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The Development of Structure Model in Metallic Glasses
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Metallic glasses (amorphous alloys) have grown from a singular observation to an expansive 
class of alloys with a broad range of scientific interests. Their unique properties require a robust 
understanding on the structures at the atomic level while alloys in this class have a similar outlook on 
the microstructure. In this review, we went through the history of the majority studies on the structure 
models of metallic glasses, and summarized their historical contributions to the understanding of the 
structure metallic glasses and the relationship between their structures and properties.
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1. Introduction

Amorphous alloys were first synthesized in 1960 by Duwez 
and coworkers at the California Institute of Technology1.

Metallic glasses, which show no long-range structural 
order, are usually referred to as amorphous alloys. After the 
first discovery of amorphous alloys, the scientists pay much 
attention to the new alloys because of their complex atomic 
structures and novel physical, mechanical and chemical 
properties2-4, such as high electrical resistivity5, soft-type 
superconductivity6, good magnetic softness7, high strength 
and large elastic strain8,9. These unusual properties make the 
amorphous alloys potentially useful for various applications.

Metallic glasses can be formed by quenching molten 
metals or alloys. Since the liquids tend to crystallize when 
the temperature (T) is below the melting temperature (Tm) or 
liquidus temperature (Tl), in order to retain the glassy structure, 
the cooling rate must be sufficiently fast to freeze the liquids 
before the crystals have the time to nucleate and grow. In 
this process, the liquids will undergo the glass transition at 
a temperature, called the glass transition temperature (Tg). 
The glass transition is a vital phenomenon. When a glassy 
solid is heated, the glass can be transferred to a supercooled 
liquid state at Tg. Here, the supercooled liquid refers to liquid 
at temperatures far below the melting points. In this process, 
it needs only very limited energy to get into the supercooled 
liquid compared with its crystallization process, but its 
physical and mechanical properties change dramatically10,11. 

Glass transition is so interesting that it almost always a hot 
topic in the papers10,11 of studying the atomic structure of 
metallic glasses.

In the early 60s, the first metallic glass was obtained 
at very high cooling rates (105-106 K/s), resulting in a very 
limited thickness with only several tens micrometer. For the 
subsequent several decades, great effects have been devoted 
to decrease the critical cooling rate for glass formation. 
Even up to the late 1980s no significant achievements on 
reducing the critical cooling rate. However, in the late 80s 
and early 90s, metallic glasses were able to be produced 
at a much slower cooling rates12-14. Some metallic glasses 
have been produced at low cooling rates of around 1 K/s 
with sizes up to the range of 15 to 80 mm in diameter15-22. 
Such metallic glasses are so called as bulk metallic glasses 
(BMGs). The achievements of preparing BMGs in various 
alloy systems have dramatically accelerated the study on 
the glass-forming-ability and their fundamental properties. 
Following it, a three components rule which needs to be 
satisfied for forming BMGs was summarized in 1990s23: 1. 
the multicomponent system consisting of more than three 
elements, 2. significantly different atomic size ratios above 
about 12 % among the main three elements, 3. optimally large 
negative heats of mixing among the main three elements.

Meanwhile, over the past several decades, scientists have 
also made considerable efforts to explore atomic configurations 
in metallic glasses. It is well known that the atomic structure in 
crystalline solids shows a long-range translational periodicity. 
However, in metallic glasses, the long-rang order is absent 
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and no periodicity. For understanding the structure of 
metallic glasses, scientists have used extensive database to 
investigate their nature, proposing models at atomic level to 
characterize metallic glasses. With these studies, scientists 
found that metallic glasses can be characterized not only by 
randomness, but also short-range order (SRO), medium-range 
order (MRO) and efficient atomic packing around both solute 
and solvent atoms. SRO refers to the nearest-neighbor atomic 
environment. It contains the geometric short-range order 
and chemical short-range order24-27. At present, the study 
of SRO mostly focuses on the geometrical ordering. MRO 
refers to the second or third nearest -neighbor arrangement. 
The structure of MRO has a great influence on the formation 
and properties of metallic glasses.

Detailed structure information of metallic glasses can 
be generally inferred by the following two approaches: (1) 
Experiments such as X-ray diffraction (XRD)28,29, extended 
X-ray absorption of fine structure (EXAFS)30-32, small-angle 
X-ray scattering (SAXS)33; atom probe tomography34, 
high-resolution transmission electron microscope (HREM)35-37, 
synchrotron diffraction38,39 and neutron scattering40, (2) 
Computer simulation such as Monte Carlo simulation41, 
Reverse Monte Carlo (RMC) simulation42,43, Ab initio 
Molecular Dynamics (AIMD) simulation44,45 and molecular 
dynamics (MD) simulation46. Based on the experiments 
and computer simulations, several structural models for the 
amorphous alloys have been proposed and successfully used 
to describe characteristics of metallic glasses from different 
perspectives. Models could not only give an intuitive image 
of structure, but also provide a foundation for developing 
high performance of new glassy materials. This paper mainly 
introduces the models, which were proposed in the last several 
decades, historically contributed to understanding the structure 
at atomic level and the relations between the structure and 
physical/mechanical properties of metallic glasses.

2. Structure models of metallic glasses

The atomic structure determines the intrinsic properties of 
metallic glasses. The disordered structure makes the metallic 
glasses possess unique physical/mechanical properties. We 
summarized the atomic structural models up to date and 
show them as follows.

2.1. Hard sphere random dense packing model

Compared with the structures of gas and crystalline solid, 
the structure model of liquid was mysterious for a long time. 
In1959, Bernal47 first put forward a model to describe the 
structure of liquid called random dense packing model. This 
model mainly contains five Bernal polyhedrons48 with edges 
of equal length, as shown in Figure 1, and their percentages 
are listed in Table 1. The tetrahedron accounts for about 
73% of all Bernal polyhedrons and has the highest packing 
efficiency among the five polyhedrons, so the tetrahedron was 

considered as the most basic structure unit in the model. In 
1960, he49 further pointed out that a random dense packing of 
hard spheres resembles a monatomic liquid quite closely. In 
this model, the main assumptions are as follows: (1) the liquid 
is homogenous, coherent and irregular; (2) all the atoms are 
regarded as rigid balls and stacking without rules, and there 
is no extra hole whose size is an atom volume; (3) the atoms 
are incompressible. In 1964, Cohen and Turnbull50 found that 
Bernal dense random model can describe the hypothetical 
metastable glassy state of simple liquids. Finney used Voronoi 
tessellation51,52 to study the random dense packing model. He 
analyzed the 5500 Voronoi polyhedrons and found that the 
average face number of Voronoi polyhedra is 14.251 ± 0.015 
and the average number of edges per face is 5.158 ± 0.003. 
This shows that there are a large number of pentagons in 
voronoi polyhedra. Five-rotating symmetry could not form 
the long-range order and hence the structures of Figures 1 (c), 
(d) and (e) are possible to form the amorphous alloy. In 1970, 
Cargill53 compared the experimental pair distribution function 
(PDF) for noncrystalline Ni-P alloys with the distribution 
function for random dense packing of hard spheres and found 
that the feature was greatly similar. Besides, he pointed out 
that the random dense packing models may be useful in 
interpreting properties of amorphous alloys.

Figure 1. Five Bernal polyhedra: (a) Tetrahedron, (b) Octahedron; 
(c)Trigonal prism capped with three half octahedra; (d) Archimedean 
antiprism capped with two half octahedra; (e) Tetragonal dodecahedron.48

The PDF54 is often used to describe and distinguish 
amorphous structure which is related to the probability of 
finding the center of a particle at a given distance from the 
center of another particle. For short distance, the PDF is 
related to the stack structure of particles. However, the curve 
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Table 1. The percentage of five Bernal polyhedrons.

Type The number of percentage Volume percentage

Tetrahedron 73% 48.4%

Octahedron 20.3% 26.9%

Trigonal prism capped with three half octahedra 3.2% 7.8%

Archimedean antiprism capped with two half octahedra 0.4% 2.1%

Tetragonal dodecahedron 3.1% 14.8%

of the PDF gradually converges to unity at a larger distance, 
showing the long-range disorder. The partial PDF is given by:

where ρ is the number density, Nα and Nβ denote the 
number of α atoms and β atoms, respectively,     is the 
interatomic distance between two atoms.

The total PDF is defined as:

Figure 2 is the schematic illustration of PDF. The first 
peak (r: 3-5 Å) in the PDF is fairly sharp which derived 
from the atomic packing and configuration of the nearest-
neighbor shell. The second, third, fourth, and fifth peaks are 
blunt but more pronounced than those found in liquids55. It 
is worthwhile to note that the split second peak (r: 5-10 Å) 
is usually found in metallic glasses. In addition, the radial 
distribution functions56 (RDF) that describes how many α  
atoms within a distance of r and r + dr away from the β atom, 
can be calculated by means of PDF, namely:

where ρβ is the number density of atom of type β.
Based on the random packing of hard spheres model, 

Polk’s simulation results agreed well with the RDF obtained 
by experiments on metal-metalloid metallic glasses57. This 
model could explain why the metallic glasses cannot exhibit 
the long-range order structure in a certain extent and the 
RDF agrees well with the experimental results especially on 
metal-metalloid metallic glasses. The RDF58,59 of the model 
was simulated and compared with the experimental results 
of Ni-P glassy alloys by Bennett et al. They found that the 
first peak suits well with the experimental result, but the 
second peak has certain differences. Sadoc et al.60 adopted 
the two sizes of spheres heaps calculations, and assumed 
that the two small spheres did not touch. Their calculated 
values of some metallic glassy systems meet well with the 
experimental data, but the density is lower than the dense 
packing. In order to solve the contradiction between local 
structure of second peak and density, Connell61, Baker et al.62, 
Heimendhal63 and Yamamoto64 took the realistic interatomic 
potential into account based on the Bernal sphere-packing 
model. The modified model showed more agreement with 
the actual materials compared with the Bernal model. The 
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Figure 2. The illustration of pair distribution function.56

spheres are softened when considering the potential energy. 
According to the modern physics, we know that the atomic 
radius will change in the process of atomic interaction. So 
it is an important progress from hard spheres to soft spheres 
concept.

Simplifying the system and problems, mainly focusing 
on the geometry of the atomic arrangement, provides a 
very fundamental knowledge and is a very good start for 
studying atomic structures. The random dense packing model 
has reached certain achievements on the analysis of some 
metallic glassy systems, such as alloys with constituent 
species having comparable atomic sizes and insignificant 
chemical short-range order, contributing to understanding 
amorphous alloys at the atomic level, even people have 
been struggling to describe many binary metallic glasses, 
especially metal-metalloid alloys.

2.2. Micro-crystallite model

In 1947, Bragg65 provided a dynamical model to 
describe the structure of crystal. He thought that the basic 
structure of metal consisted of small grains and grain 
boundaries. The model is called as micro-crystallite model. 
This model was initially used to describe the structure of 
liquid, since the structure of ambiguity is similar to the 
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liquid-like structure. Afterwards, Bagley et al.66 used the 
micro-crystallite model to describe the configuration of 
amorphous alloys. A schematic illustration67 of the model 
is given in Figure 3, which can explain some XRD data of 
certain metallic glasses. Inside of small grain, it exhibits 
the short-range order, which is similar to the crystal. These 
small grains are mixed randomly and their orientations are 
in disorder. It is therefore difficult to form the long-range 
ordered structure. The model can qualitatively explain some 
properties of amorphous alloys. However, the RDF is not 
agreement well with the experimental data. The details of 
the structures of microcrystalline area and boundary area are 
unknown, and furthermore the scientists also did not observe 
directly these areas in their experiments68,69. When the size 
of micro-crystallite is smaller, the volume of boundary will 
occupy too much and it is difficult to determine the atomic 
arrangements in associated areas. It is therefore regarded 
that this model does not fit the structures of metallic glasses.

The term of the free volume is a very important concept and 
plays a significant role in amorphous alloys, and has been 
widely used to explain physical and mechanical properties 
of amorphous alloys. Figure 4 shows the process of atomic 
movement during deformation of metallic glasses and the 
creation of free volume, in which V* is the effective hard-
sphere size of the atom, ΔGm is the activation energy of the 
motion, λ is the jump of length, τ is the shear stress, ΔG = τΩ 
is the decreased free energy of the atom after jumping and 
Ω is the atomic volume.

Figure 3. Micro-crystallite model.

2.3. Free volume model

Free volume model was put forward by Cohen and 
Turnbull70-72 to explain the phenomenon of self-diffusion 
in Van der Waals liquids and liquid metals. Then Spaepen73 

developed this model by analysis of the mechanism for 
deformation and dynamics of metal in 1977, which can be 
used to describe the deformation and fracture of metallic 
glasses. He thought that there existed some free volumes 
in amorphous phase and the microscopic plasticity resulted 
from many single atom‒jumps. When the liquid is cooled 
slowly, the atoms will rearrange and form the crystalline 
solid. In this process, the volume of material will shrink. On 
the other hand, when the liquid is quenched fast, the “gap” 
will be kept in amorphous solid. Its volume is larger than 
the corresponding crystalline solid and hence the increased 
part is called the free volume. In a word, the free volume 
Vf  is defined as that part of the thermal expansion, or excess 
volume Δ    which can be redistributed without energy change72. V
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Figure 4. (a) Illustration of an atomic jump; (b) The creation of 
free volume.73

For an atom jump, it must have a nearest neighbor 
environment as shown in Figure 4 (a), and the nearby area 
also must have enough space to accommodate its atomic 
volume V*. In this jumping process, the local free energy 
is minimal and some ΔGm must be supplied. The number 
of jumps across the activation barrier is the same in both 
directions, when ΔGm is obtained from thermal fluctuations.
However, at an applied stress, the number of forward jumps 
across the activation barrier (                      ) is larger than 
that of backward jumps (

                         
), and this results in 

a net forward flux of atoms and forms the basic mechanism 
for flow. Figure 4 (b) shows the creation of the free volume. 
Under the applied stress, the certain amount of free volume 
is created when an atom squeezes into a smaller space whose 
volume is V.

This model can analyze the flow behavior of metal glasses 
at high temperature. At low temperature, however, it cannot 
be well used to qualitatively analyze the deformation behavior 
of metallic glasses. The free volume model provides a simple 
and practical model to describe the plasticity of amorphous 
alloys. The applicability of the model has been well verified 
and it can qualitatively explain many mechanics properties 
of amorphous alloys74-76. In 1979, Argon77 used “shear 
transformation” to explain the plastic deformation of metallic 
glasses and the theory meets well with the experimental 
observations. He thought that the “flow event” was not a 
single isolated event, but a rearrangement of a group of atoms. 
Falk78,79 developed the theory of “shear transformation zone 
(STZ) “ according to the molecular dynamics simulation in 
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conjunction with the complete mathematical model. An STZ 
only appears in response to external stimuli, being undefinable 
a priori in the static glass structure before deformation80. 
The shear transformation zone theory is an extension and 
expansion for free volume model at the molecular level. It 
can solve the defects of the free volume model, particularly 
in the description of low temperature state. But this process 
involves too many parameters. Based on the researches of 
Stillinger et al.10,81, Malandro et al.82 and Wales et al.83,84, 
Johnson and Samwer85 put forward the cooperative shear 
model (CSM). They well explained the plasticity behavior 
in low temperature.

2.4. Continuous random network model

Bernal’s model has been widely accepted for metallic 
glasses, but it fails to describe the metal-metalloid-based 
alloys with pronounced chemical short-range order86. In 
light of this, Gaskell87-89 put forward a model shown in 
Figure 5. He87 thought that there was a basic structure unit 
that is similar to the corresponding component crystal 
microstructure in metallic glasses, this structure unit was 
regarded as tri-capped trigonal prism (TTP) that can form 
the net by coplanar points and coplanar faces. Figure 5(a) 
displays the regular trigonal prismatic coordination, in which 
N is the non-metallic element, MI are metal atoms, MII are 
further atoms capping the square faces at somewhat larger 
and even more variable M-N distances. For example, the 
TTP of Ni-P is P-centered and trigonal prism forms by six 
Ni atoms, another three Ni atoms capped the square faces 
of the prisms. Figure 5(b) shows a chain-like connection 
of trigonal prism by sharing edges. Dubois90 proposed 
the packing rule of TTP based on the theory of chemical 
twinning. Gaskell87 used this model to calculate the RDF of 
Pd-Si and found that it agreed well with the experimental 
data. However, there exist some limitations for describing 
the structure of metallic glasses91-93. For example, Waseda 
and Chen91 found that the microstructure of Fe-B is different 
from that in Fe-P. Boudreaux and Frost92 found two different 
structures (octahedron and trigonal prism) in Pd-Si, Fe-P and 
Fe-B with the help of computer simulation. So the TTP unit 
is not the only structure in metallic glasses. In addition, the 
model assumed that the neighbor bond length and angle are 
unchanged which make the system a smaller density than 
the corresponding component crystal. Thus it does not meet 
the principle of dense packing of metallic glasses, and the 
difference of densities obtained by theoretical calculation 
and experiment is obvious94,95.

The model not only shows the homogeneity of metallic 
glasses macroscopicly, but also explains why the structure 
of the metallic glasses has long-range disorder. It reveals 
many properties such as isotropy, but cannot explain micro-
inhomogeneity and phase splitting phenomenon of metallic 
glasses.

Figure 5. Gaskell's stereochemical model: (a) Regular trigonal 
prismatic coordination; (b) Edge-sharing of polyhedra.87

2.5. Dense packing of atomic cluster model

In the 1970s, Wang96 suggested that amorphous alloys 
may have a crystal-like, short-range structure which retained 
by stacking various types of polyhedra and atomic disorders 
at random. These polyhedrons are called clusters those are 
considered as the basic unit in the structure of metallic glasses. 
They have more abundant atomic connection compared 
with the five basic Bernal polyhedrons97,98. In addition, the 
five-fold symmetry of the clusters can prevent the way of 
crystal growth to a certain extent. This is consistent with 
the principles of short-range order and long-range disorder 
in metallic glasses.

SRO is insufficient to describe the structure of metallic 
glasses and hence MRO is used to describe the connection 
and configuration of SRO. In order to describe the MRO of 
metallic glasses, Miracle99,100 put forward the FCC/HCP dense 
packing cluster model in 2004. He put many hard spheres in 
a three-dimensional box and then made the spheres dense 
packing by shaking. He found that there exist many stable 
icosahedron clusters stacking in fcc. In this model, the center 
atom of cluster is regarded as solute atoms, and these atoms 
which occupied the gap of cluster are regarded as solvent 
atom. The model considers only three topologically distinct 
solutes and these solutes have specific and predictable sizes 
relative to the solvent atoms101,102. Figure 6 (a) shows an 
(110) plane of clusters in dense cluster-packing structure, 
which illustrates the feature of interpenetrating clusters and 
efficient atomic packing around each solute. And Ω is the 
solvent atom which is packed randomly, α is the primary 
cluster-forming solute species which usually form an fcc 
array extending to no more than a few cluster diameters, 
β is the secondary solute occupied the tetrahedral site and 
octahedral site. In this model, the solute-centered clusters 
with the solvent efficiently packed were considered as the 
basic building blocks and represented the SRO in metallic 
glasses. Furthermore, these clusters connected with each 
other by sharing the solvent atoms and formed the MRO. 
Figure 6 (b) shows the 3D Miracle dense cluster model for 
metallic glasses.
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BSAP type is further transformed into the TTP type. The 
packing of solute-centered icosahedron cluster obtained 
by using the common-neighbor analysis109 is displayed in 
Figure 8. It can be seen from this figure that the majorities 
of clusters are icosahedron (555) and icosahedron-like (544 
and 433) clusters in Ni81P19, Ni80P20 and Zr84Pt16. Figure 8 (b) 
(c) (d) show the three typical cluster connections. In these 
figures,VS, ES and FS denote vertex-sharing, edge-sharing 
and face-sharing, respectively. In the same system, the type 
of cluster is similar, especially the type of topology and the 
coordination number.

Figure 6. (a) 2D Miracle dense cluster model; (b) 3D cluster model.99

In Miracle’s model, the order of the cluster-forming 
solutes cannot extend beyond a few cluster diameters, and 
hence the characteristic of disorder can be retained beyond 
the nanoscale. However, the model includes defects that 
provide rich structural description of metallic glasses. It 
could not only predict the number of solute atoms in the first 
coordination shell of a typical solvent atom, but also provide 
a remarkable ability to predict metallic-glass composition 
accurately for a wide range of simple and complex alloys. 
In general, this model is more successful in recent studies 
on glassy alloys.

According to the model of Miracle, Sheng et al.103-105 
used a combination of state-of-the-art experimental and 
computational techniques to analyze a range of binary 
systems and ternary systems that involve different atomic size 
ratios106,107 and elucidate the different type of SRO as well as 
the nature of the MRO. They confirmed the dominance of 
solute-centered clusters and put forward a dense equivalent 
cluster packing model. They thought that the basic unit of 
metallic glasses is cluster made up of a variety of Voronoi 
polyhedra. Meanwhile they used Voronoi index method to 
measure the different clusters, then process statistical analysis. 
Voronoi index usually expresses as <n3,n4,n5,n6, ... >, ni refers 
to the number i-edges faces of Voronoi polyhedra which can 
be considered as a characteristic signature of a particle’s 
coordination structure. Since the face count is equal to the 
number of nearest neighbors of the particle, so 

      
       is called 

the coordination number (CN). For example, the icosahedral 
coordination structure corresponding to the Voronoi index 
<0,0,12,0, ... > describes a polyhedron with exactly 12 faces 
with 5 edges each. Figure 7 (a) shows the CN distribution 
in Ni81B19, Ni80P20, Zr84Pt16 and Ni63Nb37, respectively. The 
polyhedron structure in several representative metallic glasses 
is listed in Figure 7 (b). It can be seen that the average CN 
changes with the effective atomic size ratio radius (R*) between 
solutes and solvent atoms. The preference for a particular 
type of cluster is different with the variation of R* in various 
systems. When R* > 1.2, the main polyhedra belongs to the 
Frank-Kasper108 type; when R* ≈ 0.902, the Frank-Kasper is 
transformed into the icosahedral type; when R* ≈ 0.835, the 
icosahedral type is transformed into the BSAP (bi-capped 
square Archimedean antiprism) type; when R* ≈ 0.732, the 

ni
i

/

Figure 7. (a) The coordination number distribution of solute atoms 
in several metallic glasses; (b) The corresponding polyhedron 
structure.103

Figure 8. (a) The icosahedral type ordering of cluster in metallic 
glasses; (b) (c) and (d) The five-fold symmetry of cluster connections 
for Ni81B19, Ni80P20 and Zr84Pt16, respectively.103

The dense equivalent cluster packing model validates the 
important role of the effective atomic size ratio between the 
solute and solvent atoms and explicitly specifies the packing 
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topologies for various CNs. It greatly reduces the human 
subjective factor and the system error and enhances people’s 
understanding of structure of metallic glasses.

Recently, based on the study of the Cu-Zr metallic glasses, 
Almyras et al.110 found that the combinations of icosahedral-
like clusters can be formed according to a simple rule. They 
demonstrated that the combinations of icosahedral-like clusters 
can follow a sequence of magic number by considering the 
system’s stoichiometry. In experiments, the combinations of 
icosahedral-like clusters were referred to as “superclusters” 
and they regarded superclusters as basic building units111. 
Figure 9 shows a case of 20-atom supercluster composed of 
two 13-atom icosahedrons-like clusters, in which the brown 
spheres represent copper and the blue represent zirconium 
atoms. Their experimental results well agreed with the 
simulation and could reproduce the structural characteristics 
of the system. They suggested that the interconnections of 
clusters and consequently the formation of the superclusters 
were topological112. This method may be used to interpret 
the design of new metallic glasses and to understand their 
experimental data113.

Figure 9. A case of 20-atom supercluster.112

2.6. Direct observation of the local structure in 
metallic glasses

Scientists did not directly observe the disordered structure 
of metallic glasses in experiments all the time. All the methods 
of studying the local structure of metallic glasses just provide 
the average and one-dimensional structural information. In 
2010, Hirata et al.114 investigated the configuration of metallic 
glass by nanobeam electron diffraction (NBED) combined 
with AIMD. They first directly observed the local atomic 
structure in metallic glasses. Figure 10 shows the experimental 
principle and structure image of metallic glasses.

Figure 10. (a) The experimental principle; (b) The three-dimensional 
profile of a calculated electron nanoprobe with a FWHM beam size of 
~0.36nm; (c) The image of local atomic order in metallic glasses.114

The direct observation provides an important method to 
explore the microstructure of metallic glasses by employing 
a state-of-the-art electron nanoprobe combined with AIMD 
simulation. Compared with the x-ray115, extended x-ray 
absorption fine structure (EXAFS)116 etc., this method 
can directly observe the distinct patterns from individual 
atomic cluster and its assemblies. This provides a new 
way to understand the properties and mechanisms of the 
metallic-glasses formation and gives a compelling evidence 
of short-range order in metallic glasses.

2.7. Flow unit model

In metallic glasses, there exist some different liquid-like 
regions and solid-like regions, as envisaged by Cohen and 
Grest117,118. In the system, the coordination of “liquid-like” 
atoms is unstable and changes within the Debye time, while 
the coordination of “solid-like” atoms has a long life-time119. 
Egami et al.120 found that there exist about 24.3% liquid-like 
atoms in Zr52.5Cu17.9Ni14.6Al10Ti5. Based on the researches 
of glassy structure and dynamic non-uniformity, Wang’s 
team combines experiment with computer simulation. 
They have found that the liquid-like regions played a role 
of “detect”, which can detect the atomic rearrangement 
and have characteristics of relatively high free energy, low 
density and viscoelasticity. The regions were defined as 
flow unit121 in metallic glasses. Flow unit model is shown 
in Figure 11. In this model, they thought that the flow units 
as liquid-like quasi phases were embedded in solid-like 
glassy substrate122,123.

The size of clusters in pink-color area is several nanometer 
level. Compared with other atoms in the metallic glass, they 
have low elastic modulus and strength, high liquidity and 
atomic energy, and atomic arrangement is looser. These areas 
are also known as “soft region” or “liquid-like regions”, in 
which elastic energy cannot be stored, and they are embedded 
in a rigid metal glass substrate. When the metallic glasses 
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free-volume regions formed between the atomic clusters, in 
which atoms are loosely bonded; and (III) interconnecting 
zones with less directional bonding or transition bonding, 
which interconnect the clusters127. When T< Tg (Figure 12a), 
the tightly bonded clusters randomly connected each other 
through the interconnecting zones and separated by the 
free volumes. When T> Tg, the tightly bonded clusters are 
completely separated by free volume (Figure 12b) as the 
interconnecting zones gaining energies become the free 
volumes (Figure 12c). At this stage, the cluster, i-zone and 
free volume concept were still based on qualitative definition.

Figure 11. Flow unit model.123

are subject to stress or thermal activation, these areas will 
be rearranged and dissipate energy.

Different mechanical properties in metallic glasses 
result from the different characteristics of the flow units. For 
instance, the ductility in tension at 0.75 Tg achieved in the 
La-based MG is due to the activation of high density of flow 
units124. The fundamental flow units govern the mechanical 
behavior and ductility, and the activation energy and density 
of the flow units play a crucial role in the viscoelasticity and 
plasticity of metallic glasses. In addition, the features of the 
activated flow units are similar to those of the supercooled 
liquid, and the activation of flow units is the precursor of 
the glass transition.

This model can explain many phenomena in metallic 
glasses and also can help the understanding of some 
processes125 such as the evolution of flow unit. Whether the 
flow units exist remains unclear, and needs a direct evidence 
from experiments.

2.8. Tight- bond cluster model

The high intense neutron scattering source for powder 
scattering, for example, the Neutron Powder Diffractometer 
(NPDF), provides a high resolution and a large Q-range 
(0.8 to 50 Å-1), and together with low and stable background 
scattering, enables scientists to obtain excellent data for 
PDF studies of disordered and nanocrystalline materials. 
Taking this advantage, Fan et al. collected total-scattering 
for PDF on the as-cast and its crystallized counterpart of a 
Zr-Cu-Al ternary BMG at room temperature and cryogenic 
15 K. They constructed an atomic model based on the peak 
spallation, atomic compression and tension appeared on 
the PDF data for the nearest atom pairs, in which strongly 
bonded clusters act as units or “hard spheres” instead of the 
individual atoms acting as hard spheres, and these clusters 
are randomly distributed, strongly connected, and result in 
free volume between the clusters126. They further developed 
the atomic model in 2009, and described it as the tight-bond 
cluster model. This model is illustrated in Figure 12 and 
contains essentially three major parts: (I) clusters of atoms 
with strong directional bonding (tight-bond clusters); (II) 

Figure 12. Tight-bond cluster model: A change in the connections 
between clusters below and above Tg (black: below Tg and red: 
above Tg).

128

The properties of material always have an intimate 
relationship with their structure. In order to have a good 
understanding of the structure and the relationship between 
properties and structure in metallic glass, Fan et al.127 built a 
sketch to illustrate the structural changes and try to explain 
the physical and mechanical properties of metallic glasses. 
As shown in Figure 13, A, B and C are represented as 
atomic clusters with different types or orientations. When 
the temperature rises close to the Tg, tight bonds in the 
interconnecting zones become loose as they gain energies, 
resulting in free volume. When the clusters are mostly 
separated by free volume, the solid amorphous structure is 
then transformed into the supercooled liquid state. So we can 
see that the high strength of metallic glasses results from the 
tight bond in the clusters. The interconnecting zone results 
in the formation of BMGs with high yield strength below 
Tg. The weakly bonded free-volume regions provide room 
for cooperative sliding and rotation of the clusters under 
applied loading, allowing clusters to move into layers of 
cooperative motion and resulting in shear-band formation 
and plastic deformation in BMGs at T< Tg. At T> Tg, all 
interconnecting zones are dissolved into the free-volume 
network, and tight-bond clusters could thus move easily 
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in the free-volume matrix, resulting in a homogeneous 
deformation under low applied stresses.

are equal to or shorter than those within the crystal grains 
in the crystallized counterpart. (2) i-zone: areas consist of 
weak bonded atoms that have the bond lengths of the nearest 
atoms compared to those in the crystal boundaries in its 
crystallized counterpart. The bonding property in this area 
is similar to the crystal (grain) boundary in crystals. There 
are no crystals/grains, but clusters in metallic glasses. It is 
the reason why they use the concept of i-zone to describe the 
boundary-like area. The bond lengths in i-zone grow larger 
to form free volume network at glass transition temperature. 
(3) free volume: areas consists of the weakest bonded atoms 
that have the bond distances of the nearest atoms longer 
than those existed in its crystallized counterpart, i.e., the 
bond lengths of the nearest atoms are greater than that in 
the i-zone. Free-volumes do not exist in its crystallized 
counterpart and can be considered as supercooled liquid-like 
area. The authors also provided quantitative definition for 
the i-zone, and free-volume by distances between the nearest 
atoms in the as-cast Zr55Cu35Al10 BMG. The initiating atom 
pair distances for i-zone and free volumes can be defined as 
that they are at least 2.8% greater, or at least 9.6% greater 
than that calculated from their characteristic atomic radius, 
respectively; and thus, the cluster is defined128. The authors 
claimed that the atoms which weakly connected i-zone 
should be one of the most dominated factors on mechanical 
properties in metallic glasses40.

Based on the tight-bond model, these authors started to 
investigate the structural evolution and energy distribution 
of the Zr-, Cu- and Al-centered first shell clusters for 
Zr55Cu35Al10 liquid and glass during the cooling process, and 
propose a new parameter to describe the structural evolution 
of the clusters131. In addition, they conducted series AIMD 
simulations to further analyze and improve their model132. 
Figure 15 shows the relative fractions of cluster, i-zone and 
free volume atom pairs compared to their summation as a 
function of temperature and Figure 16 shows the effect of 
different elements. They found that the relative fraction 
of the cluster atom pairs increases linearly and that of the 
free volume atom pairs decreases linearly with decreasing 
temperature. Although the radius of Al is not the smallest, 
it exerts a great influence on the structure of Zr55Cu35Al10.

Although this model can well qualitatively explain many 
physical phenomena of amorphous alloys, it needs more 
research work on quantitatively determining the relationship 
between the mechanical properties and the atomic structures.

3. Conclusions

Scientists have made great efforts in studying the structure 
of amorphous alloys at the atomic level. Nowadays, we can 
say that the structures at the atomic-level of metallic glasses 
can be well understood with some mystery remaining. The 
lack of unit cells makes the amorphous structures much more 
complex at the atomic level and thus one of the important 

Figure 13. (a) When T< Tg, the clusters are connected to each 
other by interconnecting zone; (b) When T> Tg, the clusters are 
separated by free volume.127

In addition, Figure 14 shows a schematic illustration to 
further understand vividly the mutual relation among the 
three parts of the model proposed by Fan. The black-color 
parts represent the clusters, and the interconnecting zone 
between the clusters and the free volume region are shown in 
Figure 14 (b), and Figure 14 (c), respectively. The blue area 
in Figure 14 (b) represents the interconnecting zone between 
clusters, which may contain several layers of atoms. The 
atomic configuration in this interconnecting region is looser 
as compared with the cluster zones. The atoms marked with 
half blue and half red in Figure 14 (d) show the connecting 
state between atoms just near the clusters. The blue parts 
correspond to interconnection zones, while the red parts 
connect with the region belonging to free volume.

Figure 14. (a) Tight-bond cluster model; (b) The interconnecting 
zone between clusters; (c) Free volume zone; (d) The connecting 
condition between atoms in the boundary of clusters.

Based on a systematic study on PDF and RDF at 
different temperatures and phase states for ternary bulk 
metallic glasses37,126,127-130, in 2015, they finally defined 
the free-volume, i-zone and cluster in metallic glasses for 
quantitatively understanding these concepts129. That is, (1) 
cluster: natural communities consist of strongly connected 
atoms, in which the bond distances of the nearest atoms 
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interests to conduct further studies on their local atomic 
structures, which might be able to help scientists finally wipe 
the remaining mystery away. Furthermore, quantitatively 
characterizing and understanding the structure–property 
correlations at the atomic level on amorphous alloys are one 
of the most interesting topics, and also might be one of the 
hardest fields to finish, which is still attracting scientists greatly.
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