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1. Introduction
Nano-structured metal oxide semiconductors are gaining 

attention due to their wide band-gap and related properties. 
Among the semiconducting materials, zinc oxide (ZnO) is a 
promising candidate due to its excellent physical and chemical 
properties for a wide range of applications such as varistors, 
luminescence, electrostatic dissipative coatings, transparent UV 
protection films, chemical sensors, etc. 1-5. ZnO nanoparticles 
in both powder and film form can be synthesized using various 
methods such as chemical vapor deposition, chemical spray 
pyrolysis , sol-gel technique , and hydrothermal treatment 
6-10. ZnO is doped with different types of metallic ions in 
order to enhance the optical and conducting properties 11. 
In the recent times, transition metal-doped ZnO (e.g., La, 
Zr,…) has been broadly researched and concentrated on 
luminescence properties, magnetic, optical and photocatalytic 
activity, sensor and memory applications 12-20. It is evident 
that the materials in a nanometer scale have a large surface 
area and surface energy of the system. Therefore, a simple 
relaxation (expansion or contraction) of the crystalline lattice 
may lead to stabilization of metastable nanostructure. The 
change in lattice parameter of metal‑doped ZnO powders 
is dependent upon the ionic radius of doping ion, which 
can substitute the Zn ion in the lattice 21. The ionic radius 
of the dopant ion is important factor, which can strongly 
influence the ability of the dopant to enter into oxides 

crystal lattice. If the ionic radius of the doping metal ions 
matches those of the lattice metal ion in oxides, the doping 
metal ion will substitute itself for the lattice in the doping 
reactive process (substitutional mode). Whereas, the ions 
with the radius which are much bigger or smaller than that 
of metal ion in oxides cause crystal lattice distortion 22,23. 
In the doping reactive process it can either isomorphously 
substituted or interstitially introduced into the matrix of 
ZnO to produce oxygen vacancies which accelerate the 
nanocrystallite growth of wurtzite ZnO 24. In addition, 
La–Zr co-doped ZnO did not give any peak corresponding 
to ZrO2 or La2O3, possibly demonstrating that La3+ and 
Zr4+ were dispersed uniformly onto ZnO nanoparticles as 
the form of small cluster La2O3 or ZrO2. This is due to the 
formation of nanosize particles in the range undetectable by 
XRD. X-ray profile analysis is a simple and powerful tool 
to estimate the crystallite size and lattice strain 25 . There are 
many analytical techniques to evaluate the microstructure 
properties of materials 26-29. To our knowledge, from the 
point of view of the microstructural properties, comparing 
many reported nanostructures synthesised, little work has 
been carried out to evaluate the microstructure properties of 
La–Zr doped ZnO nanopowders. This study highlights the 
microstructure analysis of La–Zr doped ZnO nanoparticles. 
The present work highlights the structure and morphology of 
pure and co-doped ZnO nanoparticles by X-ray diffraction 
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analysis (XRD) and transmission electron microscopy 
(TEM). From the modified Williamson- Hall procedure and 
the size-strain plot (SSP) method, we give more information 
on strain-stress and the energy density of pure and doped 
ZnO nanoparticles. A comparative evaluation of the mean 
particle size of pure and doped ZnO nanoparticles obtained 
from direct TEM measurements and from powder X-ray 
diffraction (XRD) peak broadening is also investigated.

2. Experimental Details
La–Zr co-doped ZnO nanoparticles were synthesized 

by a simple sol-gel route which its details reported 
elsewhere 30. We will discuss in the following the results 
of the structure analysis and the chemical composition 
measurements. The bulk sensitive X-ray diffraction (XRD) 
patterns were taken with Philips X’Pert diffractometer at room 
temperature using monochromatic Cu Kα (hν = 8042.55 eV) 
excitation. Measurements were taken under beam acceleration 
conditions of 40 kV/35 mA. The surface sensitive transmission 
electron spectroscopy (TEM) measurements were obtained 
on a Philips, CM10 instrument with an accelerating voltage 
of 100 kV.

3. Results and Discussion
3.1. Methods of X-ray profile analysis

X-ray diffraction line profile analysis is one of the 
earliest methods which is conventionally used to study the 
physical and microstructural parameters of polycrystalline 
materials. Many new methods have been proposed to 
extract microstructural information from the XRD line 
profile. Fig.  1(a,  b,  c,  d) shows the x-ray diffractogram 
of the Zn  (1-x)LaxZrxO nanoparticles; x=0,0.02,0.04,0.06. 
A preferable growth along the {101}, {002}, {100}, {102}, 
{110} and {103} directions could be indexed as hexagonal 
wurtzite phase of ZnO as according to the JPCDS card 
number: 36-1451 31. The calculated lattice parameters of 
the La-Zr co-doped ZnO nanoparticles are a=b=3.2264 A0, 
c=5.1739 A0 are closely well agreement with the reported 
values (JCPDS Card No. 01-089-0510). In addition, La–Zr 

co‑doped ZnO did not give any peak corresponding to ZrO2 
or La2O3, possibly demonstrating that La3+ and Zr4+ were 
dispersed uniformly onto ZnO nanoparticles. As it’s evident 
from the table 1, the crystallite size of ZnO nanoparticles 
increasees with increasing La-Zr ratio. The right graph in 
the Fig. 1 shows a negligible shift in (110) Brag reflection 
for the samples with a different amount of La-Zr compared 
to the ZnO nanoparticles. This shift could be attributed to 
the strain in the lattice of compounds. Also, it is expected 
the replacement of some Zn2+ ions with the Zr4+ in each 
compound due to their different ionic radius. In order to 
find the effect of strain on the peak broadening, we use a 
modified equation and adopted the following techniques of 
line profile analysis to obtain microstructural information 
from the symmetrically broadened diffraction profiles.

3.1.1. Williamson-Hall Technique
In almost all cases X-ray diffraction profiles are influenced 

not only by crystallite size but also possibly by lattice strain 
and lattice defects. Williamson and Hall proposed a method 
for deconvoluting size and strain broadening by looking at 
the peak width as a function of 2θ. However it makes some 
very large assumptions along the way 32-34. According to the 
Williamson–Hall (W-H) method the individual contribution to 
the line broadening of a Bragg reflection can be expressed as 35

hkl D εb b b= +  	 (1)

( ) / sinhklCos  k D   4  b θ λ ε θ= +  	 (2)

Where bhkl is the peak width at half-maximum intensity, 
bD is due to the contribution of crystallite size, bε is the 
peak broadening due to the strain (ε) and D is the average 
crystallite size of a X-ray peak. In the Eq. 2 the strain was 
assumed to be uniform in all crystallographic direction 
implying a uniform deformation model (‘UDM’). Fig.  2 
shows the UDM analysis. The term (bhkl Cosθ) is plotted 
versus (4Sinθ). The effective crystallite size can be estimated 
from the extrapolation on the plot and the slop of the fitted 
line represents the strain. Deviation from the straight line 
fit in Fig. 2 represents that an anisotropic approach such as 

Fig.1. Powder X-raydiffraction data of (a) ZnO, (b) Zn0.98La0.02 Zr0.02O, (c) Zn0.96La 0.04Zr 0.04O, and (d) Zn0.94La 0.06 Zr 0.06O 
nanoparticles. The right graph shows doping-induced (002) peak shift with La–Zr elements in the ZnO matrix.
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uniform stress deformation model (USDM) and uniform 
deformation energy density model (UDEDM) should be 
adopted in the W-H approach. In the USDM, stress (σ) is 
related to the strain (ε) as σ=Yhkl ε, where Yhkl is young’s 
modulus and given by
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( ) ( )( ) ( ) ( )( )( / )
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For the hexagonal crystals, Where s11, s13, s33, s44 are the 
elastic compliances of ZnO with values of 7.858 x 10-12, 
-2.206 x 10-12, 6.940x10-12, 23.57 x10-12 m2 N-1, respectively 36. 
For La–Zr co-doped ZnO, Young‘s modulus was calculated 
as ≈127 GPa. The modified form of W-H equation assuming 
USDM will be of the form

( ) ( ) / /hkl hklCos  k D   4  Sin Yb θ λ σ θ= +  	 (4)

The USDM plots are shown in the Fig.  3 and the 
microstrucrural results are listed in Table 1. In the modified 
W–H equation based on a uniform deformation energy 
density model (UDEDM), the young modulus and strain 
are connected to the deformation energy density ‘u’ by 
u=ε2/2Yhkl and the Eq. 4. can be modified according the 
energy and strain relation as

( ) ( )( )// sin / 1 2
hkl hklCos  k D   4 2u Yb θ λ θ= +  	 (5)

From the plots of bhkl Cosθ versus 4 sinθ(2u/Yhkl)
1/2, the 

anisotropic energy density (u) and the crystallite size can be 
estimated from the slope and the y-intercept of fitted line, 
respectively (see Fig. 4). The USDM results are collected in 
table 1. As can be seen from the table 1, the crystallite sizes 
calculated from various models are approximately same, 
which indicate that the inclusion of strain in various W–H 
models has a very small effect on the average crystallite size 
of ZnO nanoparticles.

Table 1. Microstructural paprameters of Zn (1-x)LaxZrxO nanoparticles.
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Fig. 2. W-H analysis of (a) ZnO, (b) Zn0.98La0.02 Zr0.02O, (c) Zn0.96La 0.04Zr 0.04O, and (d) Zn0.94La 0.06 Zr 0.06O nanoparticles 
assuming assuming UDM model.
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Fig. 3. The modified form of W-H analysis assuming USDM for (a) ZnO, (b) Zn0.98La0.02 Zr0.02O, (c) Zn0.96La 0.04Zr 0.04O, and 
(d) Zn0.94La 0.06 Zr 0.06O nanoparticles.

Fig. 4. The modified form of W-H analysis assuming UDEDM for (a) ZnO, (b) Zn0.98La0.02 Zr0.02O, (c) Zn0.96La 0.04Zr 0.04O, and 
(d) Zn0.94La 0.06 Zr 0.06O nanoparticles.

3.1.2. Size- Strain plot method
Size-strain plot method is another procedure to obtain the 

size-strain parameters. This method is constructed according 
to the following relation:

( cos ) ( cos ) ( )2 2 2
hkl hkl hkl hkl

kd d
D 2

εb θ b θ= + 	 (6)

Where dhkl is the lattice distance between the <hkl> planes 
and k is a constant and depends on the shape of the particles 
(for spherical particles k= ¾ 37. Plot of (d2

hklbhkl cosθ) versus 
(dhklbhkl cosθ)2 were constructed for the all Bragg reflection 
of La–Zr co-doped ZnO nanoparticles (see Fig. 5). In this 
method less importance is given to data from reflections 
at high angles and the crystallite size distribution is 
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described by a Lorentzian function and the strain by a 
Gaussian function 38. The strain is given from the root of 
the y-intercept and slop gives the particle size. The results 
attained from the SSP models are summarized in table 1. 
It was observed from the table 1 that the crystallite size 
of the La–Zr co-doped ZnO nanoparticles increased with 
increase in the La–Zr concentration. The polycrystalline 
show a larger value of ε indicating more strain on the lattice. 
The larger strain induced by the internal stress could lead 
to peak broadening.

3.2. TEM Method
The size and shape of the La–Zr co-doped ZnO 

nanoparticles could be best examined by TEM measurements. 
TEM image for the pure ZnO nanoparticles was obtained 
according to the method described elsewhere 30 about 35 nm. 
Fig. 6 displays a TEM image and particle size distribution 
of the Zn0.94La0.06Zr0.06 nanoparticles. As it’s clear from 
the particle size distribution, the width of the nanoparticles 

varies from 25 to 65nm with an average particle size of 
50 nm. The average size obtained from the TEM analysis 
is in good agreement with the results of the USDM model.

4. Conclusions
The pure and La-Zr co-doped ZnO nanoparticles prepared 

by a simple sol-gel method were characterized by powder 
X-ray diffraction (XRD) and TEM measurement. XRD 
analysis shows that the prepared samples are in hexagonal 
wurtzite phase and free of any other Zr-La phase after 
doping. The size and strain contributions to line broadening 
were studied using the X-ray peak broadening analysis by 
the Williamson–Hall method and the size-strain plot (SSP) 
method. The crystallite sizes calculated from various models 
are approximately same, which indicate that the inclusion of 
strain has a very small effect on the average crystallite size 
of ZnO nanoparticles. The average particle size obtained 
from the TEM results is in good agreement with the results 
of the USDM model.

Fig. 5. The SSP plot of a) ZnO, (b) Zn0.98La0.02 Zr0.02O, (c) Zn0.96La 0.04Zr 0.04O, and (d) Zn0.94La 0.06 Zr 0.06O nanoparticles.

Fig. 6. TEM image and the particle size distribution of Zn0.94La0.06Zr0.06 nanoparticles.
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