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The direct detection of gravitational waves by ground-based interferometric gravitational wave 
detectors in recent years has opened a new window of the universe, allowing the astrophysical 
observations of previously unexplored phenomena, such as the collisions of black holes and neutron 
stars. However, small thermodynamic fluctuations of the density of the thin films that compose the 
mirrors used within the gravitational wave detectors, such as the LIGO and Virgo detectors, give 
rise to noise which limits these instruments at their most sensitive frequencies. This "Brownian 
Thermal Noise" can be related to the inherent internal friction of the mirror materials through the 
fluctuation-dissipation theorem. Therefore, the improved sensitivity of gravitational wave detectors 
depends, to some extent, upon the development of optical thin films with low internal friction. The 
past two decades have therefore seen the growth of internal friction experiments undertaken within 
the gravitational wave detection community. This article attempts to summarize the results of these 
investigations and to highlight current research directions in order to foster a stronger dialogue with 
the larger internal friction and mechanical spectroscopy community.
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1. The Intersection of Internal Friction and 
Gravitation Wave Detection

As of the writing of this manuscript, the Advanced LIGO1 
detectors have announced the detection of gravitational wave 
(GW) signals originating from the inspiral, merger, and 
ringdown of five binary black hole systems2-6 and one binary 
neutron star system7. These detections mark the beginning 
of a new form of astronomy wherein GWs, as opposed to 
light, provide new information about the universe. While 
the methods of GW production and propagation lie outside 
the scope of this manuscript - an excellent description is 
provided by Ju et al.8 - it is instrumental to note that the 
detected quantity, the GW strain h, was in all three cases 
on the order of 10-21.

Modern interferometric GW detectors, like the Advanced 
LIGO1, Advanced Virgo9, GEO60010, and KAGRA11 
detectors, use highly sensitive interferometer configurations 
in order to detect the minute changes in distance between 
an interferometer's test mass mirrors caused by a passing 
GW. These distance changes, ΔL, taken over the original 
test mass separation, L, provide the amplitude of the GW 
strain: the aforementioned h. Given that the initial test mass 
separations in these detectors are of the order of 103 m in all 
Earth-based GW detectors (4 km in the case of the Advanced 

LIGO detectors), it is easy to see that the detectors are able 
to detect length variations as small as ΔL ~ 10-18 m! With 
measurements of this scale come noise sources not generally 
expected in everyday laboratory experiments. A number of 
the limiting noise sources are shown in Figure 1.

The noise source most relevant to this review is that of 
coating Brownian thermal noise (CBTN). CBTN is caused 
by thermally driven random density fluctuations in the 
coatings used to make the interferometer mirrors. These 
fluctuations can be related to the internal friction of the 
coating materials through the fluctuation-dissipation theorem 
of Callan and Welton12. The importance of this noise source 
to the field of GW detection was first elucidated by Levin13, 
and expanded upon by others14-16. A simplified version of the 
equation describing the power spectral density of the CBTN 
for a single mirror, SCBTN(f), where the elastic properties of 
the mirror coating and substrate are assumed to be equal, 
and the Poisson ratio assumed to be zero, can be written as:

					            (1)

where kB is the Boltzmann constant, T is the temperature 
of the mirror, d is the thickness of the mirror coating, f is 
the frequency of interest, E is the Young's modulus, w is the 
Gaussian beam radius of the laser spot reflecting from the 
mirror, and ϕcoat is the internal friction of the mirror coating.
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nH material. IBS coatings of metal-oxides such as these are 
often found to be oxygen-poor, which contributes to increased 
optical absorption in as-deposited films20. This is remedied 
through annealing the films in ambient air to temperatures as 
high as 600o C. For general-purpose high-reflectivity mirrors, 
the optical thickness, n*l, where n is the refractive index 
and l is the physical thickness, of the individual layers is 
chosen to be 1/4 of the wavelength of the reflected light, and 
the number of layer pairs determines the total reflectivity of 
the coating. The test-mass mirrors used in Advanced LIGO 
have been slightly modified from this design, and have been 
optimized for reflecting light at two different wavelengths 
while minimizing material contributions to the value of ϕcoat

1.

3. Loss Measurement Techniques

Within the GW community, the most common method 
for determining the internal friction of thin films is by 
applying those films to well-charactarized substrates with 
extremely low internal friction and then measuring the change 
in mechanical quality factor, Q, of the substrate's resonant 
modes. Absent any external losses, the internal friction of the 
film, ϕfilm, is related to Q of the coated substrate, Qcoated, by:

					            (2)

where Qsubstrate is the Q of the uncoated substrate at the 
same resonant mode, and Ufilm/Utotal is the ratio of elastic 
energies stored in the film to the total energy in the combined 
film/substrate system at the resonant mode. Here, we use ϕfilm 
instead of ϕcoat in order to differentiate between the internal 
friction of an individual thin film under measurement and 
the internal friction of the complete multilayer coating 
used for making GW detector mirrors in Equation 2. In 
practice, the value of Q-1

coated is often more than an order 
of magnitude greater than Q-1

substrate, despite the fact that 
Ufilm/Utotal is generally much less than 10-3, due to the 
much higher value of ϕfilm. We also highlight the difference 
between Q, a measure of all of the mechanical losses at the 
substrate's resonant frequency, and ϕfilm, a derived value of 
the film's internal friction, which in this case is measured 
at the resonant frequency of the substrate.

For room temperature measurements, the substrate is 
generally made of fused silica, similar in quality to that 
of the test mass mirrors in GW detectors. The substrates 
are made in the shape of a 3-inch (~7.6 cm) diameter disc, 
with a thickness on the order of 1-2.5 mm. The discs can be 
suspended using a welded-silica thread to minimize energy 
loss from the vibrational mode of the disk into the support 
structure15,21-23 or balanced at a nodal point of the resonant 
modes24-26. The resonant modes of the disc are excited using 
an electrostatic excitation plate, and the oscillation of the 
mode is read using either a birefingence sensor or optical 
lever; both of these methods exert negligible back-action. 

Figure 1. Design sensitivity of the Advanced LIGO gravitational 
wave detectors with the limiting noise sources plotted separately 
using the Gravitational Wave Interferometer Noise Calculator 
(GWINC). The red line, labeled "Mirror Coating Brownian" is one 
of the limiting noise sources at mid-frequencies, and is described 
by Equation 1.

Designs for future detectors take advantage of many of the 
parameters in Equation 1. The planned KAGRA, the Einstein 
Telescope17, and the proposed LIGO Voyager upgrade18, 
are all intended to be operated at cryogenic temperatures 
(reduced T), with larger beam spots (increased w), and with 
stiffer substrate materials (increased E). The ideal coating 
materials for these future detectors will have lower internal 
friction (reduced ϕcoat), and thinner films (reduced d), and 
the methods for achieving such films has been an area of 
intense research for more than a decade. For the sake of this 
review, we will focus primarily on the reduction of ϕcoat.

2. Mirror Film Structure and Optical 
Considerations

All but one of the currently-operating interferometric 
GW detectors use similar test mass mirror designs, which 
consist of a fused silica mass to act as both the test mass and 
the substrate for the mirror coatings. The one exception is 
that of the KAGRA detector, which uses sapphire substrates 
and cryogenic operation. The coatings themselves are 
multi-layer dielectric coatings composed of alternating 
high-refractive-index, nH, and low-refractive-index, nL, 
amorphous layers deposited using Ion Beam Sputtering 
(IBS). Dielectric mirror stacks of this type are used primarily 
to reach the interferometers' stringent optical requirements1. 
For example, the Advanced LIGO detector requires mirror 
coatings with optical absorption of less than 0.5 ppm, optical 
scatter of less than 10 ppm, and a surface figure deviation 
of less than 0.7 nm RMS19. To date, no coating vendor has 
been able to match these requirements using polycrystalline 
films or other deposition methods.

The mirror coatings are composed of silica (SiO2) as 
the nL material and titania-doped tantala (Ti:Ta2O5) as the 
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Once a mode is excited, the driving force is removed, and 
the Q can be determined by the ring-down timescale of 
the oscillation. The value for Ufilm/Utotal is calculated using 
finite element modeling, and depends upon the elastic 
properties of the film under study, as well as its thickness 
relative to the substrate thickness27. The internal friction 
of the coatings used in the Advanced LIGO GW detectors 
have been estimated from measurements made using these 
techniques, and the loss of the complete mirror stack has 
been calculated to be roughly 1x10-4 15. This value has been 
roughly verified through direct measurements of SCBTN in 
laboratory interferometers28,29. It has been found that this 
mechanical loss is dominated by the tantala layers, and the 
interfaces do not contribute significantly to the loss22.

For measurements at cryogenic temperatures, the 
substrates of choice are silicon cantilevers, usually 0.5-1 
cm in width, 4 cm long, and 50 µm thick, manufactured 
so that there is a thicker (~500 µm) clamping block on 
one end30-33. The clamping block is held between two 
stainless steel blocks mounted within a cryostat, where the 
temperatures are generally controlled between 10 and 300 
K. The bending modes of the cantilever are excited with an 
electrostatic drive plate, and the oscillations observed with 
either an optical lever or a shadow sensor. The cryogenic 
Qs of these substrates can reach ~107, presumably limited 
by clamping losses, and decrease steadily above 100 K due 
to thermo-elastic loss, ultimately reaching values of ~104 
at room temperatures30. The value for Ufilm/Utotal for the 
bending modes of a thin cantilever coated on one side can 
be calculated using the equation,

					            (3)

where E is the Young's modulus, t is the thickness, and 
the subscripts substrate and film refer to the substrate and film, 
respectively31.

4. Methods for Reducing the Mechanical 
Loss of IBS Optical Films

At room temperatures, research within the GW community 
has discovered two methods for reducing the internal friction 
of IBS silica and tantala films. The first method is that of 
annealing. As deposited, silica films have an internal friction 
in the low-10-4 values. Annealing can reduce this value 
by almost an order of magnitude34, with higher annealing 
temperatures leading to lower internal friction, ultimately 
limited to the loss value of the surface loss of bulk samples35,36. 
A similar trend is seen in the tantala layers, where internal 
friction is reduced, although less dramatically, with increased 
annealing temperature until the material crystallizes above 
600o C33. Work is underway to increase this crystallization 
temperature in tantala and other materials through the use of 
doping and nano-layer deposition37,38. Studies of structural 

changes in tantala show that this decrease in internal friction 
is correlated with increased medium-range order39.

The second method for reducing room-temperature 
internal friction in tantala is through the addition of titania 
(TiO2) doping. The room temperature internal friction of 
un-doped and un-annealed tantala films is in the high 10-4 22,21. 
By doping the materials with >20% titania, this loss can be 
reduced by as much as 40%23. This doping has the added 
advantage of increasing the value of nH, allowing for the 
reduced amount of material in the films, and further reducing 
the value of ϕcoat and d. Atomic structure measurements 
show that the reduction in internal friction is correlated with 
increased short-range order within the material40. Atomic 
modeling and analysis of the cryogenic internal friction 
indicates that there is an increase in activation energy of the 
associated loss mechanisms41,32. Other dopants have been 
explored, but to date, no combination has given a better film 
than titania-doped tantala42.

Cryogenic measurements of the internal friction of IBS 
silica and tantala films show a worrying trend for future 
cryogenic GW detectors, in that both materials exhibit a 
peak in mechanical loss around 20 K. In silica, this loss peak 
reaches values in the upper-10-4 36. While annealed tantala 
and titania-doped tantala films can reach as high as 10-3 31-33. 
If these films were used in a GW detector operating at 20 
K, the reduction in SCBTN due to the lower value of T (see 
Equation 1) would be counter-acted by the increased value of 
ϕcoat, reducing the benefit by a factor of 238. Contrary to trends 
seen in room-temperature internal friction measurements, 
the loss peak in tantala appears to grow in response to higher 
annealing temperatures32,33. In amorphous materials, these 
loss peaks are generally associated with thermally-excited 
Two-Level Systems (TLS). Two level systems are small 
configurations of atoms within the material where there 
exist two local configurational energy minima separated by 
a small activation energy43. In silica, the activation energy 
for the most prominent loss peak is about 32 meV36 while 
in pure tantala, it was measured to be 28.6 meV32 and in 
titania-doped tantala, this value is increased to 42 meV33.

5. Current Research Directions

Atomic modeling efforts are underway to identify the 
physical nature of TLS in optical thin films41,44-46 with the 
goal of computationally predicting coating materials that can 
have a low internal friction, thereby reducing the number of 
physical films to be measured in the laboratory. In general, 
it has been discovered that TLS are a broad population of 
mechanisms involving bond rotations and reformations 
involving a few to tens of atoms throughout the material. 
Recent work has elucidated the effects of dopants on the 
population of TLS41 and shown how loss peaks at higher 
temperatures may be explained by separate populations of 
TLS within the material46.
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Another quickly-growing research direction within the 
GW community is the exploration of TLS-free materials, 
which would have drastically-reduced internal friction at 
cryogenic temperatures. Work done at the Naval Research 
Laboratory, in collaboration with Berkeley, has shown that 
amorphous silicon (a-Si) e-beam evaporated upon heated 
substrates exhibits no TLS47-49. This method of film deposition 
is similar to that of Ultra-Stable Glasses (USG) known within 
the organic glass community50. These a-Si films exhibit 
many similarities with USG, including increased density 
and reduced heat capacity. Another USG, indomethacin 
(C19H16ClNO4), has also been shown to have no TLS51. This 
has led to the exploration of methods for making USG forms 
of common optical materials for use in GW detectors. Recent 
work within the Naval Research Laboratory has shown 
that it is possible to make low-TLS a-Si using magnetron 
sputtering, which produces films with higher-densities than 
e-beam evaporation, and may possibly reduce the need for 
high substrate temperatures. This can be seen in Figure 2. 
TLS-free a-Si exhibits optical absorption greater than those 
required by GW detectors; however, the material may still be 
useful as a buried layer in multi-material coating designs52.

Just as an amorphous material requires two elastic 
parameters to fully describe the elastic response of the 
material (e.g., Bulk Modulus and Shear Modulus, Young's 
Modulus and Poisson ratio, etc.), two associated anelastic 
parameters are required to fully account for the internal 
friction of material (e.g., ϕBulk and ϕShear). Another recent 
discovery within the GW community is that the internal 
friction associated with bulk deformations, ϕBulk, is different 
from internal friction associated with shear deformations, 
ϕShear, and that this difference gently hints at a frequency 
dependence53, as can be seen in Figure 3. The ratio of ϕBulk/
ϕShear has importance to GW detection, as this value can 
impact the calculation of SCBTN

16. To the best of the author's 
knowledge, this is the first ever measurement of this ratio 
for an amorphous material, and the frequency dependence 
has no theoretical explanation.

Figure 2. Internal friction of magnetron sputtered a-Si films deposited 
on substrates at elevated temperatures. The faded background plot 
is from reference Liu et al.47, and shows similar measurements 
for e-beam evaporated films. Sputtered films show reduced loss 
at the same substrate temperatures, indicating that higher-energy 
deposition processes may require lower substrate temperatures to 
produce TLS-free films.

Figure 3. Measurements of Shear and Bulk internal friction in 
titania-doped tantala films showing a possible frequency dependence. 
These figures are taken from Abernathy et al.53.

Finally, future GW detectors may transition to epitaxially 
grown crystalline coatings54,55. These coatings are known 
to have internal friction values a factor of ten lower than 
those of currently-used amorphous coatings54. A great detail 
of research is needed, however, to scale these coatings to 
match the size and optical requirements of GW detectors56. 
As these materials have multiple crystalline symmetries, 
even more elastic and anelastic parameters are required to 
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fully describe their thermal noise contributions; however, 
the repercussions of having more than two internal friction 
parameters are still under exploration.
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