mechanism24,25 and was observed in large ε

hcp 
domains or 

intersections between several ε
hcp

 bands for similar compositions11.
The effect of thermo-mechanical cycles on the ε

hcp 
- martensite 

was observed through X ray diffraction. Diffraction patterns of a 
sample with GS = 75 µm is shown in Figure 2a, deformed state, in 

30 m

50 m

Figure 1. Optical microscopy: a) grain boundary of austenitic matrix, 
GS = 106 µm. Etchan: 2mlHNO

3
 + 2mlNHCl, and b) stress induced ε

hcp 
- mar-

tensite (dark region) and γ
fcc 

- austenite (bright region), 6th thermo-mechanical 
cycle, GS = 75 µm. Color Etching: K

2
S

2
O

5
 + NH

4
HF

2
 in distilled water19.
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Figure 2. a) X ray diffraction patterns for 1st, 3rd and 6th thermo-mechanical 
cycles, deformed state, GS = 75 µm; and b) Line width as a function number 
of cycle, (10.1)ε.
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the range of 40° ≤ 2θ ≤ 55° range, where there were more intense 
reflections. We have focused this work on this sample due to its 
90% total shape memory recovery, which was previously presented 
in 15. In order to illustrate the training effect in Figure 2a, only 
the intermediary cycles were shown. Diffraction patterns of others 
cycles (2, 4 and 5) similar behavior. The most intense reflections for 
both phases were identified as: (111)γ, (200)γ, (10.0)ε and (10.1)ε. 
The same peaks were detected in similar compositions by others 
authors using different radiation sources8,26,28. Pronounced changes 
on the γ(fcc)→ε(hcp) transformation were observed for the (111)γ 
and (10.1)ε peaks (Figure 2a). In this sample, the volume fraction 
increase of the martensitic phase with the number of cycles was 
detected through a change on the peak (10.1)ε. The linear increase 
of this peak line width is shown in Figure 2b. This result denotes the 
increasing on the volume fraction ε

hcp 
- martensite as a function of the 

number of cycles, a tendency observed in all samples. Particularly for 
this sample, the line width increased 15% between 1st and 6st cycles. 
For others grain size (106 and 129 µm) samples this difference was 
approximately 10%. 

In this same diffraction range (40° ≤ 2θ ≤ 55°) the Rietveld refine-
ment of the first thermo-mechanical cycles, deformed state and small 
grain size, is shown in Figure 3. This figure presents the experimental 
and refined X ray diffraction patterns as well as their difference. All 
samples presented similar diffractions. The ε

hcp
 lattice parameters 

for the first cycle were: aε(hcp)
 = 2.548(6) Å, cε(hcp)

  =  4.162(2) Å, 
c/a = 1.633(2), and they were larger when compared to the values 
presented in literature26,29. Austenitic matrix indicated lattice pa-
rameters similar to the ones presented in the literature for stainless 
steel26,29: aγ(fcc)

 = 3.587(2) Å. Lattice parameters for the austenitic 
phase presented smaller variations (<3%). The standard deviations 
are shown in parenthesis. The discrepancies between the experimental 
and refined profiles for all samples are smaller, indicating that the 
unit cell dimensions were accurately determined and that the cho-
sen peak shape function pseudo-Voigt was a good choice for these 
samples. The thermal parameters (B’s) have presented a variation 
smaller than 0.5%.

The ε(hcp) lattice parameters have changed as a function of the 
number of cycles (deformed state) for all grain sizes (Figure 4). It 
was observed a contraction on the a and b-axis with the number of 
cycles, while the c-axis expanded. For GS = 75 µm this increase was 

approximately 0.50% between 1st and 6st cycles. The contraction ob-
served in a and b-axis (same specimen) was smaller, 0.35% between 
the first and last cycles. In terms of grain size, the samples with refined 
microstructure presented an increase of all lattice parameters. 

Grain size effect on the c/a ratio for all number of cycles is 
shown in Figure 5. In the last thermo-mechanical cycle, the sample 
with GS = 75 µm presented a c/a = 0.70%, which was larger than the 
ratio for the sample with GS =129 µm. This result, associated with 
other factors7,15 contributed to the improvement of shape recovery 
in this sample. 

With the Rietveld refinement, it was possible to evaluate the grain 
size effect on the ε

hcp
-martensite volume fraction of the intermediary 

thermo-mechanical cycles, deformed and recovered states (Figure 6). 
In the deformed state, the grain size reduction has facilitated the 
γ(fcc)→ε(hcp) transformation. This behavior was strengthened 
when the yield stress σ

0.2%
 was analyzed. In the work with a similar 

composition7,13 it was observed that the compressive yield stress 
decreased with the grain size. Therefore, the decrease in the σ

0.2%
 

and the increase in the volume fraction of ε
hcp 

- martensite (Figure 6) 
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Figure 3. Rietveld refinement for GS = 75 µm, last thermo-mechanical cycle, 
deformed state. 

Figure 4. The ε (hcp) lattice parameter as a function number of cycles for 
different grain sizes. 

Figure 5. Grain size effect on the c/a ratio as a function number of cycles 
for different grain sizes. 
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show that this transformation is facilitated. GS reduction also has 
increased the amount of ε

hcp 
- martensite reversed (ε

hcp
 → γ

fcc
) during 

the heating. In a similar composition13, this reversion was nearly 
complete. Corroborating with the previous results, the grain size 
reduction facilitated the ε

hcp
→γ

fcc
 transformation (Figure 6) where the 

sample with GS = 75 µm presented on the first cycle 50.9% martensite 
recovery7. This value decreased due to an accumulative process of 
martensite without recovery with number of cycles. Several factors 
contributed to facilitate the reverse martensitic transformation such 
as the increase of c/a ratio (expansion unit cell ε

hcp
-martensite). In all 

thermo-mechanical cycles, the sample with GS = 75 µm presented 
a large c/a ratio, large volume fraction of reversed martensite and 
consequently, a large total shape recovery5,7. 

Improvements in shape recovery with c/a increase for different 
GS and number of cycles are shown in Figure 7. In this figure, it can 
be seen that the sample with c/a = 1.646, small GS at last cycle in a 
deformed state, presented a largest shape memory effect of 67.15%. 
With the increase of GS, this ratio decreased and corresponded to 
the condition of smallest SME. 

The changes on the structural parameters detected by Rietveld 
refinement have shown a strong grain size influence presenting a 
relation with the shape memory recovery. 

4. Conclusions

Grain size reduction effect in stainless SMA has promoted con-
siderable changes on the structural parameters of martensitic phase. 
The expansion in the ε

hcp 
- martensite unit cell, detected by Rietveld 

refinement, increased the c/a ratio contributing thus, to increase the 
reversion of ε

hcp 
- martensite, and consequently, the shape memory 

recovery. For the thermo-mechanical cycles an expansion of the c-axis 
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and the contraction of a and b-axis were detected. The sample with 
GS = 75 µm presented c/a = 1.646 in a last cycle at deformed state. 
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