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The Carbon Fiber Reinforced Polymer (CFRP) laminate structural components used in the 
aerospace and military domains require high precision and strong stability. Usually the deformation of 
these structural components is difficult to be measured directly during operation, but the deformation 
of the CFRP laminate structure can be reconstructed with strain information. The CFRP laminate 
structure can be designed to adapt to the requirements of different applications through layering of 
variable thickness. In this paper, aiming at the discontinuous stiffness and strength of the variable 
laminations within the CFRP laminate structure, the BP neural network is proposed to be applied to the 
deformation reconstruction of CFRP laminates. With strain as input and deformation as output, based 
on a large amount of experimental data, the BP neural network model between strain and deformation 
is obtained through training. In this paper, CFRP test piecs with equal thickness and variable thickness 
were designed, and the corresponding strain-deformation reconstruction experimental system was 
constructed. The strain on the surface of CFRP test piece was measured by the fiber grating sensor, 
and the deformation of the test piece was measured by the laser displacement sensor. The comparative 
analysis between the predicted deflection obtained by neural network reconstruction and the actual 
measured deflection shows that BP neural network can reconstruct the structural deformation of CFRP 
laminates within certain error range.

Keywords: CFRP laminates, deformation reconstruction, BP neural network, strain, fiber grating 
sensor.
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1. Introduction

Carbon Fiber Reinforced Polymer (CFRP) has the advantages 
of high specific strength, good damping performance and 
flexible designability and the CFRP laminate structure is one 
of the most common structures of CFRP materials. To meet 
the bearing and weight reduction requirements on different 
occasions, CFRP laminates often adopt the variable thickness 
structure, and the thickness can be changed by interrupting one 
or several layers in a single-layer sheet inside the structure1-3. 
At present, laminate structure is widely used in military, 
aerospace and wind power generation fields where quality 
and noise reduction performance are required. The CFRP 
aircraft wings, propeller blades and wind turbine blades are 
mostly of the variable thickness structure, whose shapes have 
requirements on high precision and strong stability since the 
deformation of the structure will affect their performance and 
bearing capacity, resulting in significant damage4-6. Often, the 
deformation of these structural components are difficult to 
be measured directly in operation using photography or laser 
technology. To clearly understand the deformation of CFRP 
laminate structures under certain load conditions, indirect 
measurement of deformation is available. For example, the 

deformation reconstruction of CFRP laminate structures can 
be performed based on strain information7-8.

At present, many scholars have proposed a variety 
of strain-based deformation reconstruction theories and 
conducted feasibility verification analysis, including inverse 
finite element method, structural curvature method and Ko 
displacement theory. The inverse finite element method can 
realize the transformation of surface strain and displacement 
of the structure. Through years of research and development 
by scholars such as Tessler A from NASA Research Center, 
the inverse finite element deformation reconstruction theory 
is applied to the truss, beam and frame structures, and the 
measured surface strain data are used to reconstruct the 
three-dimensional displacement field of truss, beam and 
frame structures9-11. However, the application of this method 
in the CFRP laminate structure requires the measurement of 
internal strain of the laminate, which is difficult. Meanwhile, 
the programming of the inverse finite element method and 
the construction of the inverse elements are complicated. 
The workload is large. which makes it impossible to achieve 
the real-time monitoring of deformation 12-14. Based on the 
analysis of the transforming relation between discrete strain 
and discrete curvature information, the structural curvature 
method explores the reconstruction algorithm of space 
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complex curved surface. However, this method transforms 
the strain information on structureal surface into the 
curvature information so as to reconstruct the deformation 
of structure, which is more suitable for large-area flexible 
plate structures15-17. Scholars such as William L. Ko of the 
NASA Flight Research Center proposed the Ko Displacement 
Theory in 2007, which was initially applied in engineering. 
Based on the classical hypothesis of material mechanics and 
the geometrical and physical relations of beam structure 
deformation, Ko displacement theory is to discretize the 
overall structure of the beam, assuming that in each section, 
the strain is linearly distributed along the length direction; 
using the partial derivative relationship between the strain and 
displacement function, the deformation in the area is solved 
through the integral of strain, and the overall deformation of 
the structure is reconstructed by integrating the deformation 
information in each area in combination with the coordination 
relations18. For the CFRP laminate structure with variable 
thickness, an area of stress concentration will be generated in 
the transition region inside the structure. Where the stiffness 
and strength of the structure are discontinuous, the force 
condition is more complicated. The relation between strain 
and deformation cannot be established under the classical 
material mechanical hypothesis. Therefore, Ko displacement 
theory is not applicable to the deformation reconstruction 
of CFRP variable-thickness laminate  structures19-20. Thus, 
the application of the above methods to the deformation 
reconstruction of CFRP variable thickness laminate structure 
has certain limitations.

In addition to the strain-based method, there is also a 
method of reconstructing the deformation of the laminate 
according to numerical analysis. In India, Hirwani CK 
and other scholars established a finite element model 
of carbon fiber composite laminated curved shell plates 
based on two higher-order kinematic models and Green-
Lagrange nonlinear strain-displacement relationships. 
An original MATLAB code was developed and proved. 
The mathematical model can reconstruct the nonlinear 
deflection value under different loading states21-22 .In 
recent years, with the continuous development of machine 
learning, artificial neural networks have been widely 
used to solve problems encountered in the development 
of materials engineering. Under the specific mapping 
relationship between ambiguous data, artificial neural 
networks propose a nonlinear mathematical form that 
can accurately predict data trends23. BP neural network 
is a typical algorithm in artificial intelligence networks 
.The BP neural network has a simple topology with high 
error precision, programming ease, strong operability 
and wide applications24. At present, BP neural network 
monitoring structural deformations are mostly used for the 
safety and health monitoring in large-scale engineering 
structures, such as the displacement prediction of dams, 
deformation monitoring of pipeline engineering and that 
of bridge tunnel engineering25-26.

In this paper, the BP neural network was proposed to be 
applied to the deformation reconstruction of CFRP laminate 
structures. With the CFRP equal-thickness and variable-
thickness laminates as the study objects, in the case of 
bending deformation of the CFRP laminate structure, there 
was certain relation between the strain and deformation. 
When the function was unknown, the surface strain of 
the structure served as the input and the deformation as 
the output, the BP neural network model was established. 
Based on the experiment, N sets of strain-deformation data 
were collected and input into the model. Through certain 
training and learning, the model can reconstruct the flexibility 
deformation of laminates based on the strain information of 
CFRP laminates, and the error of output deformation data 
and the expected values reached the target setting range.

2. Principles of the Deformation 
Reconstruction Based on the BP Neural 
Network Algorithm

The BP neural network is a multi-layered feedforward 
neural network whose training mode has two processes: the 
forward propagation of the signal and the back propagation 
of the error. The BP neural network model is as shown in 
Figure 1, including the input layer xi, the hidden layer hi 
and the output layer yi,Wij and aj、Wjk and bk represent the 
weights and thresholds of the input layer to the hidden layer, 
the hidden layer to the output layer, respectively.

Figure 1. Schematic Diagram of BP Neural Network Model

The output results in Figure 1 can be seen as the nonlinear 
function of the input vector and the specific calculation is 
as follows:

                   (1)

Where: w1,w2,w3,...+wn  represents the connection weight 
of each neuron corresponding to the neurons in the upper 
layer; x1,x2,x3

...,xn represents the input data of neurons in 
the upper layer; a represents the threshold of neurons in 
the layer. The output value of each neuron node is realized 
according to the output value of all nodes in the previous 
layer, the connection weight of the current nodes and all 
nodes in the upper layer, the threshold of the current nodes 
as well as the activation function. f represents an activation 

net w x w x w x w x an n1 1 2 2 3 3 g= + + + + +
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function, also called a transfer function. As an activation 
function, two conditions must be met, that is, the function 
can be derived and be a monotonically increasing function. 
The activation function used in this paper is the Sigmoid 
function that comes with MATLAB as shown in Equation (2).

                            (2)

It is easy to know that the range of the activation function 
is (0, 1), and it can be derived. The range of the derivative 
is (0, 0.25), and the derivative takes the maximum value 
when 0 is taken. The implementation steps of the BP neural 
network learning method are as follows : Firstly, the BP 
neural network was initialized. Assign a random number 
between (-1,1) to the weight and threshold ,the global error 
target value ε, the iterations Q and the learning efficiency η 
were set. A set of input layer vectors X (x1,x2,…,xn) and 
expected output vectors T (t1,t2,…,tm) were randomly 
extracted from the N sets of learning samples; weights 
Wij, Wjk and threshold values aj, bk were initialized and 
substituted into the activation function respectively so that 
the hidden layer H (h1,h2,…,hl) and the output layer vector 
Y (y1,y2,…,ym) were calculated with the expressions as 
shown in (3) and (4), where l was the number of nodes in 
the hidden layer and f was the activation function.

          (3)

        (4)

The neural network prediction error e is calculated 
according to the network prediction output vector 
Y(y1,y2,...,ym) and the expected output value T(t1,t2,…
,tm), and then the connection weights of the input layer to 
the hidden layer and the hidden layer to the output layer 
can be corrected according to the error term e, error e is 
a function of Wij. The learning efficiency η is needed in 
the correction process, and the learning efficiency can 
be regarded as the learning step, that is, the span of the 
weight and the threshold in the adjustment process. After 
the correction, the expression of the global error E can 
be obtained as shown in Equation 5.

                       (5)

 
Where p represented the number of network iterations, 

when E < ε, or the number of iterations p reached Q times, 
the algorithm ended. If not, a set of learning samples were 
randomly selected from the residual samples and input into 
the neural network for learning of the next round until the 
global error was less than the target value or the number 
of iterations reached the set value. Figure 2 shows the BP 
neural network algorithm learning process.

Figure 2. BP Neural Network Algorithm Learning Process

3. Deformation Reconstruction Experiment 
of the Strain-based CFRP Laminate 

In this experiment, a strain-based experimental system for 
CFRP laminate deformation reconstruction was constructed. 
The CFRP laminate test pieces with equivalent thickness 
and variable thickness were loaded by a universal tesing 
machine, and the strain of multiple nodes on the surface of 
CFRP laminate was measured with the fiber grating sensor. 
The deflection of the corresponding node was measured by 
the laser displacement sensor.

In the experiment, 45 sets of strain-deflection experimental 
data were collected as the training samples of the BP neural 
network model, and the strain-deflection BP neural network 
models of laminate structures with equal thickness and 
variable thickness were established respectively using the 
BP neural network algorithm toolbox in MATLAB. The BP 
neural network was further trained with the experimental 
sample data until the number of iterations reached the 
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set value or the root mean square error was less than 
the target value. Once the BP neural network model was 
successfully constructed.Then, another set of equal thickness 
and variable thickness laminate strain data collected is 
substituted into the respective BP neural network models 
to reconstruct the predicted deflection value. Finally, the 
predicted deflection obtained through BP neural network 
reconstruction was compared with the actual measured 
deflection value to verify the feasibility of the BP neural 
network applied to the deformation reconstruction study 
of CFRP laminate structure.

3.1 Design and preparation of CFRP laminate 
test pieces

In this experiment, two sets of CFRP laminates test pieces 
with equal thickness and variable thickness were designed. 
For the convenience of describing the test pieces, the two 
laminates of equal thickness were named as test pieces A1 and 
A2. The layering parameters were set as [02/±45/02/±45/03]s 
with 22 layers in total; a thickness of 0.2 mm per layer and 
the overall thickness of the model was 4.2 mm. The two 
laminates of variable thickness were named as test pieces 
B1 and B2, and the CFRP variable thickness laminate was 
realized by the drop of layering. The slope continuous 
transition was adopted by the layering dropping area where 
the thickest layering parameters were set as [02/±45/02/±45/03]

s totalling 22 layers and the thinnest layering parameters 
as [02/±45/±45/0]s with 14 layers in total, each layer had 
a thickness of 0.2mm, the thickest thickness 4.2mm and 
the thinnest 2.8mm. Each time the layer was dropped, the 
upper and lower layers were symmetrically oriented in the 
0° direction, and symmetric layering was assured. Figure 3 
shows the schematic diagram of dropping layering for the 
laminate with variable thickness.

In this experiment, the prepreg material produced by 
Zhongfu Shenying Carbon Fiber Co., Ltd. was used to 
prepare the carbon fiber/epoxy composite laminates through 
the autoclave molding process. The composition of the 
prepreg was mainly T700 carbon fiber and epoxy resin. 

Table 1 shows the cut size of the test piece prepreg. Figure 
4 shows the prepared test piece.

3.2 Experimental system

The experimental system was as shown in Figure 5. 
The CFRP test piece was fixed on the upper end face 
of the I-shaped support with steel plates and bolts to 
form a cantilever construction; the I-shaped support 
was fixed on the universal testing machine with two 
G-shaped clamps, and load was applied to the CFRP 
test pieces with the universal testing machine of the 
model DNS100. Six fiber grating sensors were attached 
along the center line of the CFRP test pieces to measure 
the strain. The FBG sensor has a diameter of 125μm, 
a length of about 10mm with the center wavelength 
around 1550nm. The wavelength deviation of the FBG 
sensor was demodulated and recorded by the MOI S130 
demodulator. The deformation of CFRP test pieces was 
measured by the laser displacement sensor. The sensor 
head model was Omron ZX2-LD100, the measurement 
range was 100±35 mm, the measurement accuracy was 
5 μm, and the linearity was ±0.1%.

3.3 Experimental procedures

3.3.1 Experimental data collection

First the initial wavelength of the FBG sensor and the 
initial readings of the deflection measurement node by the 
laser displacement sensor were recorded; the loading steps, 
and holding for 90s every 0.5mm; the central wavelength 
of the FBG sensors during the maintenance was saved 
for once. The laser displacement sensors measured the 
deflection of the measurement nodes for once until the load 
was applied to 25mm, with 50 loading stages in total plus 
50 sets of strain-deflection data. The wavelength shifts and 
changes in deflection of the FBG sensors for each loading 
stage were calculated, and the strain on the surface of the 
test piece was calculated according to the strain sensitivity 
of the FBG sensors.

Figure 3. Schematic Diagram of Dropping Layering of CFRP Variable Thickness Laminates
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A B

Number 
of Prepreg 
Tapes

Angle of 
Layering

Width of 
Prepreg 
Tapes 
(mm)

Length of 
Prepreg 
Tapes 
(mm)

Number 
of Prepreg 
Tapes

Angle of 
Layering

Width of 
Prepreg 
Tapes 
(mm)

Length of 
Prepreg 
Tapes 
(mm)

1 0° 70 400 1 0° 70 400

2 0° 70 400 2 0° 70 400

3 -45° 70 400 3 -45° 70 400

4 45° 70 400 4 45° 70 400

5 0° 70 400 5 0° 70 300

6 0° 70 400 6 0° 70 240

7 -45° 70 400 7 -45° 70 400

8 45° 70 400 8 45° 70 400

9 0° 70 400 9 0° 70 180

10 0° 70 400 10 0° 70 120

11 0° 70 400 11 0° 70 400

12 0° 70 400 12 0° 70 400

13 0° 70 400 13 0° 70 120

14 0° 70 400 14 0° 70 180

15 45° 70 400 15 45° 70 400

16 -45° 70 400 16 -45° 70 400

17 0° 70 400 17 0° 70 240

18 0° 70 400 18 0° 70 300

19 45° 70 400 19 45° 70 400

20 -45° 70 400 20 -45° 70 400

21 0° 70 400 21 0° 70 400

22 0° 70 400 22 0° 70 400

Table 1. Prepreg Cutting Size of Laminates. A Sizes of Laminates A1 and A2 with Equal thickness, B Sizes of Laminates B1 and B2 
with Variable thickness

Figure 4. Prepared Test Piece of Equal Thickness and Variable 
Thickness Laminates

3.3.2 Creation and training of the BP neural network 
model

Using the existing BP neural network algorithm toolbox in 
MATLAB, the BP neural network model of strain-deflection 
of laminated plate structures is established. There were six 
strain detection nodes and five deflection measurement nodes 
on each test piece .The number of nodes in the input layer 
was set as 6, the number of nodes in the output layer as 5, 
the number of nodes in the hidden layer as 8, the number 
of iterations as 100, the learning rate as 0.1, and the target 
value of the root mean square error as 0.0005. The 45 sets 
of strain-deflection data of equal thickness and variable 
thickness structures were randomly extracted and collected 
as the training samples respectively later, the other 5 sets of 
data are used as test data. the weights and thresholds of the 
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A B
A1 B1

Distance to 
the Fixed 
End/mm

Strain/με
Measured 
Deflection 
Value /mm

Predicted 
Deflection 
Value /mm

Distance to 
the Fixed 
End/mm

Strain/με
Measured 
Deflection 
Value /mm

Predicted 
Deflection 
Value /mm

0 803.23 -- -- 0 692.75 -- --
60 627.63 -1.557 -1.590 60 577.36 -0.953 -0.945
120 508.25 -4.473 -4.514 120 532.44 -3.427 -3.322
180 370.04 -8.132 -8.038 180 485.74 -6.197 -6.123
240 223.29 -12.368 -12.365 240 396.30 -10.13 -10.197
300 72.96 -16.824 -16.803 300 162.89 -15.489 -15.481

C                     D
A2 B2

Distance to 
the Fixed 
End/mm

Strain/με
Measured 
Deflection 
Value /mm

Predicted 
Deflection 
Value /mm

Distance to 
the Fixed 
End/mm

Strain/με
Measured 
Deflection 
Value /mm

Predicted 
Deflection 
Value /mm

0 880.38 -- -- 0 651.12 -- --
60 749.91 -1.808 -1.544 60 519.99 -1.047 -0.810
120 577.09 -4.74 -4.498 120 511.49 -3.075 -3.447
180 403.51 -9.044 -8.183 180 447.72 -6.03 -6.195
240 233.33 -13.348 -12.452 240 356.63 -10.52 -10.025
300 86.80 -17.758 -16.710 300 176.02 -15.4 -15.465

Table 2. Comparison of Measured Deflection Values and Predicted Deflection Values of the Test Pieces. A~D Measured Deflection Value 
and Predicted Deflection Value of Test Piece A1、B1、A2、B2, respectively

Figure 5. Experimental System of the Strain-based CFRP Laminate 
Deformation Reconstruction. a Schematic Diagram of the Experimental 
System,b Site Map of Experimental System,c Paste Position of the 
FBG Sensors

BP neural network were initialized, a set of data randomly 
selected, and the strain data were substituted into the model 
for the calculation of the predicted deflection value. By a 
comparison with the actual deflection value, the root mean 
square error between the two was calculated, and the weight 
and threshold of the network were adjusted according to 
the root mean square error. If the root mean square error 
was smaller than the target value, the next set of data was 
randomly selected from the residual training samples and 
substituted into the model for recalculation until the number 
of iterations reached the set value or the root mean square 
error was less than the target value. By this time the cycle 
was terminated and the strain-deformation BP neural network 
model for the test piece structure was obtained.

After the BP neural network models with equal thickness 
and variable thickness were established, the strain data of the 
test pieces A2 and B2 were substituted into their respective BP 
network models to calculate the predicted deflection values.

3.4 Experimental results

Table 2 shows the analysis summary of the strain values, 
measured deflection values and predicted deflection values 
of A1 and A2, B1 and B2 under the same loading conditions.

To analyze the error between measured deflection value 
and predicted deflection value of the laminate structure of the 
same layering, and to further study the BP neural network, 
the curve fitting of the two layering schemes was drawn as 
shown in Figure 6

In this paper, the root mean square error RMS between 
the actual deflection value and the predicted deflection 
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Figure 6. Curve Fitting Diagrams of Actual Measured Deflection Value and Predicted Deflection Value of the Test Pieces. A~D Fitting 
Diagram of Test PieceA1、A2、B1、B2,respectively

output value of the test piece was used to evaluate the error 
between the two. The calculation formula of RMS is as 
shown in Equation 6.

                    (6) 

Where iy′  is the actual deflection value of the laminate 
structure, iy′  reflects the predicted deflection value, and n 
is the number of strain collection nodes.

The calculation results are as shown in Table 3.

A1 A2 B1 B2

RMS/mm 0.1098 1.6645 0.1453 0.6863

Table 3. Root Mean Square Error of Actual Deflection Value and 
Predicted Deflection Value of the Test Piece

4. Discussion

As can be seen from Figure 4 that the actual deflection 
value and the predicted deflection value of the test pieces 
A1 and B1 agree better than the test pieces A2 and B2. It is 
seen from Table 3 that the actual deflection value and the 
predicted deflection value of the test pieces A1 and B1 have 
few errors, but the errors between the actual deflection value 
and the predicted deflection value of the test pieces A2 and 
B2 are large. Because the training samples of the BP neural 
network model used to construct the two types of layering 
structures were experimental data measured under certain 

loading conditions with A1 and B1 as test pieces, when the 
model was applied to other test pieces of the layering structure 
of the same type, certain differences were be caused due to 
the inherent errors and pasting process of the FBG sensors.

For the BP neural network mathematical model, 
increasing the training data can improve its accuracy. In 
this experiment, the error obtained by 50 sets of training 
data is within the set target value, so the BP neural network 
training process is convergent. By comparing the actual 
deflection value and the predicted deflection value of the 
four test pieces in Figure 6 and the magnitude of the root 
mean square error, It can be found that the BP neural 
network can be applied to the deformation reconstruction 
of CFRP laminated plate structure with higher consistency.

5. Conclusion

The basic principles and methods of BP neural network are 
first expounded in this paper. In line with the input and output 
relationship of the experimental objects, BP neural network 
algorithm was established in MATLAB. Based on the strain 
and deflection information of the upper surface of test pieces 
A1 and B1, on the basis of a large amount of experimental data, 
the BP neural network model between strain and deformation 
was learned and trained in MATLAB. The same experimental 
loading method was applied to the test pieces A2 and B2, 
and the changes of strain and deflection on the upper surface 
were collected and input into the BP neural network model. 
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The BP predicted deflection of the neural network was compared 
with the actual measured deflection. The experiment proved 
that the BP neural network is capable of reconstructing the 
deformation of the CFRP laminate structure within certain 
error range.
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