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The aim of this article is present an overview of the promising results obtained while using carbon nanofibers 
based composites as catalyst support for different practical applications: hydrazine decomposition, styrene 
synthesis, direct oxidation of H

2
S into elementary sulfur and as fuel-cell electrodes. We have also discussed some 

prospects of the use of these new materials in total combustion of methane and in ammonia decomposition. The 
macroscopic carbon nanofibers based composites were prepared by the CVD method (Carbon Vapor Deposition) 
employing a gaseous mixture of hydrogen and ethane. The results showed a high catalytic activity and selectivity 
in comparison to the traditional catalysts employed in these reactions. The fact was attributed, mainly, to the 
morphology and the high external surface of the catalyst support.
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1. Introduction

The existence of carbon nanofilaments has been observed during 
the natural gas reforming several decades ago, when these materials 
were considered as undesirable by-products which led to the catalyst 
disintegration and plugging. Later, several research groups have been 
involved in the identification and characterization of this new form of 
carbon with the aim to reduce its formation1-3. However, the interest 
for these new materials in the field of catalysis only started after the 
discovery of the carbon nanotubes by Iijima4 in 1991. Nevertheless, 
two main drawbacks had limited the application of these materials 
in catalysis: the low yield of carbon nanotubes and the high amount 
of impurities co-produced by the synthesis routes (electric arc and 
laser ablation). These restrictions have been fixed by the catalytic 
method of synthesis suggested by Ebbesen and Ajayan5. The method 
consists basically of a catalytic decomposition of CO or certain 
gaseous hydrocarbons on the surface of some transition metals (Fe, 
Ni and Co) at temperatures between 400 and 800 °C. This catalytic 
method can be used in the production of either carbon nanotubes or 
carbon nanofibers. The carbon nanotubes are constituted by graphite 
layers rolled on itself and parallel to the axis of the tube, displaying a 
topmost surface constituted by the less reactive basal planes of graph-
ite. The carbon nanofibers are formed by the piling up of graphite 
layers along the axis of the fiber as a cone form, displaying prismatic 
planes with high reactivity for the adsorption of the deposited active 
phase. De Jong and Geus6 published an interesting revision about 
the different methods of synthesis of carbon nanofilaments, as well 
as many suggested mechanisms of growth and different potential 
applications in catalysis. 

Many authors have suggested the application of carbon nanofibers 
as catalyst support7-9 due to: i) their good metal/support interaction 
caused by the presence of the prismatic planes on the nanofibers 
surface, ii) their high specific surface area that offers a better contact 
reactants/active sites and iii) absence of the ink-bottled pores that 
reduces the diffusion phenomena, mainly in liquid phase reactions 

or high mass and heat transfers reactions. However, the direct use of 
these 1D carbon materials in conventional catalytic reactors, espe-
cially in fixed-bed configuration, is significantly hampered by their 
nanoscopic size. Indeed, the nanoscopic size of the carbon nanofibers 
can cause reactor loading problems and pressure drop which render 
their use in a large scale reactor configuration impossible. In order 
to eliminate these drawbacks, it has developed a new kind of carbon 
nanofibers based composites, combining the macroscopic form with 
the nanomaterial characteristics. This procedure consists in raising 
carbon nanofibers on a macroscopic surface (felt, foam, fabric…) 
with a pre-defined form by the CVD method. Therefore, supporting 
carbon nanofibers on a macroscopic host allows the conservation of 
their advantages while diffusional phenomena can be suppressed10. 
The aim of this article is to report a brief review of the results obtained 
in the application of carbon nanofibers composites as catalytic support 
in various industrial processes.

2. Synthesis of Carbon Nanofibers

The macroscopic host structures used were graphite felt or fabric 
(Carbone Lorraine Co.) which was constituted of a dense entangled 
network of micrometer graphite filaments with a smooth surface. The 
starting graphite host had almost no porosity which was in good agree-
ment with its extremely low specific surface area (<1 m2.g–1). These 
materials were cut into a pre-defined shape, in cylindrical tablets or 
disks with appropriate dimensions to the desirable application. The 
tablets/disks were further impregnated with 1% wt. of nickel, using 
an alcoholic solution (20 vol.% ethanol) of nickel nitrate (Acros). 
The solid was dried overnight at ambient temperature, followed by 
an oven dried at 100 °C and calcination at 350 °C, both for 2 hours. 
The sample was placed inside a quartz reactor housed in an electri-
cal oven. After 1 hour of in situ reduction at 400 °C, the hydrogen 
flow was replaced by a mixture of hydrogen and ethane (Air Liquid) 
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with a molar ratio of 5:1 (H
2
:C

2
H

6
). The carbon nanofibers were 

obtained by catalytic hydrocarbon decomposition over the graphite 
material supported nickel catalyst at 680 °C for 2 hours with a yield 
of 100 wt. (%)11. Figure 1a shows that after synthesis the surface of 
the felt was completely covered by a layer of carbon nanofibers. The 
formation of the carbon nanofibers on the macroscopic graphite felt 
went along with a significant increase in the specific surface area, i.e. 
85 m2.g–1, of the final composite taking into account the low surface 
area (1 m2.g–1) of the starting felt. Surface area was measured using 
a Coulter SA-3100 sorptometer with N

2
 as adsorbant at liquid nitro-

gen temperature. Before measurement the samples were outgased 
at 200 °C for 2 hours in order to desorb moisture and other weakly 
adsorbed residues.

The nanofibers prepared by this technique exhibited homogene-
ous diameters (around 30 nm) and fishbone structure with exposed 
prismatic planes (Figure 1b). The images was performed on a Scan-
ning Electron Microscopy (SEM) JEOL model 6700 F.

The carbon nanofibers composite can be efficiently used as 
catalytic support in reactions where diffusional phenomena of the 
reactants are essential and in reactions with high mass and heat trans-
fers. Moreover, the high thermal conductivity of the carbon based 
support allows a fast homogenization of the heat generated during 
the reaction throughout the catalyst body, preventing the formation 
of hot spots which are detrimental to the active phase dispersion and 
catalyst body conservation.

3. Catalytic Reactions Using Carbon Nanofibers

3.1. Catalytic decomposition of hydrazine

Nowadays, most of the satellites in orbit use liquid monopro-
pellant hydrazine as propulsion subsystem for orbit correction and 
positioning operations12. The thrust is obtained by catalytic decom-
position of the monopropellant on a highly loaded catalyst contain-
ing about 30 to 40 wt. (%) of iridium supported on alumina. This 
catalyst is mainly constituted of a macro- and mesoporous network 
in order to increase the active sites accessibility. Carbon nanofibers 
based composites was proposed as an alternative catalytic support 
of iridium for hydrazine decomposition13. The composite was cut in 
cylinder forms and impregnated with 30 (wt.) % of iridium from a 
solution of hexachloroiridic acid. The tests were carried out with a 
2 N microthruster catalyst placed in a vacuum chamber that allowed 
simulating the pressure conditions in space14,15. 

The tests were carried out under two hydrazine injection pres-
sures, i.e., 22 and 5.5 bar, simulating the real conditions of the propel-
lant reservoir pressure at the beginning and the end of the satellite 
life, in the beginning and in the end of its useful life, respectively. 
For each pressure 4 series of 100 short pulses and 1 duty cycle were 
performed. The catalyst bed was pre-heated at 120 °C for all tests. 
The carbon nanofibers based catalyst showed superior thrust perform-
ances than the reference catalyst (Figure 2). These better perform-
ances can be explained by the large metallic surface exposed on the 
carbon nanofibers based catalyst, despite of the mass introduced in 
the microthruster which is tenth times lower than the quantity used 
with the commercial catalyst. This performance can also be attrib-
uted to the more accessible of the reactant to the active sites owing 
to the open structure of the support, i.e. high external surface area 
and absence of ink-bottled pores. In this type of reaction, where the 
heat and mass transfers must be very fast, the reactant does not have 
time to penetrate into the pores and the main reaction occurs on the 
external surface of the catalyst grains.

3.2. Synthesis of styrene 

The styrene synthesis is one of the ten largest industrial processes 
nowadays16. This monomer is involved in several polymers synthesis, 
and is industrially produced by the direct dehydrogenation of ethyl-
benzene at 600-680 °C over potassium promoted iron oxide catalyst. 
This strongly endothermic process suffers from drawbacks such as: 
thermodynamic limitations, an irreversible catalyst deactivation and a 
relatively low yield (>50%). The carbon nanotubes have been cited as a 
very active and promising alternative catalyst to the industrial catalyst, 
with a higher styrene yield and a lower reaction temperature17,18. 

Delgado et. al.19 had shown that carbon nanofibers based com-
posite is catalytically active in the oxidative dehydrogenation of the 
ethylbenzene under low temperatures. Figure 3 shows the perform-
ances obtained at temperatures ranging from 375 to 530 °C for total 
flows of 30 mL/min and 8 mL/min. Under both conditions, increasing 
the temperature led to a slight decrease in the styrene selectivity. On 
the other hand, the selectivity was not strongly influenced by the 
space velocity, especially at lower temperatures. This implies that 
operating by combining a low temperature (440 °C) and a low space 
velocity results in high styrene yields (38%) with a styrene selectivity 
(81%) that could make such supported carbon nanofibers attractive 
for industrial applications, a low flow favoring reactant adsorption 
and a low temperature minimizing the combustion.

3.3. H
2
S oxidation into elemental sulfur 

Over the last few decades, sulfur recovery from the H
2
S-con-

taining acid gases has become more and more important due to the 
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Figure 1. a) Image of a carbon felt composite with the surface re-covered by 
carbon nanofibers; and b) SEM image of carbon nanofibers with homogeneous 
diameters and detail of its fishbone structure.
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ever increasing standards of efficiency required by environmental 
protection pressures. The general trend is to selectively transform 
H

2
S into elemental sulfur which is a valuable product, by the modi-

fied Claus process. However, due to thermodynamic limitations of 
the Claus equilibrium reaction, typical sulfur recovery efficiencies 
are only 90-96% for a two stage reactor plant and 95-98% for a three 
stage reactor plant20.

For this reason, new processes to deal with the Claus tail-gas were 
developed based on the direct oxidation of H

2
S by oxygen working 

under the sulfur dew point typically between 100 and 120 °C21. 
Ledoux et al.22 had shown the high activity and selectivity of the 

NiS
2
/β-SiC catalyst in the direct oxidation of the H

2
S into elemental 

sulfur at low reaction temperature (60 °C). The total selectivity for 
sulfur was attributed to the absence of micropores in the support. 
The heterogeneous nature of the support surface (hydrophilic and 
hydrophobic areas) could explain the important role played by water 
to maintain a high and stable H

2
S conversion level. The catalyst was 

submitted at frequently regenerations cycles due to the sulfur foul-

ing of the catalyst surface. Later, Nhut et. al.23 had suggested the use 
of nickel sulfide supported on carbon nanotubes based composites 
for the direct oxidation of H

2
S into S at low temperature. The use of 

carbon nanofibers based composites led to a significant increase in 
the overall catalytic performance, both in terms of desulphurization 
activity and resistance to the solid sulfur deposition onto the material 
as compared to the reference catalyst supported on macroscopic SiC 
grains (Figure 4a). The high capacity of solid sulfur storage on the 
carbon nanofibers was attributed to the large void volume outside 
the carbon nanofibers composites and its particular mode of sulfur 
evacuation. This element is continuously removed outside of the 
composite by the formed water due the hydrophobicity of nanofibers 
(Figure 4b), letting the active sites exposed for further time.

3.4. Electrode for fuel cells 

Electrode structure in PEM fuel cells has been improved from a 
two layers to a three layers system constituted by a conductive porous 
support, a diffusion layer and the catalyst itself. The performances of 
the electrodes depend on many parameters: i) type of macroscopic 
carbon support (carbon paper, carbon cloth, etc.) and its characteristics 
(porosity and thickness); ii) type of catalyst (metal, metal amount, 
particles size, type of catalyst support); iii) thermal treatment; iv) 
thickness of diffusion and catalytic layers; and v) fabrication process 
(screen-printing, rolling, brushing, filtering or spraying)24.

The peculiar electronic, adsorption, mechanical and thermal 
properties suggest that CNTs are suitable materials for electrodes and 
catalysts supports in PEM fuel cells25. Recently Gangeri et al.26 evalu-
ated the electrocatalytic performance of platinum supported on carbon 
nanofibers deposited on felt (Pt/CNF/felt) and fabric (Pt/CNF/fabric) 
as alternative electrodes for PEM fuel cells. The author compared the 
performance of these new nanostructured platinum carbon materials 
with those of a commercial Pt-carbon black on carbon cloth electrode 
in a 1 cm2 fuel cell working at room temperature. The analysis of 
polarization curves (Figure 5) indicated that CNF composites are 
better electrocatalysts than commercial ones, showing the lowest 
ohmic losses and mass transport losses, besides the high adsorption 
capacity of hydrogen on carbon nanofibers.

Figure 2. Steady state (pulsed mode) performance variation of a) the carbon 
nanofibers based catalyst (Ir/CNF); and b) the commercial catalyst (Ir/Al

2
O
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Figure 3. Ethylbenzene conversion curve (, ) and selectivity to sty-
rene  (, ) on the carbon nanofibers based composites as a function of 
the reaction temperature in the range 375-530 °C, using total flow rate of 
30 mL/min (, ) and 8 mL/min (, ).
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4. Perspectives

4.1. Ammonia decomposition 

The catalytic decomposition of ammonia appears to be an ap-
pealing process for clean hydrogen production. Recently, Yin et. al.27 
has reported that very small Ru nanoparticles on carbon nanotubes 
have high activity in ammonia catalytic decomposition. The excellent 
performances of Ru/CNT and K-Ru/CNT were related to the high 
dispersion of Ru and to the high graphitization and purity of CNTs. 
The authors have investigated also the influence of the support in 
catalyst activity. Moreover, the order of ammonia conversion was 
ranked as Ru/CNT > Ru/MgO > Ru/TiO

2
 > Ru/Al

2
O

3
 > Ru/ZrO

2
 > 

Ru/AC.
We suggested carbon nanofibers composite as a support for ruthe-

nium metal for the catalytic decomposition of ammonia. The catalytic 
performances are compared with those obtained on the same catalysts 
loaded on carbon nanotubes based support. The Figure 6 shows the 
better performance of the carbon nanofibers based support due to its 
opened structure, reducing thus the diffusion problems.

 4.2. Total combustion of methane

Catalytic combustion of methane has attracted attention in the 
field of emission control. Pd/ZnO

2
 based catalysts are notorious for 

their high activity in methane oxidation28. However, the drawback 
with these catalysts is their instability, resulting in the reduction of 
activity during operation. The decrease of conversion has also been 
attributed to the inhibition from the water generated during the oxi-
dation process. This phenomena is related to the inactive hydroxyls 
groups formed on the catalysts surface, which block the access into the 
PdO sites for methane dissociation29. Therefore, if water inhibition is 
the cause for deactivation, carbon nanofibers based composites could 
be a good solution to improve palladium catalysts water resistance 
due its hidrophobicity properties.

5. Conclusions

In summary, carbon nanofibers composites with macroscopic 
shaping can be efficiently employed as a new class of catalyst support 
which exhibits a high catalytic activity along with peculiar product 
selectivity when compared to those observed on traditional catalysts 
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in several catalytic reactions. The high catalytic performances of 
the carbon nanofibers based catalyst were attributed to i) the high 
external surface area and morphology of the support which allows 
rapid access of the reactants to the active sites and ii) the high ther-
mal conductibility of the support which allows the rapid evacuation 
of the heat formed during the reaction and favors the temperature 
homogenization throughout the catalyst bed. Finally, it should be 
noted that the complete absence of bottled pores allows the rapid 
3D access of the entire volume of the catalyst to the reactants and 
also the rapid evacuation of the products which significantly lowers 
secondary reactions.
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