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Phenomenological Approaches

Miguel Vaz Jr.a* , Emilio Rodrigues Hulsea, Masahiro Tomiyamaa

Received: March 08, 2019; Revised: April 30, 2019; Accepted: June 10, 2019

Austenitic stainless steels have largely been used in industrial equipment, architectural components and 
consumer items amongst others. Numerical simulation of manufacturing processes of such components 
and parts requires adequate hardening descriptions and accurate inelastic parameters. This work addresses 
these issues for the AISI 304 stainless steels based on phenomenological approaches using a higher order 
logarithmic yield stress equation and alternative micromechanical-based equations. Identification of 
the inelastic parameters is performed by either curve-fitting strategies or optimization techniques. The 
experimental-numerical comparative assessments demonstrate that the micromechanical-based yield 
stress equation derived from Bergström's dislocation model provides the best hardening description.
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1. Introduction

Austenitic stainless steels, in especial the AISI 304 grade, 
have been used in a wide range of applications, such as 
industrial equipment (e.g. food, pharmaceutical and mining 
equipment), architectural components (decorative panels, 
ornamental work, etc.) and consumer items (sinks, cutlery, pans, 
etc.) amongst others. The reason lies on its good corrosion/
oxidation resistance, weldability, formability, toughness and 
ductility. The high industrial interest has prompted the present 
discussion on (i) the suitability of some selected heuristic 
and micromechanic-based phenomenological equations to 
model hardening evolution of the AISI 304 stainless steel 
and (ii) strategies to determine the corresponding parameters.

A successful numerical simulation of metal forming 
operations to manufacture AISI 304 components requires 
appropriate inelastic modelling. The key aspects to be 
observed are the hardening law and corresponding inelastic 
parameters, and the level of plastic deformation. In general, 
inelastic parameters can be obtained by using either (a) 
curve-fitting strategies or (b) inverse problem techniques. 
The former directly correlates true stresses and true strains 
under uniform deformation, whereas the latter obtains the 
inelastic parameter by using optimization methods associated 
with global measures (e.g. geometry and load information).

The literature shows that hardening parameters of 
stainless steels are mostly determined by curve-fitting 
strategies associated with tensile tests. For instance, 
Kashyap et al.1,2 described the hardening behaviour of the 
AISI 316L stainless steel under high temperature based 
on two and three stages of the Holloman3 relation, σ=Kεn, 
where σ and ε are the uniaxial stresses and strains, K is the 
strength coefficient, and n is the strain-hardening exponent. 

Samuel and co-workers4,5 addressed the suitability of selected 
hardening equations to describe plastic deformation of the 
AISI 316L stainless steel. The authors concluded that, in 
most cases, Ludwigson6 equation, σ = Kεn + exp (K1 + n1ε), 
better describes the hardening behaviour, in which K1 and 
n1 are additional inelastic constants. Similar conclusion was 
reached by Isaac Samuel and Choudhary7 addressing the type 
316LN stainless steel. Following the works of Kashyap et al.1,2, 
Hertelé et al.8 indicate that the DIN 1.4462 duplex stainless 
steel can be described by two hardening stages based on the 
Ramberg-Osgood equation9, ε = σ/E + K (σ/E)n, where E is 
the Young's modulus. El-Magd10 investigated application of 
non-logarithmic yield stress equations to austenitic steels. 
The author adopted Voce's 11, σ = a + b [1 - exp (-cε)], and 
a modified version of Voce's yield stress equation, σ = C1 + 
C2 ε + C3 [1 - exp(-C4 ε)], to describe plastic deformation of 
the austenitic steels X6CrNi18-11 and X8CrNiMoNb16-16, 
respectively, where a, b, c, C1, C2, C3 and C4 are material 
parameters. Hardening descriptions for the AISI 316LN were 
discussed by Ashraf et al.12 for cyclic loading, who also adopted 
Voce's11 yield stress equation to model isotropic hardening.

Contrasting to curve-fitting strategies, application of 
optimization-based parameter identification techniques to 
austenitic stainless steels has been rarely reported in the literature. 
Notwithstanding, preliminary issues on use of optimization 
techniques to obtain inelastic parameters of the AISI 304 
were discussed by the authors in Vaz Jr. et al.13. However, it is 
important to mention that use of optimization methods is well 
established and has been used to determine inelastic parameters 
for both metallic and non-metallic materials. For instance, 
the authors addressed use of different optimization methods 
to parameter identification of materials as different as AISI 
1045 carbon steel and high-density polyethylene (HDPE)14.
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The present work aims to further discuss hardening 
descriptions of the AISI 304 stainless steels based on 
phenomenological approaches using (A) a higher order 
logarithmic yield stress equation and (B) alternative 
micromechanical-based equations. The corresponding 
parameters are determined by using either curve-fitting 
techniques (logarithmic equation) or optimization methods 
(micromechanical-based equations). The article is organized 
as follows: section 2 presents a third-order logarithmic 
yield stress equation and two hardening equations based 
on micromechanical concepts. Section 3 introduces 
parameter identification based on optimization strategies 
using a composed objective function. Application of 
the aforementioned hardening equations and parameter 
identification methods is presented in section 4. The main 
conclusions and final remarks are presented in section 5.

2. Micromechanical-based and phenomenological 
yield stress equations

The brief review shows that stainless steels present a 
peculiar hardening behaviour, frequently described by models 
based on multiple hardening stages or non-logarithmic 
equations. Furthermore, the AISI 304 stainless steel is subject 
to deformation-induced phase transformation of austenite 
to martensite, causing inflections in the stress-strain curve. 
However, De et al. 15 show for the AISI 304 steel that, for 
low strain rates and temperatures higher than 298 K (as 
defined in the present experiments), such effects do not take 
place, making possible to model inelastic deformation using 
straightforward phenomenological approaches.

2.1 Heuristic phenomenological yield stress equations

The literature shows a wide range of empirical stress-
strain relations, such as the classical equations proposed by 
Hollomon3, Ludwigson6 and Swift16. The material parameters 
of most such equations are determined by curve-fitting 
procedures of true stresses and true strains in a logarithmic 
plot. This technique requires the assumption of uniform 
deformation, thereby restricting evaluation of strains and 
stresses up to necking onset (instability). The literature review 
presented in section 1 highlights the nonlinear dependence 
of logarithmic stresses on logarithmic strains exhibited by 
the AISI 304 stainless steel (oftentimes modelled by two1,7> 
or three2 hardening stages) . Therefore, the present work 
investigates the suitability of a higher order logarithmic 
yield stress curve.

Within this framework, Dimatteo et al.17 proposed a 
3rd order (ln σ)×(ln ε) logarithmic fit to Dual Phase (DP) 
450/600/800/1000 and Transformation Induced Plasticity 
(TRIP) 800 steels attempting to predict the influence of alloying 
elements and heat treatment conditions in a simple manner. 

The present work investigates a possible extension to the AISI 
304 stainless steel. Complementing the equation introduced 
by Dimatteo et al.17, this study includes a provision for elastic 
deformations, so that
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where A, B, C, and D are the model parameters to be 
determined by the curve-fitting procedure, ε0, is the initial 
strain which is obtained by solving the cubic-logarithmic 
equation resulted by the intersection between the elastic 
and plastic curves, A[ln(ε0)]

3 + B[ln(ε0)]
2 + (C-1)[ln(ε0)] + 

(D-lnE) = 0, in which E is the Young's modulus.

2.2 Micromechanical-based yield stress equations

Phenomenological yield stress models can be approximated 
from micromechanical-based concepts. This section 
summarises strategies to obtain two such equations. The 
approach accounts for physical mechanisms of dislocation 
theory assuming a Taylor-like correlation18 between the yield 
stress, σY, and total dislocation density, ρ, as

       ,M GbYv v a t t= + -) )R W           (2)

where M is a factor which correlates the shear flow stress of 
a single crystal and the uniaxial flow stress of a polycrystal, 
α is a parameter which depends on the dislocation/dislocation 
interaction and thermal activation kinetics, G is the shear 
modulus, b is the magnitude of the Burgers vector, and σ* 
and ρ* are reference values. All micromechanical parameters 
are assumed constant in the present approximation. The 
following paragraphs summarizes key aspects of two 
alternative phenomenological yield stress equations obtained 
from Eq. (2).

Modified Voce's yield stress equation: Voce's original 
equation was proposed based on empirical considerations11. 
However, El-Magd10 demonstrated that this hardening 
law can also be derived from micromechanical approach. 
Nevertheless, the author indicated that its application to 
austenitic steel X6CrNi18-11 at different temperatures 
provided good approximation only in the range of relatively 
small plastic strains up to 0.210.

Following similar considerations, based on Mecking 
and Kocks'19 evolution of the dislocation density, 
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plastic strains can be derived by assuming a constant dynamic 
recovery rate, k MK

2 , and by approximating the effects of the 
dislocation density and dislocation free path, l, upon the dislocation 
storage rate10 as / ,k l k c1 1MK
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c* are constants of the model. The evolution of the dislocation 
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The yield stress equation is determined by solving the 
differential equation, / / / ,d d d d d dY p Y pv f v t t f= Q QV V  
where dσY /dρ is obtained from Eq. (2), so that
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in which t
0v  and tv3  are the initial stress and saturation 

stress, respectively, ςt is the linear hardening coefficient, 
and δt is the rate of approximation to the linear hardening. 
The correspondence between the phenomenological and 
micromechanical parameters obtained from solution of the 
differential equation is presented in Table 1. Phenomenological 
hardening laws similar to Eq. (3) have been referred as 
Modified Voce model. The literature shows increasing use of 
this hardening equation to describe the yield stress evolution 
of different materials, such as the DP 780 / TRIP 780 high 
strength steels20 and X8CrNiMoNb16-16 austenitic steel10.

Bergström's yield stress equation: Bergström21 proposed 
a micromechanical stress-strain relation for polycrystalline 
monophasic steels based on the behaviour of large number 
of mobile and immobile dislocations. In this case, the 
evolution of the dislocation density with respect to plastic 
deformation was derived as dρ/dεp = UB - AB - ΩB ρ, where 
ΩB is associated with mobilization and annihilation of 
dislocations, AB and UB represent parameters which account 
for mobile dislocations and its corresponding rate of increase, 
respectively. The phenomenological yield stress equation is 
derived from dρ/dεp and Eq. (2) as
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where b
0v  is the initial stress, bv3  is the saturation stress, k

bv  
is the stress correction for the initial dislocation density, 
ρ0, and δb, is the rate to approximate the saturation stress. 

Table 1 also presents the correspondence between 
phenomenological and micromechanical parameters for 
Bergström's hardening equation obtained from solution of 
the differential equation.

3. Identification of the material parameters

Material parameters of yield stress equations can be 
determined either by curve-fitting strategies or by inverse 
problem techniques. The former obtains the inelastic 
parameters directly from fitted true stress - true strain 
curves, whereas the latter uses optimization methods to 
approximate computed and measured global/local quantities.

Curve-fitting strategies: The present work makes use 
of tensile tests to obtain experimental data to determine the 
inelastic parameters. Tensile tests of ductile materials involve 
five general stages/events: (i) elastic deformation; (ii) plastic 
deformation under uniform stress states; (iii) necking onset; 
(iv) inelastic deformation under triaxial stress states; and 
(v) catastrophic/macroscopic failure. The technique fits the 
yield stress equation in a true stress/true strain logarithmic 
plot. However, curve fitting must be performed under 
uniaxial conditions and, therefore, comprises stage (ii) up 
to necking onset (i.e. instability) in order to avoid triaxial 
stress/strain states.

Inverse problem techniques: The inverse problem 
techniques use optimization methods to determine material 
parameters of the yield stress equations. The method 
minimizes the differences between experimental measures 
and corresponding computed responses with respect to a 
given norm22. In order to better capture the effects of plastic 
deformations and improve assessment of the parameters 
obtained by the optimization method, this work adopts 
evolution of both tensile load, RL, and specimen central 
radius, RD, measured at selected deformation stages. In the 
present work no uncertainties were accounted for.

Table 1. Phenomenological correspondence of micromechanical parameters.
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Unconstrained nonlinear optimization is used in the 
present parameter identification problem, which can be 
generally stated as
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are individual objective functions for the load (subscript L) and 
specimen central radius (subscript D), NL and ND are corresponding 
number of experimental points, p p p pp i n

T
1 2 pg g= " %  is 

the design vector containing np design variables pi (material 
parameters), and p inf

i  and p sup
i  are minimum and maximum 

values of each material parameter. The weights λL and λD 
are the contribution of each measure to the global objective 
function which, in the present study, were assumed 0 ≤ λL, 
λD ≤ 1 and λL + λD = 1.

The optimization technique adopted in this work uses 
the gradient-free downhill simplex method, also known as 
Nelder-Mead (NM) algorithm23. It is important to mention 
that, in principle, any optimization method can be used in 
conjunction with the proposed strategy. The NM algorithm 
was selected owing to its high success rate and computational 
cost-wise competitiveness in similar problems when 
compared against heuristic and gradient-based schemes14. 
The method defines a regular polytope of np + 1 vertices 
for a np number of material parameters, which contracts or 
moves towards the minimum by replacing the worst vertex. 
Selection of the new vertex is performed after the following 
possible operations: reflection, expansion, internal/external 
contraction or shrinkage. Convergence is assumed when the 
normalized global fitness with respect to the best and worst 
vertices reaches a pre-defined value. The reader is referred 
to Nelder and Mead23 and Lagarias et al.24 for additional 
details on the NM optimization scheme, and Vaz Jr. et al.25 
for the implementation used in this work.

4. Results and Discussions

This section discusses parameter identification of the AISI 
304 stainless steel using curve fitting and optimization methods. 

Tensile tests of cylindrical specimens prepared according 
to the Brazilian ABNT NBR ISO 689226 were adopted to 
determine the inelastic parameters of Eq. (1) and Eqs. (3)-
(4). The chemical composition of the austenitic AISI 304 
steel used in this study is presented in Table 2.

The specimens were manufactured with a gauge section 
diameter d0 = 10 mm, initial gauge length l0 = 50 mm 
(measurements performed by a clip gauge transducer), total 
gauge section L = l0 + 2d0 = 70 mm, shoulder diameter ds 
= 20 mm and a transitional radius rt = 15 mm between the 
gauge section and shoulder. The tests were performed under 
displacement control with maximum crosshead speed vc = 3 mm/
min (low strain rate). Evolution of the specimen central radius is 
estimated by assuming plastic deformation at constant volume 
up to necking onset, so that RD = R0/(e + 1)1/2, where R0 is the 
initial central radius and e = ∆l/l0 is the specimen elongation 
(engineering strain). The reference radius data are complemented 
by measurement of the final specimsen central radius.

The geometrical model used in the simulations consider 
axisymmetry around the rotation axis Z - Z' and symmetry 
about the R - R' axis, making possible to model only 1/4 of 
the specimen. A structured, eight-noded quadrilateral finite 
element mesh with 200 elements and 661 nodes with progressive 
refinement towards the specimen R - R' axis was used.

4.1 Curve-fitting of the third-order logarithmic yield 
stress equations

The curve-fitting strategy accounts for load evolution 
from plastic onset up to necking. The elastic limit is the lower 
bound imposed by the elastic curve, whereas the maximum 
load is assumed as the instability limit (necking onset). 
The true strains and true stresses are determined as ε=ln (1 
+ e) and σ = s (1 + e), respectively, where s = RL/A0 is the 
engineering stress, RL is the axial load, and A0 is the initial 
cross-sectional area. The reader is referred to Davis27 for a 
detailed description of the curve-fitting method, including 
experimental considerations and requirements.

Figure 1(a) shows the experimental data and fitted 
equation in a (lnσ) × (lnε) plot, whereas Table 3 presents the 
corresponding material parameters. For the sake of clarity, 
not all experimental points are represented in Figure 1(a) and 
forthcoming figures. The experimental data show that the 
yield stress of the AISI 304 stainless steel at room temperature 
prompts a nonlinear correlation between stresses and strains in 
the (lnσ) × (lnε) space, thereby precluding using of first-order 
logarithmic equations such as Hollomon's3 and Swift's16. On 
the other hand, the 3rd order logarithmic curve achieved an 
excellent fit with a coefficient of determination R2 = 0.999187.

Table 2. Chemical composition of the AISI 304 steel (in wt.%)(*).

 Cr Ni C Mn P S

Nominal 18-20 8-10.5 max 0.08 max 2.0 max 0.045 max 0.03

This work 18.677 8.780 0.07612 1.9856 0.01984 0.02767
(*) Mass spectrometer – Shimadzu OES 5500II



5A Note on Parameter Identification of the AISI 304 Stainless Steel Using Micromechanical-Based 
Phenomenological Approaches

Verification of the 3rd order logarithmic equation is 
performed by comparing load and central radius computed 
by finite elements (using the aforementioned geometrical 
model) against available reference data. In this case, the yield 
stress is defined by Eq. (1) with hardening parameters given 
in Table 3. Figure 1(b) indicates a very accurate prediction 
of tensile loads and specimen central radius up to necking 
onset. However, the simulations show that both tensile load 
and specimen central radius are grossly overestimated after 
the maximum experimental load. In this case, no necking 
was observed, causing the computed load to further increase 
towards the final stages and macroscopic failure. Therefore, 
use of the 3rd order logarithmic equation is restricted to 
relatively small plastic strains, represented by the equivalent 
plastic strain limit . .0 317p #fr

4.2 Application of the optimization-based technique 
to the Modified Voce and Bergström yield stress 
equations

Use of optimization methods makes possible to determine 
inelastic parameters taking into account experimental data up 
to macroscopic failure. In the present study, the tensile load 
and specimen central radius constitute the reference measures. 
The global error function is represented in Eq. (5), whereas the 
individual objective functions are given by Eqs. (6). The global 
error g(p) constitutes a weighted sum of the individual fitness 
gL(p) and gD(p) by λL and λD. This strategy allows a straightforward 
investigation of the effects of each type of reference measure 
(load / central radius) in the final hardening parameters. 
In order to quantify such effects a new index G(p,λ) is defined as

Table 3. Curve-fitting parameters for the third-order (ln )x(lnε) logarithmic curve.

 Symbol Value

3rd order polynomial equation

A 3.54744x10-3

B 8.12467x10-3

C 0.607523

D 21.3091

ε0 1.97659x10-3

Coefficient of determination R2 0.999187

Figure 1.  Third-order (lnσ) × (lnε) logarithmic curve: (a) Fitting of the third-order equation and (b) evolution of the tensile load and 
specimen central radius.
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where ;g 1 0min
L L Dm m= =R W and ;g 0 1min

D L Dm m= =R W are 
the best individual fitness for tensile load and central radius, 
respectively. Qualitatively, the index G(p,λ) represents the 
average differences between computed load and central 
radius for a given weight set {λL, λD} and their best individual 
approximation.

Three cases were studied for both Modified Voce and 
Bergström yield stress equations. Case A: parameter identification 
accounts for only tensile loads (λL = 1; λD = 0) and provides gmin

L  
(the individual fitness, gD, for the specimen central radius is 
calculated but not included in the computation of the global 
error function, g(p));Case B: parameter identification accounts 
for only the specimen central radius (λL = 0; λD = 1) and 
provides gmin

D  the individual objective function, gL, for tensile 

load is computed but not included in the computation of 
g(p)); and Case C: tensile loads and specimen central radius 
impose equal effect on obtaining the hardening parameters 
(λL = 0.5; λD = 0.5). Table 4 presents the individual fitness, 
gL (p) and gD (p), and the global index, G(p,λ), for all cases. 
The best individual fitness, gmin

L  and gmin
D , are represented 

in boldface. The corresponding load and central radius 
evolution curves for Modified Voce and Bergström yield 
stress equations are shown in Figures 2 and 3, respectively.

It is relevant to notice from Table 4 and Figures 2 and 3 
that, for both yield stress equations, parameter identification 
based solely on the specimen central radius (Case B:: λL = 0; 
λD = 1) does not guarantee acceptable approximations of the 
loading curve. The tensile loads are clearly underestimated 
for both Modified Voce (Figure 2a) and Bergström (Figure 3a) 
equations. It can be observed in Table 4, that the individual 
objective function for the load, gL, is substantially larger 

Table 4. Modified Voce and Bergström equations: best individual fitness(*) and global index.

Hardening Equation Case
Weights Individual fitness Global index

λL λD gL(p)x102 gD(p)x102 G(p,λ)

Modified Voce

A 1 0 0.794469 0.879569 14.316

B 0 1 15.1765 0.0413996 12.801

C 0.5 0.5 1.18416 0.193070 2.614

Bergström

A 1 0 0.775876 0.378298 5.106

B 0 1 14.2041 0.0460175 12.238

C 0.5 0.5 0.882198 0.163666 1.810
(*) and gmin

L  are gmin
D  represented in boldface.

Figure 2. Modified Voce's yield stress equation: evolution of the tensile load and specimen central radius.
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than their best minimum gmin
L  for both yield equations. 

A similar behaviour, yet in a smaller scale, can be observed 
when parameter identification is performed based solely 
on the tensile load (Case A:λL = 1; λD = 0). In this case, 
the greatest effect takes place in the final specimen central 
radius, reaching a maximum error of 6.1 % with respect to 
the experimental measure.

The best results are obtained when the influence of the 
tensile load and specimen central radius are accounted for 
(Case C:λL = 0.5; λD = 0.5). Table 5 presents the material 
parameters for Case C for both Modified Voce and Bergström 
yield equations. The quantitative assessment for Case C is 
also shown in Table 4, which indicates that the global index, 
G(p,λ), are markedly smaller than those evaluated for Case 
A and Case B.

The good approximations obtained for Case C are illustrated 
in Figure 4, which shows the finite element mesh and actual 
specimen at final stages of deformation for Bergström and 
Modified Voce equations. The geometrical differences between 
the actual specimen and simulations are very small, virtually 
imperceptible in Figures 4(a) and 4(b). The equivalent plastic 
strain, pfr , for both yield stress equations are also presented 
in Figure 4. The differences of pfr  computed using Bergström 
and Modified Voce equations are also very small, reaching a 
maximum of 0.1 % at the centre of the specimen.

Figure 3. Bergström's yield stress equation: evolution of the tensile load and specimen central radius.

Table 5. Final parameters for weights λL= 0.5 and λD= 0.5.

Equation Symbol Value

Modified Voce

t
0v 415.223 [MPa]

tv3 1049.68 [MPa]

tw 383.664 [MPa]

δt 3.75756

g(pt)=λLgL(p
t)+λDgD(pt) 6.88615 × 10-3

Bergström

b
0v 405.110 [MPa]

bv3 1726.55 [MPa]

k
bv 453.044 [MPa]

δb 1.05480

g(pb)=λLgL(p
b)+λDgD(pb) 5.22932 × 10-3

Remark: The results discussed in previous paragraphs show 
that identification of material parameters for both Bergström 
and Modified Voce equations using optimization techniques 
provide good results for both load evolution and geometrical 
configuration. Notwithstanding, Table 4 shows that, for weights 
λL = 0.5 and λD = 0.5 (Case C), Bergström equation provides 
individual errors, gL and gD, 34.2 % and 18.0 % smaller 
for tensile loads and specimen central radius, respectively, 
when comparing against Modified Voce hardening law. 
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Figure 4.  Finite element mesh and actual specimen at final stage of deformation and corresponding distribution of the equivalent plastic 
strain for (a) Bergström and (b) Modified Voce equations.

Furthermore, the global errors, g(p), (see Table 5) for 
Bergström equation is 31.7 % smaller than those evaluated by 
the Modified Voce equation. Therefore, based on the results 
discussed in the previous paragraphs, Bergström hardening 
law is recommended to represent the yield behaviour of the 
AISI 304 stainless steel. 

5. Concluding Remarks

The AISI 304 stainless steel has been largely used in 
manufacturing equipment and components owing its balance 
between good mechanical and corrosion characteristics and 
relative lower cost (when compared to other stainless steels). 

Therefore, a hardening description able to describe accurately 
inelastic deformation in a simplified manner is of great industrial 
interest. Many researchers agree that a purely micromechanical 
yield stress criterion is the best and the most elegant approach to 
account for strain induced phase transformation from austenite 
to martensite. On the other hand, the present phenomenological 
equations have shown able to approximate load and geometry 
evolution with acceptable accuracy, making possible its 
straightforward use in combination with commercial software. 
The present work is inserted within this framework and discusses 
use of a heuristic third-order logarithmic equation and two 
micromechanical-based phenomenological yield stress equations 
to describe hardening evolution of the AISI 304 stainless steel. 
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The material parameters of the hardening equations were 
determined by either curve fitting (third-order logarithmic 
equation) or inverse problem techniques (micromechanical-
based yield stress equations).

Curve-fitting of the third order (lnσ) × (lnε) curve 
indicates good results up to necking onset, corresponding to a 
maximum equivalent plastic strain pfr  = 0.317. Contrastingly, 
the optimization-based parameter identification was able to 
approximate both load evolution and geometrical configuration 
(specimen central radius) up to macroscopic failure, with 
equivalent plastic strains reaching values as high as pfr  = 1.355. 
Therefore, based on the fact that metal forming operations 
involve large plastic deformations, parameter identification 
using optimization-based strategies are highly recommended.

The present work investigated Modified Voce and Bergström 
hardening laws in association with an optimization-based 
strategy. In both cases, the technique required compliance 
of both load evolution and geometrical configuration 
(specimen central radius). The simulations indicated 
that Bergström equation provided smaller approximation 
errors than the Modified Voce hardening law. Therefore, 
Bergström equation is recommended to describe the yield 
stress evolution for the AISI 304 stainless steel.
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