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The application of cellular automata in materials science requires the conversion of the automata’s 
rules and abstract general properties to rules and properties associated with the material and phenomena 
under study. In this paper we propose a model which uses cellular automata to simulate recrystallization 
and grain growth during isothermal and non-isothermal treatments of cold worked polycrystalline 
materials. The algorithm’s spatial and temporal scaling is based on known experimental results for 
recrystallization and grain growth in highly cold-worked commercially pure titanium grade 2. In the 
recrystallization, the best agreement between experimental and computational results in terms of the 
process kinetics and the average diameter of recrystallized grains is obtained from a nucleation model 
that considers the temperature-dependent nuclei formation rate. In the simulation of grain growth after 
primary recrystallization, the results indicate the normal growth of an equiaxed grain structure whose 
kinetics and dimensions are comparable to those observed experimentally. 
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1. Introduction
Processes and natural phenomena are usually modeled 

by partial differential equations that govern the continuous 
spatial and temporal evolution of the relevant quantities that 
describe the system under study. In most cases, possible 
solutions to such equations are only obtained numerically, with 
the differential formulation transformed, for example, into a 
finite difference scheme to be implemented computationally 
using an appropriate algorithm. Alternatively, it is possible 
to describe the spatiotemporal evolution of complex systems 
by models that are implemented using algorithms involving 
cellular automata1,2. A cellular automaton consists of a grid 
of cells, also called sites, which is arranged in one, two or 
three dimensions and may present various geometric shapes 
such as squares, rectangles, hexagons or cubes. Each cell is 
characterized by a finite number of attributes or properties. 
The set of attributes of a cell defines its state. The cellular 
automaton evolves in almost imperceptible steps over time, 
so that at each level of time, the properties associated with 
each cell are updated according to well-defined transformation 
rules. The rules determine the new values of the properties 
to be assigned to a particular site, considering the site’s past 
values and the past values of the properties of sites located in 
its neighborhood. Among the several possibilities for defining 
the neighborhood of a given cell, the ones most commonly 
used are those proposed by von Neumann and Moore, which 
consider, respectively, the 4 and 8 nearest neighbors for a 

lattice of square cells. Transformation rules, which may be 
deterministic or probabilistic, are applied simultaneously 
to all the cells of the grid at each level in time1,2. With these 
characteristics, cellular automata provide a discrete method to 
directly simulate the evolution of complex dynamic systems 
that contain large numbers of similar components, based on 
short or long-range local interactions among their elements. 
This enables useful models to be constructed for numerous 
investigations in physics, chemistry, biology, mathematics, 
and computer science, thus representing an alternative to the 
formulation of physical phenomena by partial differential 
equations3.

The use of cellular automata (CA) in materials science is 
feasible by converting the rules and abstract general properties 
of automata into rules and properties associated with the material 
and phenomena under study. These rules are determined by 
the application of physical laws or experimentally proven 
results. The cells in the grid can represent atoms, clusters 
of atoms, segments of dislocations or small amounts of 
crystalline material with some degree of orientation. Raabe4 
points out that the versatility of the formulation by CA in 
the simulation of microstructural transitions, especially in 
recrystallization, grain growth and phase transformations, 
is due to the algorithm’s flexibility, which enables it to 
consider a wide range of state variables and transition rules. 
In simulations of recrystallization and grain growth by CA, 
the influence of energies and mobilities of grain boundaries, 
driving forces and preferential crystallographic orientations 
can be considered to determine their kinetics, textures and 
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microstructures on realistic temporal and spatial scales, 
allowing for quantitative predictions and comparisons 
with experimental data. It should be emphasized that in 
such simulations the spatial dimensions and time interval 
employed are not intrinsically calibrated by a characteristic 
physical length or time scale, so that the CA simulation of a 
continuous system requires the definition of elementary units 
and rules of transition that adequately reflect the behavior 
of the system at the desired level, as pointed out by Raabe4. 

Hesselbarth and Göbel5 were pioneers in introducing 
a model to simulate the recrystallization kinetics based 
on cellular automata algorithm. From an initial uniform 
structure in which all the cells were in a “non-recrystallized” 
state, these authors imposed a nucleation rate on the system, 
so that the state of some randomly selected cells was 
converted to “recrystallized”, characterizing them as new 
phase nuclei. These nuclei grew through the transition from 
their neighbors to the “recrystallized” state, according to 
specific rules. Evaluating the effect of different definitions of 
neighborhoods, the authors showed that the model reproduces 
the transformation kinetics in agreement with the theory of 
Johnson, Mehl, Avrami and Kolmogorov (JMAK theory), 
with the curve of the fraction transformed as a function of 
time, showing non-sigmoidal behavior at each temperature in 
the description of a homogeneous recrystallization process. 
Deviations with respect to JMAK theory were obtained 
with different transition rules for nuclei growth, simulating 
conditions of heterogeneous recrystallization.

Despite the success of the model developed by Hesselbarth 
and Göbel5 in reproducing the behavior predicted by JMAK 
theory, the recrystallization kinetics was not calibrated to the 
real time of the process, nor was any spatial scale attributed 
to the resulting microstructure. Stiko2 and Davies6 modified 
the rules of transition between neighboring cells using growth 
models related to a realistic time scale. Others researchers 
investigated the influence of initial microstructure topologies 
on the kinetics of static recrystallization in simulations by 
CA1,2,7, and static recrystallization in cold-worked copper8 
and in iron9 were recently simulated by a CA algorithm. 
Dynamic recrystallization models using cellular automata 
were proposed by Goetz and Seetharaman10, Qian11, Ding12 
and Yazdipour13 to simulate the microstructural evolution of 
materials during thermomechanical processing.

In simulations of grain growth, Geiger et al.14 developed 
a CA model that involves the determination of an energy 
barrier for cellular energy-dependent transitions of grain 
boundaries, which in turn depends on the difference in 
orientation between adjacent grains. He, Ding and co-
authors studied the morphology and kinetics of grain growth 
in two15 and three dimensions16 by computer simulation, 
using a model of cellular automata based on the principle of 
minimum energy. Through a balance between the system’s 
thermodynamic energy and the energy associated to grain 
boundaries, the algorithm they developed promotes the 

transition of a cell of the automaton, ensuring the reduction 
of the system’s power. Raghavan and Sahay17 proposed a 
cellular automaton model that estimates the grain boundary 
curvature to evaluate the driving force governing the process 
of grain growth in aluminum.

Based on a two-dimensional cellular automata algorithm, 
Rappaz and Gandin18 proposed a model for simulating the 
formation of grain structures in solidification processes. 
The model includes the mechanisms of heterogeneous 
nucleation, both at the liquid’s interface with the mold walls 
and inside the liquid metal, and of dendritic grain growth in 
preferred directions. The columnar-to-equiaxed transition 
and the equiaxed grain overlay were simulated based on 
the effects of alloy concentration and cooling rates on the 
resulting microstructure observed experimentally. Nastac 
and Stefanescu19 combined the effects of solute micro-
segregation and super-cooling in their stochastic model for 
simulating the formation of micro-structural solidification 
using cellular automata. Zhu and Hong20 developed a cellular 
automata model to simulate eutectic growth, specifically 
the formation of lamellar morphologies in directional 
solidification conditions. Effects of growth rate on volume 
fraction, and consequently on the lamellar spacing between 
eutectic phases, were observed in two-dimensional domains.

The aim of this paper is to develop a cellular automata 
algorithm to simulate recrystallization and grain growth 
phenomena in isothermal and non-isothermal conditions, 
analyzing the results in the light of experimental results for 
these phenomena in highly cold-worked commercially pure 
titanium grade 2 21. This model combines several aspects 
of the phenomena reported in previous works involving 
isothermal simulations, and also contributes by proposing 
its extension to a non-isothermal simulation. A calibration 
of the model’s spatial and temporal dimensions is suggested 
based on experimental data that allow the kinetics of primary 
recrystallization and the evolution of average grain size in the 
growth stage of the material to be analyzed quantitatively. 
Three possible mechanisms of nucleation in the primary 
recrystallization stage are proposed, and an investigation 
is made to determine which of these mechanisms yields 
results closest to the experimental results. An analysis is 
made of situations simulating both isothermal treatments 
and Differential Scanning Calorimetry (DSC) experiments in 
which the temperature varies according to a given time rate.

2. Kinetics of Recrystallization and Grain 
Growth

The plastic deformation of a sample of polycrystalline 
metallic material at low temperatures compared to its melting 
temperature, also known as cold working, produces variations 
in its properties and microstructure, such as changes in 
the grain’s shape, hardness, increased dislocation density, 
corrosion resistance, and thermal and electrical conductivities. 
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The reason for these variations is that although most of the 
energy involved in the cold working process is dissipated 
as heat, a considerable part of energy, called strain energy, 
is stored in the material. The basic mechanism that causes 
deformation in metals consists in the generation and motion 
of dislocations that favor relative displacements between 
the atomic planes.  Strain energy is associated with the 
presence of tensile, compression and shear zones around 
the dislocations generated22.

The original properties and structure can be restored by 
subjecting the material to an appropriate heat treatment at 
elevated temperatures. This treatment gives rise to recovery 
and recrystallization phenomena, which may be followed 
by grain growth and which cause the energy stored during 
cold working to be partially or totally eliminated. Due to 
strain energy, cold-worked material is in a higher state of 
energy than prior to its deformation. Hence, its condition of 
equilibrium is metastable, enabling its possible transition to 
a more stable state in favorable thermodynamic conditions 
involving certain types of activation energy. Recrystallization 
consists of the formation of a new set of non-equiaxed grains 
of low dislocation density which are characteristic of the 
condition prior to the cold working process. The driving 
force to produce this new grain structure is the difference 
in the material’s internal energy in its non-cold worked 
and cold-worked states that results from the elimination 
of dislocations. Thus, recrystallization and grain growth 
constitute key topics in physical metallurgy, and are relevant 
to both the theory and processing of metallic materials22. 

The kinetics of primary recrystallization is determined by 
the thermal activation of nucleation mechanisms and nuclei 
growth, which control the progress of the microstructure during 
the heat treatment. However, according to Rios and coauthors30, 
the final size of recrystallized grains are more sensitive to 
applied deformation than the annealing temperature. The 
amount of deformation affects the rate of recrystallization, 
that influences the amount of energy stored and consequently 
the formation of new nuclei or recrystallized grains. The 
quantitative description of homogeneous recrystallization 
kinetics is usually based on JMAK theory, which results in 
an equation such as22:

Measuring the recrystallized fraction as a function of 
treatment allows for the construction of a graph associated 
with Equation 2, in which the slope equals “n”. This 
procedure is called an “Avrami plot”. Further important 
detail of JMAK equation concerns about their generalization 
to heat treatment in which temperature is a function of time. 
In such cases, the recrystallization kinetics when evaluated 
using isothermal conditions is not straightforward since 
each step depends on the temperature. According to some 
authors22,27,31, the temperature dependence of the nucleation 
arises from the dependence of the static nucleation process 
that is thermally activated and therefore correlates with 
another dependence, the growth mobility. It is then sufficient 
to use, in place of parameter A (equation 1), a function as 
A(T(t)); therefore describing the evolution of temperature 
with time, to update the temperature dependent parameters 
in the nucleation and growth model at each time step. Briefly, 
the temperature dependence, provided by the rate of heating 
of the material to the annealing temperature can affect the 
rate of recrystallization.

From the metallurgical point of view, normal grain growth 
can be defined as the uniform increase in average grain size 
that occurs during the heat treatment of a polycrystalline 
aggregate after the completion of primary recrystallization. 
The kinetics of grain growth can be expressed, in terms of the 
evolution of the grain diameter “D”, according to Equation 3.

( )expX t At1 1n= - -Q QV V
In Equation 1, known as Avrami’s equation, X(t) is the 

fraction of recrystallized material as a function of time “t” of 
the heat treatment, “n” is the Avrami exponent and “A” is a 
constant related to the characteristic time of recrystallization. 
To obtain Equation 1, we consider the random distribution of 
nucleation sites throughout the microstructure and the fact 
that newly formed nuclei grow steadily until they impinge on 
other growing nuclei (impingement). The Avrami exponent 
is determined by Equation 222:

( )ln ln ln lnX A n t1
1 2- = +S X# &
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The growth exponent “m” can be evaluated by constructing 
a graph of the logarithm of average grain size by the logarithm 
of time for each temperature. In so-called normal growth, 
the grain size distribution is self-similar, indicating that the 
average grain size has shifted to higher values during the 
course of the treatment, but the height of the maximum and 
standard deviation of the distribution do not change.  

3. Simulation Methodology

The program consists of two parts. The first relates to 
primary recrystallization, which includes the nucleation and 
growth of recrystallized nuclei until the original deformed 
matrix is completely replaced by new grains devoid of 
imperfections, reducing the volumetric energy density stored 
in the system during its cold working process, mostly in the 
form of dislocations. The second part simulates the growth of 
recrystallized grains during further heat treatment to minimize 
the energy of the system by reducing the interfacial energy 
density associated with grain boundaries. 

3.1. Model for primary recrystallization

The fundamental mechanisms involved in primary 
recrystallization are nucleation and nuclei growth. The 
details of the nucleation process will not be considered, as 
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is the case of most of the recrystallization and grain growth 
simulation studies reported in the literature. In simulations, a 
nucleus occupies a cell. Hence, the cell size must reflect the 
approximate dimensions of a real nucleus. From a practical 
standpoint, this precludes the use of a single length scale to 
computationally simulate phenomena that occur on significantly 
different scales, as in the case of nuclei formation and grain 
growth until they reach their final average size. 

The initial condition for the simulation is a situation 
in which every cell in the field is in the cold-worked state, 
showing high dislocation density. This hypothesis is consistent 
with an experimental situation in which the sample’s level of 
deformation is high, distributing the preferential sites for new 
grain formation almost uniformly over the material. At the 
initial time, the state of a number of randomly chosen cells 
in the cold-worked matrix is changed to the recrystallized 
state. Although it does not represent a real nucleus formation 
process, this step of the simulation is usually called nucleation 
and the term “nucleus” is used to designate a cell of the 
automata whose state has changed to recrystallized. The 
value assigned to the state of recrystallized cells is 1, while 
non-recrystallized cells are assigned a value of 0. In addition 
to the state which indicates that a cell is recrystallized, each 
cell has an orientation state “q” that varies from 1 to 256, 
and an identification state “ide”. Cells with same “ide” are 
part of the same grain. The maximum number of orientations 
used is justified by Geiger14 as being sufficient to generate 
realistic microstructures.

Nucleation was simulated by three basic mechanisms. 
The first mechanism is site saturation, which involves the 
simultaneous generation of a certain number of nuclei 
distributed randomly over the grid only at the initial time. 
Subsequently, the nuclei grow until they impinge on one 
another and the process continues until the whole matrix is 
recrystallized. In the second mechanism, the nuclei appear 
at a constant rate (nuclei density) during recrystallization 
until the process is complete and the entire matrix has been 
transformed. In this type of nucleation, the rate is defined 
by imposing on the system the number of nuclei that arise 
at each step in time. Finally, the third nucleation mechanism 
considers the temperature and activation energy involved 
in the process by means of Equation 4, which calculates 
the percentage of nucleated cells at a given moment. In 
Equation 4, Qn is the activation energy for nucleation, R 
is the universal gas constant, T is the temperature of heat 
treatment, and N0 is a pre-exponential factor independent 
of temperature22.

the matrix is completely filled with small new grains free of 
imperfections. The growth rate of such nuclei, expressed in 
terms of driving force “p” for primary recrystallization and 
mobility “m” of the interface established between a region 
(in theory) free of imperfections and another with  a high 
density of imperfections, is written as23:

/ ( )expN t N Q RT 4N0= -Q QV V

In each case, the nuclei were generated at randomly selected 
sites in the matrix, since an initial condition is assumed in 
which the dislocation density is uniform throughout the system. 
The recrystallized nuclei, at a certain moment, grow until 

( )v mp 5=

The mobility of the boundary is given by:

/ ( )expm m Q R T 6o A $= -Q V

The driving force for primary recrystallization, ignoring 
the remaining dislocation density, is:

( )p Gb2
1 72t=

In Equations 6 and 7, “mo” is a constant, “QA” is the 
activation energy for the movement of grain boundaries, 
“R” is the gas constant, “T” is the temperature, “G” is the 
shear modulus, “b” is the modulus of the Burgers vector, 
and “ρ” is the dislocation density.

The nucleus thus generated will have probability of 
growth which, according to Davies6, can be written as:

( )P S

v dt
8CG

AC

$
=

#

In Equation 8, “SAC” is the size of the cell and “v” the 
velocity of the interface given by equation 5. If a cell has at 
least one nucleus in its neighborhood, it will have a certain 
probability to recrystallize. Thus, if a random number 
located at the interval [0,1] provided by the RAND routine 
in the Fortran 90 program is greater than or equal to the 
probability of growth, the state of the cell neighboring the 
nucleus is changed to recrystallized, which is equivalent to 
the movement of the boundary through a cell. Otherwise, 
the cell in question remains in the non-recrystallized state.

3.2. Model for grain growth 

In the simulation of grain growth, the orientation and 
identification stages used in the nucleation step are maintained 
and a new “EB” state is assigned to each cell, characterizing 
the boundary energy between adjacent cells which is generated 
by the difference in their orientations. This portion was not 
considered in the calculation of the driving force in the primary 
recrystallization stage because it is generally about three 
orders of magnitude smaller than the stored strain energy, 
according to Gottstein22. The grain growth in the algorithm 
is governed by the change in orientation of the cells located 
in a boundary region. The transition rule for the orientation 
of a particular cell is based on the reduction of its interfacial 
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energy. For each cell, denoted by “i”, we initially calculate 
its interfacial energy EBi according to Equation 9.

interfacial energy between cells. In short, the transition 
rule used is: if ∆EB > 0, the state of the cell is not changed; 
if ∆EB ≤ 0, the change in the cell’s orientation will have a 
probability of occurrence, minimizing as much as possible 
the interfacial energy among the cells in question.

4.  Results and Discussions

To computationally implement the recrystallization and 
grain growth model with the cellular automata algorithm, 
we used a two-dimensional matrix with 300x300 cells. In 
addition, we used Moore’s definition of neighborhood, in 
which the state of each cell depends on the state of the 
eight nearest neighbor cells. Periodic boundary conditions 
were adopted in the domain border and the code was 
developed based on Fortran 90 programming language. An 
important aspect of the application of cellular automata 
is the scaling of time and space. The spatial scaling was 
performed by attributing a given unit of length to each cell, 
chosen as 1 mm, as this is a usual scale for measurements 
of average crystalline grain size in metallic materials25. 
The correlation between a realistic time scale and time step 
in the simulation by cellular automata (cellular automata 
step – CAS) was determined based on the measured 
time for recrystallization in experiments using titanium 
samples21. In the stage of primary recrystallization, each 
CAS corresponds to 0.5 minutes, and in the grain growth 
stage the CAS/minute ratio equals 1.0.  Some input 
parameters for the simulation correspond to experimental 
results regarding the procedures performed for the cold-
worked commercially pure titanium grade 2 with 86% 
reduction in thickness21, while other parameters are taken 
from references in the literature. Table 1 lists the values 
of the parameters used in the developed code. 

4.1 Primary recrystallization

In the simulation of primary recrystallization during 
an isothermal treatment, the temperatures of 873 K, 948 
K and 1023 K were considered, which coincide with the 
experimental treatment temperatures applied to the titanium 
samples21. The mechanisms simulated in this study were 
site-saturated nucleation, nucleation at a constant rate at 
any annealing temperature, and nucleation at a temperature-
dependent rate. In the site saturation mechanism, in the first 
moment of the simulation, the status of 2700 randomly 
selected cells changed to “recrystallized” and, in the course 
of time, the progress of transformation occurred exclusively 
through the transition rules between recrystallized and 
non-recrystallized cells. In the mechanism of nucleation at 
a constant rate (independent of temperature), the status of 
540 randomly selected cells at each instant was changed 
to “recrystallized”, at any temperature at which the heat 
treatment was performed. 

( )E 1 9,Bi ij
j

qi qj

1

8

c d= -
=

Q V/

In our case, the number of neighbors equals 8, due to 
Moore’s definition of neighborhood, which was used in the 
simulations, while δij is the Kronecker delta equal to 1 if i = 
j, (cell i has the same orientation as the cell j), and equal to 
0 otherwise (cell i has a different orientation of cell j). The 
boundary energy γij between two adjacent cells is provided 
by Wolf’s24 adaptation to the equation proposed by Read and 
Schokley, expressed by Equation 10. Details about permutation 
between neighboring by Moore´s definition can be found in 
previous studies of cellular automata algorithm32,33.

( )lnE sen sen1 10ij ij ij0c i i= - Q V4 7

Were E0 is the maximum grain-boundary energy seen at 
angle θij, that denotes the difference in orientation between cells.

( )q
q q
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max
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Through the field at each time step, the orientation of each 
cell is provisionally altered by assigning to it the orientation 
of one of its eight neighbors, and the new boundary energy 
is calculated. If the interfacial energy presents a decrease, 
the new orientation given to the cell can be maintained and 
the transition can be confirmed for the next time level. In the 
procedure adopted, eight possible final boundary energies 
are calculated, provisionally attributing to this cell the 
orientation of each of its neighbors. If the attributions of 
any of its neighbors’ orientations reduce the cell-boundary 
energy, its original orientation is maintained. If more than 
one attempt of reorientation results in a decrease in boundary 
energy, the algorithm attributes to the cell, with a certain 
probability, the orientation that causes the maximum possible 
reduction of boundary energy. Thus, the driving force for 
the migration of grain boundaries is the minimization of the 
boundary energy between neighboring cells of adjacent grains. 
Besides reducing the interfacial energy in the boundaries, the 
model also considers the influence of a potential barrier to be 
overcome by the cell so that its orientation is altered. This 
is only possible if there is sufficient heat. This condition is 
depicted by the mobility of the boundary given by Equation 
6, in which the activation energy QA is replaced by the 
activation energy associated with grain growth QC.

When the reduction of grain boundary interfacial energy 
is possible, the change in the cell’s orientation will be 
confirmed through a probability given by a relation similar 
to Equation 8, in which the driving force for the calculation 
of interfacial speed now corresponds to the difference in 
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Table 1: Input –parameters for simulation.

Parameters Values

QN = QA 156.76 kJ/mol 21

QC 110.00 kJ/mol 26

N0 5.00 x 107

P 6.67 x 106 J/m3 21

m0 5.00 x 10-5 17

E0 3000 J/mol 14

qmáx 256 14

R 8.314 J/mol.K

These values for the initial number of sites whose state 
was to be altered were estimated by analyzing the beginning 
of the recrystallization kinetics curve obtained for samples of 
titanium in differential scanning calorimetry experiments21. 
To simulate site saturation, the transformed fraction was 
estimated immediately after the level corresponding to the 
incubation time of the process; while in the mechanism with 
a constant rate, the estimation was based on the fraction 
transformed in the early moments recorded. Thus, at the 
beginning of the simulation, we considered the density of 
small consolidated grains, ignoring the incubation time 
associated with nuclei formation. In the third simulation 
mechanism, the number of cells altered randomly at each 
instant was determined based on the annealing temperature, 
using Equation 4.

Figure 1 shows the graphs of the recrystallized fraction 
as a function of time at each temperature and nucleation 
mechanism used in the simulations. The graphs show the 
sigmoidal curves characteristic of recrystallization kinetics, 
without the time associated with incubation, since it started 
from a preestablished condition of initial nuclei. It appears 
that, at a lower temperature, the speed of transformation is 
lower for the three simulated nucleation mechanisms. The 
model then reproduces the dependence expected for the 
processing speed as a function of treatment temperature: the 
higher the temperature the faster the primary recrystallization. 

Figure 2 shows the evolution of the microstructure 
generated in the simulation of primary recrystallization 
at a temperature of 948 K in the course of time, with the 
respective values of the recrystallized fraction “X”. This 
fraction is determined by the ratio between the number of 
recrystallized cells and the total number of cells in the field 
at each instant. In the mechanism of site saturation, the 
transformation speed in the first 4 min is higher than with the 
other mechanisms. However, with the sequence of isothermal 
treatment, it is noted that, after approximately 8 min, the 
recrystallized fraction reaches a value of about 0.95 in all 
the nucleation cases studied. This higher speed in the case of 
site saturation is due to the higher nuclei density applied in 
the first instant of recrystallization. For the other cases, due 
to the lower initial densities, the recrystallized fractions are 

Figure 1: Graphs of the recrystallized fractions as a function of 
time at temperatures of 873 K, 948 K and 1023 K, and nucleation 
mechanisms corresponding to site saturation (a), constant rate 
(independent of annealing temperature) (b), and treatment temperature-
dependent rate (c). 

lower in the initial instants. Over time, as a greater number 
of recrystallized cells are nucleated in the mechanisms that 
involve nucleation rates, the recrystallized fractions in the 
three simulated mechanisms tend to equalize. The simulated 
microstructures show that a more refined structure was 
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Figure 2: Evolution of primary recrystallization at 948 K for the instants 1, 4 and 8 minutes, 
simulated by the nucleation mechanisms of: site saturation (a), constant rate (independent 
of annealing temperature) (b) and treatment temperature-dependent rate (c).

obtained at the end of 8 min for the site saturation, with 
a larger number of grains showing a lower average size 
compared with the two other mechanisms.

The effect of annealing temperature on the recrystallization 
rate is also shown in Figure 3 through Avrami plots. An 
increase in the Avrami exponent from the lowest to the highest 
temperature is observed in all the nucleation mechanisms. 
A decrease in the Avrami exponent in the final moments of 
the primary recrystallization process, which is highlighted 
in Figure 3 (b), was observed at almost all the temperatures 
and nucleation modes, basically due to impingement between 
growing grains and to the reduction of available sites for the 
emergence of new recrystallized grains.  According to Chun25, 
this behavior of the Avrami exponent, which indicates a deviation 
from the kinetics predicted by JMAK theory, is underpinned 
in experimental studies on the primary recrystallization in 
metallic systems. Furthermore, even it is a standard used by 
many authors, the standard interpretations about nucleation 
mechanisms are physically simplistic and not surprisingly, 
the measured n exponent is far from the values expected 
using these assumptions27,30,31. It is however well known 
that the nucleation rate is non-constant and that recovery 
takes place concurrently with recrystallisation leading to a 
non-constant driving force and therefore to a non-constant 
growth rate. In consonance with these observations, for low 
temperatures, where the recovery phenomenon becomes 

dominant, the divergence of the coefficient n with the theory 
(n=2) is increased. 

Table 2 compares the simulated values of recrystallization 
time and the experimental values obtained by analyzing the 
softening curves of the samples’ microhardness and micrograph 
measurements taken at each temperature of isothermal 
treatment21. In the simulations, the recrystallization time 
was determined as the time required for the recrystallized 
fraction to become (approximately) equal to 1. Specifically, we 
considered the value of the fraction X = 0.999 as a criterion 
to define the simulated recrystallization time.

The results of simulated recrystallization times are 
consistent with the corresponding values measured 
experimentally, especially for the mechanism of nucleation 
with temperature-dependent rate, indicating that this seems 
to be the mechanism that best describes the phenomenon.

As for the morphology of the microstructures generated 
by simulation at the end of primary recrystallization, Figure 4 
shows the formation of an equiaxed grain structure distributed 
uniformly over the entire grid in the three nucleation cases 
studied. The average diameter of recrystallized grains at 
the end of the process is given in Table 3, which compares 
the simulated and experimental values. Again, the model 
reproduces behavior expected based on experimental 
investigations: the average grain size generated at the end 
of primary recrystallization is independent of the treatment 
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Figure 3: Avrami plots for temperatures 873 K, 948 K and 1023 K, 
from kinetics simulated by nucleation mechanisms of: site saturation 
(a), constant rate (independent of annealing temperature) (b) and 
temperature-dependent rate (c).

temperature27,29. According to Table 3, the difference between 
the experimental and simulated average grain size is small 
and lies within the margin of error. This also suggests that 
the spatial scaling proposed here is suitable for the simulated 

conditions. In these simulations, the average diameter of 
recrystallized grains is not only independent of the annealing 
temperature but also shows no significant differences between 
the nucleation mechanisms with rates that are temperature 
dependent and independent. 

4.2 Grain growth

The grain growth step was simulated based on 
the microstructure generated by the model of primary 
recrystallization in which the nucleation rate is dependent 
on the annealing temperature, since the analysis of previous 
results indicated that this mechanism is the one that best 
describes the phenomenon in light of experimental results. 
It is worth noting that in the grain growth stage, the CAS/
time ratio adopted equals 1.

Figure 5 presents graphs of the logarithm of average 
grain size as a function of the logarithm of time for each 
temperature considered. As expected, the rate of grain growth 
that characterizes the phenomenon’s kinetics, as well as its 
average diameter, increases along with increasing temperature. 
The values of the growth exponent “m” obtained experimentally 
at each temperature are 0.58 for T = 873 K; 0.55 for T = 948 
K and 0.50 for T = 1023 K21. Compared to the corresponding 
values resulting from the simulation presented in Figure 5, 
the percent difference among these values ranges from 10% 
to 29%. These differences are due, in part, to the relatively 
high experimental error in the grain size measurements, but 
do not constitute a serious discrepancy between the results 
of the model and the phenomenon evaluated experimentally.

Table 4 compares the simulated and experimental average 
grain diameters at 60, 120 and 240 minutes obtained at each 
temperature, indicating a good agreement between them. 

Figure 6 depicts the simulated microstructures in the 
stage of grain growth after 1 and 4 hours at temperatures of 
873 K and 1023 K. The grain morphology in the matrix is 
essentially equiaxial, characterizing a single-phase material 
with no preferential orientation for interface advance among 
grains and with minimization of the energy associated with the 
boundary, which is the dominant driving force in the growth 
process. Figure 7 compares the simulated and experimental 
microstructures obtained at 948 K after 60 and 240 minutes.

Figure 8 (a) shows the grain size distribution over time 
at the temperature of 948 K. At 60 minutes most of the 
grains are concentrated below 50 µm2. Over time, there is 
a tendency for larger grains to grow while smaller grains 
gradually disappear, thereby changing the position of the 
maximum distribution to values between 50 µm2 and 100 
µm2. Figure 8 (b) shows that the grain size distribution does 
not vary significantly over time, maintaining a constant 
standard deviation, thus characterizing normal growth. This 
behavior was expected since the model considers an initial 
matrix without deformation heterogeneities and without a 
predefined preferred orientation. 
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Table 2: Experimental and simulated results for primary recrystallization times of CP titanium, at each considered temperature and for 
each nucleation mechanism.

Recrystallization time (min.)

T (K) saturation of sites rate independent of temperature rate dependent of temperature experimental21

873 33.0±0.5 20.0±0.5 38.0±0.5 30±1

948 6.0±0.5 9.0±0.5 11.5±0.5 15±1

1023 3.0±0.5 3.5±0.5 7.5±0.5 7±1

Figure 4: Microstructures at the end of primary recrystallization at 948 K: generated by simulation of 
these nucleation mechanisms: site saturation (a), rate independent of annealing temperature (b), annealing 
temperature-dependent rate (c), and rate obtained experimentally (d) in21.

Table 3: Comparison of simulated and experimental results for the average diameter of recrystallized grains at the end of primary 
recrystallization, at each temperature and for each nucleation mechanism.

Average diameter of recrystallized grains (μm)

T(K) saturation of sites rate independent of temperature rate dependent of temperature experimental21

873 5±1 8±1 7±1

8±2948 5±1 8±1 7±1

1023 5±1 8±1 7±1

4.3 Non-isothermal recrystallization

The model can also be used to simulate non-isothermal 
situations, extending directly to consider the variable 
temperature in each CAS time interval.  A typical situation 

in which this adaptation can be tested is the simulation of 
differential scanning calorimetry (DSC) experiments. Such 
experiments can be performed to detect the occurrence of 
primary recrystallization, determine the material recrystallization 
temperature and evaluate the activation energy involved in 
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Figure 5: Temporal evolution of average grain diameter during 
growth at each isothermal treatment temperature.

Table 4: Average grain diameters obtained in the simulation, in microns, compared with the experimental values obtained after 60, 120 
and 240 minutes at each heat treatment temperature.

Average diameter of grains (μm)

873K 948K 1023K 

60 min. 120 min. 240 min. 60 min. 120 min. 240 min. 60 min. 120 min. 240 min.

Simulated 7±1 8±1 10±1 8±1 10±1 15±1 13±1 20±1 27±1

Experimental21 5±2 8±2 13±2 8±2 11±2 18±2 11±2 14±2 22±2

the process28. Figure 9 illustrates the results for the simulation 
of the primary recrystallization kinetics occurring at heating 
rates of 5, 15 and 25 K/min. These rates are the same as 
those used in DSC experiments, with highly cold-worked 
samples of commercially pure titanium, which enabled the 
determination of activation energy and recrystallization 
temperature for the system under such conditions21. 

The analysis of Figure 9 indicates that the model of the 
nucleation mechanism whose rate is temperature-dependent 
yields results that are closer to the experimental data. The 
recrystallization temperature as a function of the imposed 
heating rate obtained by simulation lies in the range of 919 K 
and 960 K, while the temperature determined experimentally 
ranges from 917 K to 942 K21, with a relative error of less 
than 4% between them. In addition, due to the fact that for 
non-isothermal conditions there is a dependence of temperature 
on the nucleation mechanisms, the driving force and growth 
rate became non-constant. That way, in according to previous 
discussions and also to observed at figure 9, the results are 
closer to the experimental data.

The recrystallization times in this non-isothermal process 
can be evaluated by analyzing Figure 9. Table 5 compares 
the recrystallization times estimated by simulation with those 
determined from the experimental curves for nucleation 
at a temperature-dependent rate and for each heating rate 
imposed on the system.

Figure 10 shows the simulated microstructures at the 
end of primary recrystallization in the condition in which 
the temperature is 15 K/min. Similarly to the case of 

recrystallization in the isothermal treatment, the average 
recrystallized grain diameter is lower in the mechanism 
of site-saturation nucleation, emphasizing the influence 
of the nucleation mechanism on the final average grain 
size. Morphologically, the structure shows equiaxed grains 
throughout the matrix.

5. Conclusions

This paper proposes a model to simulate primary 
recrystallization and grain growth phenomena under 
isothermal and non-isothermal conditions. The model 
is implemented computationally through a cellular 
automata algorithm. The simulated system corresponds 
to highly cold-worked CP-Ti grade 2, samples of which 
were subjected to isothermal treatments or to DSC tests 
in which a heating rate was imposed on the samples. 

In the primary recrystallization stage under isothermal 
conditions, three possible simulation mechanisms are 
considered for the nucleation of new crystalline grains: 
site saturation nucleation, temperature-independent 
nucleation rate, and temperature-dependent nucleation rate. 
The recrystallization time and temperature dependence, 
average grain diameter and grain morphology at the end 
of primary recrystallization were determined for each of 
these mechanisms. A comparison of the simulated and 
experimental results for the system in question indicates 
that the mode that best simulates the phenomenon is 
the temperature-dependent nucleation rate and that the 
spatial and temporal scaling suggested in the algorithm 
is suitable. Observing the Avrami curves, it is possible 
to note deviations from the predictions of JMAK theory 
which are indicated by changes in the Avrami exponent 
in the final moments of primary recrystallization. This 
finding is consistent with those of other studies reported 
in the literature, both experimental and theoretical.

Based on the microstructure obtained at the end of 
primary recrystallization, the nucleation mechanism at 
a temperature-dependent rate follows the simulation 
of the stage of grain growth in isothermal treatments. 
It appears that temperature increases tend to increase 
the growth exponent, and the difference between the 
growth exponents resulting from the simulations and 
their respective experimental values is between 10% 
and 29%. The simulated average grain diameter and the 
corresponding experimental values are in good agreement, 
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Figure 6: Evolution of grain structure simulated at temperatures of 873 K and 1023 K after 
60 and 240 minutes.

Figure 7: Temporal evolution of grain structure at a temperature of 948 K after 60 and 
240 minutes: (a) and (b) simulated, (c) and (d) micrographs of grain structure obtained 
experimentally21.
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Figure 8: (a) Distribution of average grain size after 60, 120 and 
240 minutes at a temperature of 948 K. (b) Normalized distribution.

Figure 9: Evolution of the recrystallized fraction as a function of 
temperature for the nucleation mechanisms of: (a) site saturation, (b) 
temperature-independent rate, and (c) temperature-dependent rate.

Table 5: Evaluation of the recrystallization times, in minutes, 
based on the simulated and experimental curves in Figure 9 (c), 
at each heating rate.

Heating rate (K/min) Simulated time 
(min)

Experimental time 
(min)

5 22.0±0.5 27.0±0.5 

15 8.7±0.5 6.7±0.5 

25 6.4±0.5 5.8±0.5 

with the simulated structure composed of grains in the 
process of equiaxed growth. The grain size distribution 
indicates the occurrence of normal grain growth during 
the simulation.

Extending the code to include situations in which the 
temperature varies over time allows for the simulation 
of recrystallization in samples subjected to DSC tests at 
predetermined heating rates. Again, the results that best 
corresponded to the experimental data for the kinetics of 
transformation in CP-Ti were obtained with the temperature-
dependent nucleation mechanism. The relative error between 
the recrystallization temperatures calculated in the simulation 
and that obtained from the DSC experimental curve was 
lower than 4%.

With a proper calibration of the spatial and temporal scales 
and the insertion of fundamental physical characteristics 
of the processes into the model, such as the nucleation 
mechanisms and the principle of minimum energy, cellular 
automata algorithms can be used in quantitative simulations 
of primary recrystallization and grain growth in isothermal 
and non-isothermal conditions.
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Figure 10: Microstructures generated by non-isothermal simulation at heating rates of 15 K/minute from the nucleation mechanisms of 
(a) site saturation, (b) temperature-independent rate, and (c) temperature-dependent rate.
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