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1. Introduction
Barium titanate (BaTiO3) is a traditional piezoelectric 

material that has been proposed for use in the microelectronics 
industry after studies revealed that its properties can be 
changed by controlling grain size1,2 and by doping with rare 
earth ions3. EMR spectroscopy is a convenient method for 
studying these impurities within the BaTiO3 structure. In 
this work, we study the effect of gadolinium concentration 
on the EMR spectrum of Gd3+ in polycrystalline BaTiO3.
The importance of this investigation is twofold. First, once 
the effects of gadolinium concentration on the spectrum 
are known, it becomes possible to use EMR results to 
study, rapidly and non-destructively, the crystallinity and 
degradation of BaTiO3. Second, knowledge of the range 
of the exchange interaction between Gd3+ ions is essential 
for a better understanding of the magnetic properties of 
gadolinium-doped barium titanate.

1.1. Crystal structure of strontium titanate
At room temperature, barium titanate (BaTiO3) crystallizes 

in the perovskite structure4 conforming to the space group 
P4mm(99). There are two distinct cation sites, one with 
twelve nearest neighbor oxygen ions, occupied by Ba atoms, 
and one with six nearest neighbor oxygen atoms, occupied 
by Ti atoms.

1.2. EMR of barium doped barium titanate
Analysis of the EMR spectrum of single-crystal gadolinium 

doped barium titanate5 shows that trivalent gadolinium ions 
substitutionally replace strontium ions in the lattice. The 
spectrum can be fitted to the Hamiltonian

2,0 2,0 4,0 4,0H.S= + +H g b Y b Yβ 	 (1)

with g  = 1.995,  b 2,0 = −293,6 × 10−4cm−1 and 
b4,0 = 4.0 × 10−4 cm–1.

1.3. EMR of dilute solid solutions
The theory of dipolar broadening in diluted solid solutions 

was developed in Kittel & Abrahams6 and extended in de Biasi 
& Fernandes7 to take exchange interactions into account. The 
main results of the theory can be summarized as follows:

(I)	 the lineshape is a truncated Lorentzian;
(II)	the peak-to-peak first derivative linewidth may be 

expressed as

ΔHPP = ΔH0 + ΔHd = ΔH0 + C1 fe 	 (2)

where ΔH0 is the intrinsic linewidth, ΔHD is the dipolar 
broadening, C1 is a constant and fE is the concentration 
of substitutional ions of the paramagnetic impurity 
not coupled by the exchange interaction, which can 
be expressed as

c( )
e (1 )= − z rf f f 	 (3)

where f is the impurity concentration, z(rC) the number 
of cation sites included in a sphere of radius rC, and 
rC the effective range of the exchange interaction.

(III)	the intensity of the absorption line is

I = C2 fe 	 (4)

where C2 is a constant.
The analysis above is based on the assumption of two 

ion populations, one with no exchange, which is responsible 
for the normal paramagnetic line, and another which, 
due to exchange, is either EPR silent (if the coupling is 
antiferromagnetic) or gives rise to a much broader line (if the 
coupling is ferromagnetic).
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2. Experimental Procedure and Results
2.1. Sample preparation

The gadolinium doped samples used in this study were 
prepared from high purity BaTiO3(Aldrich, 99,9%) and 
Gd2O3(Reacton, 99.99%) powders by grinding them together 
and then firing the mixture for 24 h at 1200 °C in air. The 
gadolinium concentrations and reagent masses are shown 
in Table 1. Actual Gd concentrations were determined using 
the Inductively Coupled Plasma (ICP) technique. Room 
temperature X-ray diffraction patterns (Figure  1) of the 
samples matched, within experimental error, the pattern8 of 
BaTiO3. No other phases were detected.

2.2. Magnetic resonance measurements
All magnetic resonance measurements were performed at 

room temperature and 9.50 GHz using a Varian E-12 spectrometer 
with 100 kHz field modulation. The microwave power was 
10mW and the modulation amplitude was 1 mT. The magnetic 
field was calibrated with an NMR gaussmeter.

The spectrum of a sample of BaTiO3 doped with 
0.6 mol% Gd is shown in Figure 2. It closely matches the 
spectrum reported by Takeda & Watanabe9 for powdered 
Gd‑doped BaTiO3. In principle, linewidth data can be 
extracted from any of the lines in the powder spectrum. We 
chose the line indicated by an arrow in Figure 2. The results 
are shown in Table 2 for several gadolinium concentrations.

3. Discussion
The theoretical concentration dependence of the 

peak‑to‑peak linewidth ΔHpp, given by Equation 2, is shown 
in Figure 3 for ΔH0 = 3.3 mT and eight different ranges of 
the exchange interaction. The values of rC and z(rC) for the 
first eight coordinate spheres are listed in Table 3, where 
n is the number of the order of each coordinate sphere 
(n = 1 includes no neighboring sites, and so on). The values 
of z(rC) are those appropriate to the lattice of BaTiO3; the 
values of rC were calculated from the lattice constants at room 
temperature as measured by X-ray diffraction8, a = 0.3990 nm, 
c = 0.4035 nm. The experimental data are also shown in 

Table 1. Gadolinium concentrations and reagent masses for the 
samples used in this work.

f(mol%) 2 3Gd O (g)m
3BaTiO (g)m

0.20 0.0031 1.9969
0.40 0.0062 1.9938
0.60 0.0093 1.9907
0.80 0.0125 1.9875
1.00 0.0156 1.9844
1.50 0.0234 1.9766
2.00 0.0312 1.9688

Figure 1. X-ray diffraction pattern of a BaTiO3 sample doped with 
0.2 mol% Gd. The indices were taken from JCPDS no. 81-2203.

Table 2. Experimental results for the Gd3+-BaTiO3 system 
(T = 300 K, ν = 9.50 GHz).

f (mol%) ΔHpp (mT)
0.20 4.52
0.40 5.58
0.60 6.08
0.80 6.49
1.00 6.54
1.50 6.80
2.00 6.15

Figure 2. EMR spectrum of a BaTiO3 sample doped with 0.6 mol% Gd.

Figure 3. Concentration dependence of the peak-to-peak linewidth, 
ΔHpp, in Gd-doped BaTiO3. The circles are experimental points; the 
curves represent results of calculations for eight different ranges of 
the exchange interaction.
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concentration, expressed by the parameter C1, from 4.5 for 
MgO to 750 for BaTiO3. In order to investigate the question 
further, we plot in Figure 4 the coefficient C1 of Equation 
2 as a function of the difference Δr = rGd−rh, where rGd the 
ionic radius of Gd3+ and rh is the ionic radius of the host 
lattice cation (the ionic radii were taken from Shannon15) 
for the Gd-doped compounds shown in Table 4. The results 
suggest that C1 changes, in a systematic way, with the ionic 
radius misfit Δr.

4. Conclusions
The study of the EMR spectrum of Gd3+ in BaTiO3 shows 

that the peak-to-peak linewidth increases with Gd concentration. 
This increase is attributed to dipolar broadening and is 
consistent with a model based on the exchange interaction 
and on the misfit between the ionic radii of the doping 
impurity and the host cation.

The fact that the linewidth increases in a predictable 
way with Gd concentration suggests that gadolinium can 
be used as a probe to study the crystallinity and degradation 
of barium titanate.
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Figure 4. Dependence of the coefficient C1 on the ionic radius misfit 
Δr = rGd – rh. Gd:ZrSiO4 data are from de Biasi & Grillo10; Gd:SrTiO3 
data are from de Biasi & Grillo11; Gd:SrO data are from de Biasi 
& Grillo12; :CaO data are from de Biasi & Grillo13; Gd:MgO data 
are from de Biasi & Grillo14.

Table 3. Values of rc and z(rc) for BaTiO3.

n rc (nm) z(rc)
1 0.00 0
2 0.40 6
3 0.56 18
4 0.69 26
5 0.80 32
6 0.89 56
7 0.98 80
8 1.13 92

Table 4. Values of n, rC, z(rC), a, C1 and Δr for the Gd3+ ion in 
several host lattices.

Host n rc 
(nm)

z(rc) a 
(nm)

C1 Δr 
(pm)

Reference

ZrSiO4 15 1.17 122 0.655 150 21.8 10
BaTiO3 7 0.98 80 0.399 750 −67.2 this work
SrTiO3 7 0.96 80 0.390 600 −50.2 11

SrO 7 0.89 86 0.516 280 −24.2 12
CaO 6 0.83 86 0.481 165 −6.2 13
MgO 5 0.60 54 0.421 4.5 21.8 14
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