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1. Introduction
Personal protection against high velocity (>700 m/s) 

ammunition, such as the 7.62 × 51 mm caliber bullet, requires 
a light shielding based on multilayered armor system (MAS) 
with high impact absorption and resistance to projectile 
penetration1. MAS are usually composed of a harder front 
ceramic tile with the ability to deform and erode/fracture 
the projectile2-5. Owing to this ceramic frontal layer, a great 
deal of the projectile energy is dissipated by means of its 
fragmentation involving mechanisms of nucleation, growth, 
coalescence and propagation of micro cracks6. A second MAS 
layer backing the ceramic is selected as a lighter composite 
material, which reduces the impact energy by absorbing part 
of the blast of fragments from either projectile or ceramic7. 
For this second layer, glass fiber composites have originally 
been investigated8. Aramid fabric such as Kevlar™ and 
Twaron™[9] as well as ultra high molecular polyethylene 
(UHMPE) fiber such as Spectra™ and Dyneema™[10,11] 
are today preferred for the lightweight body armor second 
layer MAS composites. A MAS system may also include a 
third metallic layer acting as a final barrier, which restricts 
the penetration of the projectile or its fragments beyond the 
maximum standard indentation or intrusion depth of 44 mm, 
which causes serious injure to a personal body. In some 
cases, a spall shield is attached on the front of the armor to 
avoid flight way ceramic fragments4,5.

As the lighter component of a body armor vest, the 
intermediate composite layer, usually aramid or UHMPE, 
is not only intended to provide comfort and mobility to the 
wearer but also to improve the absorption efficiency of the 
projectile impact. Lower shock impedance composite like 
the Kevlar™ standing behind the front interface will cause 

the proceeding compressive wave to be comparatively lower 
in transmitted energy. Since the shock impedance is directly 
related to the material’s density, a greater ballistic impact 
energy reduction should be provided by a comparatively lighter 
composite backing the ceramic tile12-15. The replacement of the 
aramid fabric by a lower density fiber reinforced composite 
would be an alternative to improve the impact absorption. 
A possible candidate might be a lighter polymer composite 
reinforced with natural fibers obtained from plants, also 
known as lignocellulosic fibers. In addition to a lower density 
than aramid fabric, these natural fiber composites are less 
expensive and regarded as environmentally friendly. Indeed, 
lignocellulosic fibers are renewable, degradable, recyclable and 
considered “neutral” with respect CO2 emissions, responsible 
for the global warming. With about 55% carbon, they emit a 
similar amount of CO2 after degradation as absorbed during 
cultivation. Furthermore, they are not as energy intensive 
as synthetic fibers such as glass, carbon and aramid fibers 
during processing16. In the past decades, a great number of 
works has been dedicated to polymer composites reinforced 
with lignocellulosic fibers. Several papers reviewed these 
composites17-29 that are being applied in industrial sectors, 
particularly the automotive industry30,31.

Among the most engineering applied plants, the well 
known bamboo, with rigid culms, has potential to be 
used as ballistic resistant material. As any plant, bamboo 
is basically formed by cellulose microfibrils embedded 
in hemicellulose and lignin16-29. The bamboo culm has a 
unique microstructure composed of stiff sclerenchyma 
cells, extending lengthwise as cellulose microfibrils around 
vessels used to transport water and nutrients. Less dense 
parenchyma cells surround each bundle of microfibrils and 
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vessels, as a soft foam-like matrix32. Owing to its relatively 
low density, 1.03 – 1.21 g/cm3, and convenient tensile strength, 
106-204 MPa[12] the bamboo culm and extracted fiber have 
been, since long time , used in engineering applications. As an 
abundant natural resource in tropical and temperate regions, 
especially Asia and Latin America, bamboo is substituting 
plastics in civil construction, furniture and lightweight parts 
of vehicles33,34. However, the cylindrical shaped culm limits 
some direct uses of the bamboo and motivated investigations 
on bamboo fiber as reinforcement of polymer composites33-44. 
Actually, a bamboo fiber corresponds to many microfibrils 
(sclerenchyma cells) and vessels, known as vascular bundle, 
which may be extracted from the parenchyma cell matrix by 
longitudinal slicing procedure45. A stronger specie of giant 
bamboo (Dendrocalamus giganteous Munro) has recently 
attracted attention for its relevant properties46-48, including 
the impact resistance49.

A systematic investigation on the ballistic properties of 
natural fiber reinforced polymer composites has already been 
conducted by Wambua et al.50. Relevant information on the 
ballistic impact velocity and energy related to natural fiber 
composites was presented by the authors but it was not their 
scope to assess the performance of natural fiber composites 
as armor for personal protection.

In the present work, the ballistic performance of multilayered 
armors composed of a front ceramic, an intermediate 
composite and aluminum layers was investigated in terms 
of the intrusions caused by the projectile into a clay witness 
simulating a personal body. Ballistic tests were conducted 
in MAS’s with a front Al2O3 ceramic tile. As the following 
intermediate layer, lighter giant bamboo fiber reinforced 
epoxy composite plates were compared to plain epoxy plates 
and aramid fiber plies, all with the same thickness.

2. Material and Methods
The multilayered armor system (MAS) arrangement used 

in this investigation was the following: the front layer was 
a 15 mm thick hexagonal tile with 31mm of side dimension 
made of 4 wt% Nb2O5 doped Al2O3 brittle ceramic. The ceramic 
tile was fabricated by sintering Al2O3 powder supplied by 

Treibacher Schleifmittel as commercial purity mixed with 
Nb2O5 powder supplied by CBMM as 99% pro‑analysis. 
Sintering was conducted at 1,400 °C for 3 hour under air in the 
Ceramic Laboratory of the Military Institute of Engineering 
(IME), city of Rio de Janeiro, Brazil.

The intermediate layer, with 10 mm in thickness and 
square sides with 150 mm, was either: (i) 16 plies of aramid 
fabric, or (ii) a plate of 30 vol % of continuous and aligned 
giant bamboo fibers reinforced epoxy matrix composite 
(giant bamboo composite for short), or (iii) a plate of plain 
epoxy. The aramid fabric plies were supplied by the LFJ 
Blindagem Com. Serv. S.A., as compressed pieces with 
very little, less than 1%, epoxy adhesive, as indicated by 
the supplier. Giant bamboo culms were kindly donated by 
Prof. Khosrow Ghavami from the plantation existing at the 
Catholic University of Rio de Janeiro (PUC-Rio). At IME, 
giant bamboo fibers were smoothly sliced from the culm, 
starting with a razor and following the continuous tendency 
to longitudinally separate neighbors vascular bundles. 
These fibers were obtained with a length corresponding 
to the extension of the culm, around 15 cm, but with their 
naturally different diameters. The diameters, average of width 
and thickness, measured by profile projector, were found 
to vary from 100 to 700 μm with an average of 400 μm46. 
Figure 1  illustrates: (a) the microstructure of typical thin 
bamboo fiber with microfibrils and few residual parenchyma 
cells and (b) the fracture tip of a thicker fiber displaying 
vascular bundle. No chemical treatment was applied to the 
individual fibers. Bamboo fibers were dried at 60° C in a 
laboratory stove for 2 hours and aligned with the correct 
amount of 30 vol% inside a steel mold. An initially fluid 
diglycidyl ether of the bisphenol-A (DGEBA) epoxy resin, 
mixed with a phr 13 stoichiometric fraction of trietylene 
tetramine (TETA) as hardener, was poured onto the mold. 
A pressure of 5 MPa was applied and the composite plate 
cured for 24 hours.

Figure 2 shows: (a) the epoxy composite production 
scheme with 5 layers of aligned fibers and (b) a finished 
composite plate. In a similar procedure, plain DGEBA/TETA 
epoxy plates were also fabricated. The back end-layer was 
a 150 mm × 150 mm 5052 H34 aluminum alloy (Al) sheet 

Figure 1. The giant bamboo: (a) SEM of a thin bamboo fiber and (b) fracture tip of a thicker bamboo fiber. Source: authors.
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with 5 mm in thickness. These layers were bonded together 
with commercial Sikaflex™ glue from Sika Co.

In direct contact with the Al sheet back end-layer, a 
block of clay witness simulated a personal body protected by 
the MAS. The clay witness was warmed to 40°C according 
to specifications and compressed to avoid air bubbles. 
The clay was commercially supplied by Americanas Express. 
The depth of intrusion in the clay duplicates the plastic 
deformation imposed by the fragments, generated from the 
projectile impact, on the Al sheet. The corresponding depth, 
Figure 3, was measured with a special Mitutoyo caliper with 
an accuracy of 0.01 mm. A minimum of 10 measurements 

was performed for each depth of intrusion and the values 
were analyzed by means of the Weibull statistic method. 
This provided confidence indexes R2 greater than 0.9. 
The microstructure of giant bamboo fibers and fracture 
details of the composites and aramid fabric after ballistic 
tests were observed by scanning electron microscopy (SEM) 
in a 6460 LV JEOL and a Quanta FEG 250 FEI microscopes.

Figure 4 illustrates the actual front view of a clamped 
MAS ready to be ballistic tested. Ballistic tests were carried 
out at the Brazilian Army shooting range facility, CAEX, 
in the Marambaia peninsula, Rio de Janeiro. All tests, 
10 for each type of MAS, were performed according to the 
NIJ 0101.03 and NIJ 0101.04 standards using 7.62 × 51 mm 
NATO military ammunition, with 9.7 g copper projectile 
shot from a gun barrel.

3. Results and Discussion
Table 1 presents the average depth of intrusions measured 

in the clay witness for the different MAS target investigated. 
In this table, some points are worth discussing. The three 
materials tested as the intermediate layer that follows the 
front ceramic layer showed corresponding depth below the 
NIJ standard 0101.06 limit of 44 mm for serious blunt trauma. 
Indeed, all ballistic tests conducted in the MAS’s failed to 

Figure 2. Giant bamboo fiber composite: (a) schematic production 
and (b) epoxy composite plate. Source: authors.

Figure 3. Measurement of the depth in the clay witness caused by 
the projectile impact. Source: authors.

Figure 4. Actual view of a clamped MAS with giant bamboo 
composite plate ready to be ballistic tested. Laser beam focusing in 
the center of the ceramic plate as sight. Source: authors.

Table 1. Average depth of intrusion in the clay witness backing 
different multilayered armors.

Intermediate Material Layer Indentation (mm)
Aramid fabric plies 22.67 ± 2.79
Epoxy composite  
reinforced with

30% giant bamboo fiber

17.58 ± 1.88

Plain epoxy plate 19.84 ± 1.09
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perforate the target. Consequently, the projectile was always 
stopped and its kinetic energy was dissipated inside the 
multilayered armor in association with the depth in the clay 
witness, as shown in Figure 3. In Table 1, the aramid fabric 
with 22.67 mm displays the greatest depth in comparison 
to both the giant bamboo composite with 17.58 mm and the 
plain epoxy with 19.84 mm.

Within the interval of Weibull precision, the bamboo 
fiber composite has a statistically smaller depth than the 
aramid fabric but similar to the plain epoxy. The reason 
for this behavior can be attributed to a recently proposed 
mechanism of ballistic fragments captured by the aramid 
fabric layer51. The giant bamboo composite depth corresponds 
to a 22% better ballistic performance, as compared to the 
aramid fiber. This is a surprising result since the aramid 
(~4,000 MPa) is much stronger than the epoxy (~90 MPa) 
and the giant bamboo fiber (~200 MPa) . However, the 
capture of fragments and the impact energy absorption by 
the giant bamboo fiber reinforced composite, Figure 2b, are 
apparently more effective mechanism than the corresponding 
in the aramid fabric51. Indeed, Figure  5 shows that the 

composite (a) displays more fragments and decohesion than 
the aramid fiber (b). Furthermore, the giant bamboo composite 
is significantly lighter and less expensive than the aramid 
fabric. These might be considered as practical advantages in 
favor of giant bamboo composites over aramid fabric plies.

For quantitative discussion, Table 2 presents the parameters 
that allow a calculation of the weight and cost of each 
different MAS investigated. Values for the parameters used 
in this table were given by the suppliers or obtained from the 
literature52. Although the actual Al2O3 ceramic used in the 
armor was a smaller hexagonal tile, for practical condition, 
its calculated face area was considered covering the whole 
15 cm × 15 cm of the target. In Table 2, it should be noticed 
that the MAS with giant bamboo composite represents more 
than 4% of decrease in total weight of the armor. In addition, 
it also corresponds to more than 31% of decrease in total cost. 
In a real situation, the approximately 22% superior ballistic 
performance of the giant bamboo composite, Table 1, which 
is within the NIJ limits, together with 5%  lightness and 
31% economical advantages, Table 2, favor its substitution 
for the aramid fiber in a MAS for personal protection. 

Figure 5. SEM of ballistic fracture of (a) giant bamboo fiber reinforced epoxy composite and (b) aramid fabric in a MAS. Source: authors.

Table 2. Evaluation f weight and cost of the different multilayered armors.

Armor 
component

Volume  
(cm3)

Density
(g/cm3)

Weight
(kgf)

Price per kg
(US dollars)

Component cost
(US dollars)

Al2O3 ceramic 
tile

337.5 3.72 1.256 33.00 41.43

Aramid fabric 
plies

225 1.44 0.324 63.60 20.61

Giant bamboo
composite plate

225 1.09 0.245
Epoxy 2.80

(70%)

Fiber 0.74
(30%)

0.53

6061 aluminum 
sheet

112.5 2.70 0.304 8.50 2.58

Total weight with aramid fabric (kgf) 1.884 Total cost with aramid fabric 64.62
Total weight with giant bamboo fiber 

composite (kgf)
1.805 Total cost with giant bamboo fiber 

composite
44.51

% of decrease 4.20 % of decrease 31.1
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These comments are restricted to the 7.62 × 51 mm NATO 
ammunition used in the present ballistic tests.

4. Conclusions

•	 An epoxy matrix composite reinforced with giant 
bamboo fiber in substitution for conventional aramid 
fabric plies, with same total thickness, in a multilayered 
armor for personal protections attended the NIJ 
trauma limit after ballistic tests with high velocity 
7.62 × 51 mm ammunition.

•	 The ballistic performance of the giant bamboo composite 
is 22% superior (lower depth of intrusion in clay 

witness) than the aramid fabric with the additional 
advantages of being 4% lighter and 31% cheaper.

•	 In principle, both technical and economical reasons 
support the replacement of aramid fabric, as second 
layer backing the front ceramic in a mass, by giant 
bamboo reinforced epoxy composite , in which the 
natural fiber is also environmentally friendly.
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