
*e-mail: meuris@feq.unicamp.br

Characterization of Brazilian Bentonite Organoclays as Sorbents of Petroleum-derived Fuels
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This work focused on preparing and characterizing Brazilian bentonite clay through the use of 
quaternary ammonium salt so as to apply it as a sorbent for petroleum-derived fuels. Bentonite clay 
was organophilizated by the intercalation of quaternary ammonium salts such as cetyl-pyridinium 
chloride and benzalkonium chloride. The resulting materials were characterized by X-ray diffraction, 
scanning electron microscopy, energy dispersive X-ray spectroscopy, N

2
 physisorption and infrared 

spectroscopy techniques. The clay similarity with petroleum-derived fuels, gasoline and diesel oil were 
defined by sorption and swelling tests. The increase in basal spacing and the appearance of absorption 
bands related to the CH

2
 and CH

3
 groups confirm the efficiency of Brazilian organoclays. Removal 

percentages between 50 and 60 for benzene, toluene and xylene indicate the potential of organoclay 
in the remediation of areas contaminated by petroleum-derived fuels.
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1.	 Introduction
The exploration, refining, and transportation of 

petroleum and its derivatives have become largely 
responsible for the pollution of soil and water by organic 
compounds due their increased scale of production and use. 
Gas stations represent a potential source of contamination of 
soils and groundwater due to the products they manipulate 
(gasoline, diesel oil and ethanol) and the manner in which 
these are stored and sold. Although large accidental oil 
spills are troubling, Tiburtius et al. (2005)1 consider small 
and continuous leaks as well as fuel distribution depots as 
the main source of contamination. Fuelling activities and 
vehicle washing cause fuel loss which is carried by rain - 
reaching rivers, groundwater and pluvial sewers - in addition 
to contamination from leaks in old, cracked and corroded 
storage tanks2.

In Brazil, there are no statistics for underground 
fuel tank contamination, although the São Paulo state 
environmental company has estimated that gas stations are 
responsible for 78% of all contaminated areas3.

Petroleum-derived fuels contain highly toxic compounds 
to human health including aromatic fractions (benzene, 
toluene, ethyl benzene and xylene - BTEX). As BTEX 
have the physico-chemical properties that make them 
more soluble in water, major pollution problems have been 
attributed to them4,5. Aromatic hydrocarbons from gasoline, 
for example, have greater mobility in water and water-soil 
systems due to the lower partition coefficient between 
octanol-water6. Several processes are available to treat 
groundwater impacted by petroleum hydrocarbons, such as 
bioremediation, air spray and monitored natural attenuation7. 
These treatment processes are complex and relatively long. 

Therefore, the use of organoclays for sorption of organic 
compounds, either as a reactive barrier or as adsorption 
systems has been found effective for containment of 
leaks from underground fuel storage tanks, preventing or 
controlling environmental pollution8-11. Many studies have 
evaluated the use of organoclays in contaminant remediation. 
Cationic surfactants controlled migration of nonionic organic 
compounds12. Burns et al. (2003)13 investigated the adsorption 
capacity and retention of hydrocarbons of gasoline by 
bentonite clay modified with hexadecyltrimethylammonium 
and triethylbenzylammonium. Although a mixture of 
hydrocarbons can be found at polluted sites, sorption using 
organoclay was evaluated for a single contaminant in most 
studies.

Clay minerals can change their naturally hydrophilic 
character into organophilic, acting as sorbents for organic 
compounds derived from petroleum such as gasoline, diesel 
oil, xylene and toluene14. The organophilization consists 
of quaternary ammonium salt addition with a chain of 
twelve or more carbon atoms to aqueous dispersions at an 
inorganic cation change for alkylammonium cations15. The 
salt molecules reduce the clay superficial tension when it 
disperses into organic medium16. According Kowalska et al. 
(1994)17, clay interactions with organic compounds involve 
the electrostatic charge on the surface of silicate, being 
influenced by molecular weight, chain length and functional 
group of the adsorbed organic molecule.

The bentonite group is largely used in the preparation of 
organoclay, due to small crystal dimensions, high superficial 
area and cation exchange capacity18. Moreover, the clays, 
particularly those from the Northeast of Brazil, occur 
superimposed on other mineral deposits of great commercial 
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interest, such as gypsum. This fact could help reduce the 
extraction costs of that mineral in these deposits.

Thus, this work was aimed at preparing and characterizing 
Brazilian organoclays in order to evaluate their interactions 
with petroleum-derived fuels so as to use them in the 
remediation of contaminated areas. Several characterization 
techniques were employed to identify the changes in clay 
that enable its applicability as a sorbent.

2.	 Material and methods

2.1.	 Clay preparation

Bentonite “Verde-Lodo” clay from Paraíba, located 
in the Northeastern region of Brazil, was used. The cation 
exchange capacity (CEC) is of 87.53 mEq.100 g–1 (estimate 
determined through ammonium cation exchange19). Initially, 
clays were purified through sodium exchange: carbonate 
sodium solution and clay were mixed under heat, being 
stirred until boiling. This first pre-treatment is performed 
with sodium ions, which are easily exchangeable as they are 
a monovalent ion and are usually found in large numbers 
between clay layers. After heating, the dispersion was 
stirred for another 20 minutes for cooling and subsequent 
benzalkonium chloride or cetyl-pyridinium chloride 
surfactant addition at 1:1 ratio of CEC’s clay20. The clay 
samples were identified as VL-natural, VL-benzal (with 
benzalkonium chloride salt) and VL-cetyl (with cetyl-
pyridinium chloride salt).

2.2.	 Clay characterization

The obtained material was characterized through several 
techniques and the organoclay swelling and sorption in 
petroleum-derived fuels were measured. The Bragg angular 
zone was explored by X-ray diffraction (XRD) in Shimadzu 
equipment, XDR 7000, Kα cooper radiation (λ = 1.54 Å), 
monitoring the diffraction 2θ angles, 0.02 degree step size 
from 1.5 to 30°, 1 second signal accumulation time, 40 kV 
voltage and 30 mA current. In order to evaluate the adsorbent 
morphology, a scanning electron microscopy (SEM) 
using LEO equipment, LEO 440i, with 500 × power was 
performed. The energy dispersive X-ray technique (EDX) 
enables qualitative evaluation of chemical compositions. 
The surface area and the volume of pores and micropores 
were obtained through N

2
 physisorption (BET method) at 

77 K, using a special sample tube with bulb. These analyses 
were performed using a Micromeritics® Gemini III 2375 
Surface Area Analyzer device using the BET method. 
Infrared spectra were collected using a Spectrum One - 
FT-IR spectrometer, Perkin Elmer. Spectra were collected 
over the spectral range 4000-400 cm–1. Samples consisted 
of anhydrous KBr pellets mixed with clay.

2.3.	 Petroleum-derived sorption

Organoclay swelling into petroleum-derived fuels 
was measured in gasoline and diesel oil. 1.0  g of clay 
was gradually added to 50 mL of petroleum-derived fuels 
contained into a graduated cylinder, without stirring. After 
24  hours, clay column volume was measured; after the 
stirring dispersion and another 24  hours, swelling was 

measured again. This test was performed in conformity 
with Foster (1953)21, with some adjustments proposed by 
Diaz (1994)15.

The organic liquids sorption capacity was measured 
following a method based on ASTM® 716-82 and ASTM® 
F726-99 standard22,23. At sorption tests, 1.0 g of clay was 
placed into a small metal basket of a certain known weight, 
and subsequently, in contact with the petroleum-derivative 
for 15  minutes, suspended for 15  seconds to remove its 
derivative excess and measured again. The organic sorption 
was obtained through the difference between initial and 
final weight.

In addition to sorption and swelling tests, the removal 
percentage of benzene, toluene and xylene (BTX) in 
gasoline by organoclay was also evaluated. 100 mL of 15% 
volume of gasoline in water was placed in contact with 
1 g of organoclay for 48 hours24 and the initial and final 
concentrations of benzene, toluene and xylene compounds 
were determined by headspace gas chromatography 
(Shimadzu, 2010, detector GCMS-QP plus). BTX removal 
was determined due to the presence of large amounts of these 
compounds in petroleum-derived fuels and high toxicity. 
The tests were kept under constant stirring of 250 rpm, with 
temperature control at 25  °C. To minimize vaporization 
losses, the tops of the tubes were covered with aluminum 
foil before caps were screwed onto them.

3.	 Results and Discussion

3.1.	 Characterization

3.1.1.	 Basal spacing evaluation by X-ray diffraction

The diffractograms obtained from natural and 
organophilic clay were shown in Figure  1. Thus, it is 
possible to observe the presence of montmorillonite and 
quartz, typical of this type of clay in which smectite is 
the predominant clay mineral18. The basal spacing of the 
natural clay changed from 15.2 to 23.9 Å for VL-benzal 
and to 21.6 Å for VL-cetyl. The significant increase in d

001
 

of organoclays shows the effective quaternary ammonium 

Figure 1. Clay diffractograms.
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cation intercalation in the layers. According to the measured 
basal spacing, intercalated alkylammonium cations in VL-
benzal acquire a paraffin-type orientation, while the VL-
cetyl clay was a pseudo-trimolecular layer25.

3.1.2.	 Morphology and qualitative chemical 
composition

The scanning electron microscopy (SEM) results for 
natural and organoclay samples are presented in Figure 2. 
The solid porous nature was verified through various sized 
irregular blades and many similar aspects, even after the 
samples had been treated with quaternary salt.

Bentonite qualitative chemical analysis is shown in 
Figure  3. The significant Si and Al presence could be 
observed in all clays. These are the main components of 
clay minerals18. Mg and Fe were isomorphous substitution 
elements and Na was the exchange cation. C and Cl peaks 
appear in organoclays (Figure 3b,c), coming from intercalated 
quaternary salt. Na peaks disappeared, confirming that most 
Na cations had been replaced by alkylammonium cations, and 
were eliminated during clay filtration and washing.

3.1.3.	 Surface area and pore characteristics

The obtained values for surface area through BET 
method for natural and organoclay samples are found in 
Table 1. Using BET adsorption isotherms, micropore (V

mi
) 

and mesopore (V
mes

) volumes were obtained by reading 
adsorbed volume (V

ads
) at P/P

0
 = 0.10 and 0.95, expressed 

by Equations 1 and 2[26].

V
mi

 = V
ads

 (P/P
0
 = 0.10)	 (1)

V
mes

 = V
ads

 (P/P
0
 = 0.95) – V

ads
 (P/P

0
 = 0.10)	 (2)

The organoclay surface area, as well as micro- 
and mesopore volumes were drastically reduced after 
organophilization. These decreases were attributed to 
the organoclay microstructure, since the quaternary salt 
intercalation caused an interlayer expansion, as seen on 
X-ray diffraction analysis, so that salt ions blocked the 
passage of N

2
 molecules, occupying active clay sites which 

might be available for N
2
[27,28]. Differences among modified 

clay areas are due to organic cations, which had been 
layered, and to their interlayer orientation.

3.1.4.	 Infrared spectroscopy

The FTIR spectra for clays are shown in Figure 4. The 
adsorption bands with the corresponding groups or bonds 
for each spectrum are found in Table 2. The characteristic 
vibration peaks of VL-natural were at 470 and 1120 cm–1 
corresponding to the clay structure and Si-O-Si and Si-O-
Al stretching and bending. The peaks at 1040 cm–1 (Si-O 
stretching) and 523 cm–1 (Si-O bending) were also presented29. 
Sorbed water contributed to H-O-H bending region (1600-
1700 cm–1) and to O-H asymmetric and symmetric stretching 
region (3100-3700 cm–1)[30]. These bands were presented in all 
studied clays, as shown in Table 2. The intensity of these bands 
was reduced with organophilization, because the quaternary 
salt intercalation, which modified the montmorillonite surface, 
was modified from hydrophilic to hydrophobic31.

Figure 2. a) VL-natural; b) VL-benzal; and c) VL-cetyl micrographics clay 500 × amplified.

Table 1. Specific superficial area and volume of pores of clays by 
BET method.

Samples Superficial Area 
(m2.g–1)

R2 Vmi 
(cm3.g–1)

Vmes 
(cm3.g–1)

VL-natural
VL-benzal

65.414
5.659

0.999
0.999

17.024
1.128

16.711
2.514

VL-cetyl 0.123 0.998 0.029 0.027

Table 2. Bonds identified on the FTIR spectrum.

Groups (bond) Wavenumber (cm–1)

VL-natural VL-benzal VL-cetyl

O-H asymmetric stretching 3625 3623 3627

O-H symmetric stretching 3427 3435 3427

C-H asymmetric stretching - 2925 2920

C-H symmetric stretching - 2853 2852

H-O-H bending 1643 1643 1636

CH
2 
scissoring - 1469 1470

N-CH
3 
scissoring - 1483 1487

Si-O stretching 1030 1032 1032

Octahedral sheet  915  915  915

Octahedral sheet  792  783  775

Si-O-Al bending  695  703  685

Si-O bending  532  527  531

Si-O-Si bending  470  470  471
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The organoclays presented new characteristic vibrations 
at 2917 and 2850  cm–1, corresponding to asymmetric 
and symmetric CH

2
 stretching modes, and at 1400  cm–1, 

corresponding to CH
2
 scissoring32. Several studies32-34 have 

related frequency and width of asymmetric CH
2
 stretching 

and sensitive to gauche/trans conformer and methylene 
packing density. Highly ordered characteristic alkylammonium 
cations (trans conformations) corresponded to C-H stretching 
shift band location in lower frequencies, low wave number 
and usually high salt concentrations, whereas low salt 
concentrations, band location in high frequencies and high 
wave number corresponded to gauche conformations (chain 
disorder). Table 2 presents C-H stretching band position, 
where we can observe changes for higher wave number with 
maximum variations of 8 cm–1 at the asymmetric stretching 
and 3 cm–1 at the symmetric stretching for VL-benzal clay. 
The increase in the stretching frequency has indicated gauche 
chain conformation. This has occurred in both modified 
clays. The smallest variation in clay symmetric wave number 
stretching showed this largest band sensibility; similar behavior 
was observed by He  et  al. (2004)35. The CH

2 
scissoring, 

corresponding to 1470 cm–1, was also chain disorder indicative.
He  et  al. (2004)35, Xue  et  al. (2007)31 and Li  et  al. 

(2008)36 had obtained spectra for organoclays with different 
salt amounts, observing intensity and band position with 
the cation exchange capacity. CH

2
 and CH

3
 best vibration 

definition increased with CEC, especially for salt amounts 
corresponding to twice the amount of clay CEC. The relation 
1:1 CEC used in salt amounts for the clays produced in 
this work, allowed the identification of a 1487 cm–1 band 
in Table 2, corresponding to N-CH

3
 scissoring, a group of 

alkylammonium chain extremity37.

3.2.	 Petroleum-derived sorption

Swelling was not present before the clays were 
mixed, in contact with petroleum-derived hydrocarbons. 
This indicates that the stirring is an important factor for 
compound sorption. VL-natural did not present an expansion 
for any petroleum derivative, due to the fact that it does not 

Figure 4. Infrared curves of a) VL-natural; b) VL-benzal; and 
c) VL-cetyl clays.

Figure 3. Chemical composition by energy dispersive X-ray 
spectroscopy of a) VL-natural; b) VL-benzal; and c) VL-cetyl.
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present natural affinity with organic compounds. VL-cetyl 
clay presented intermediate value (from 6 to 8 mL.g–1)15 
for swelling in gasoline and VL-benzal clay presented 
intermediate value for swelling in diesel oil after 48 hours 
and after mixing (Figure  5). This analysis characterized 
organoclays hydrophobicity/organophilicity and the natural 
clay hydrophilicity/organophobicity.

Gomes (1988)38 considers sorption or interaction 
as dependent on the structure and property of the 
pollutant, besides the characteristics of clay minerals and 
exchange cations. While working with clays from Paraiba, 
Pereira  et  al. (2005)39 also obtained intermediate values 
in gasoline expansion, whereas Vianna (2005)40 attained 
improved expansion levels reaching high levels for some 
of the treatments and quaternary ammonium salts used in 
the preparation of his clays.

Figure 6 shows sorption test results. VL-cetyl showed 
the largest sorption capacity for gasoline. The sorption value 
was 3.7 times higher when compared to the VL-natural 
sorption value for gasoline. The affinity order for VL-natural 
and VL-cetyl clays was: gasoline > diesel oil, while for 
VL‑benzal clay is reversed (diesel oil > gasoline).

Removal percentage of  benzene, toluene and xylene 
through VL-cetyl was performed, as optimal affinity 
was assessed at swelling and sorption experiments. The 
best results of VL-cetyl may be related to linear chain 
of cetyl-pyridinium chloride salt in comparison with the 
benzalkonium chloride, as assumed by Jaynes and Vance 
(1996)41.

Table  3 shows removal percentage of compounds 
by VL-cetyl. The values, considered to be high, indicate 
the affinity of organophilic clay with the compounds. As 
gasoline contains approximately 200 different hydrocarbons, 
aside from additives4, and clay interacts with many of these 
compounds, only BTX have been measured in the present 
work, with a view to represent the existing affinity between 
organic compounds and clay. Gasoline sorption test with metal 
basket resulted in 5.5 g gasoline/g VL-cetyl, after 48 hours.

Removal percentages correspond to a total of 
0.687  mg  BTX/g organoclay. This value is close to the 
capacities obtained by Carvalho et al. (2011)42 in the removal 

of m- and p-xylene separately using clays modified with 
cetyltrimethylammonium chloride, 0.758 mg de m-xylene/g 
organoclay and 0.765 p-xylene/g organoclay.

The relatively high affinity between BTX and organoclay 
is probably the result of BTX molecules interacting favorably 
with the pyridinium ring through π–π interactions43. 

 The removal percentage test shows good results and 
the potential use of Brazilian organoclays for sorption 
of petroleum-derived fuels. The obtained values do 
not correspond to the maximum sorption capacity of 
organophilic clays - which should be based on sorption 
isotherms - although they confirm affinity.

4.	 Conclusions
The results have confirmed the synthesis effectiveness 

of “Verde-Lodo” organoclay, verified through basal spacing 
increase, CH

2
 and CH

3
 group bands at infrared spectroscopy 

and carbon and chlorine peaks in the energy dispersive X-ray 
spectroscopy. The organophilization altered the natural 
hydrophilic character to hydrophobic and organophilic. 
Modifications occurred in clays due to inorganic cations 
changes into organic cations, which caused interlayer 
space features to enable the organic compound interaction, 
whose likeness for the clays was confirmed at swelling 
and sorption tests. The removal percentages of BTX show 
that the organoclays presented potential for environmental 
remediation, such as petroleum-derived fuels sorption in the 
form of barrier systems or adsorption systems.
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Figure 6. Sorption test.

Table 3. Removal percentage of BTX by VL-cetyl.

Compounds % removal mg.g–1 adsorbed

Benzene
Toluene

60.28 ± 0.32
60.12 ± 0.11

0.216
0.346

Xylene 50.38 ± 0.74 0.125
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