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Eucalyptus Bark Charcoal: the Influence of Carbonization Temperature in Thermal 
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Eucalyptus bark is a waste generated in large volume and has been used as a source of energy. 
This study tries to use the Eucalyptus sp. bark as a source of raw material for the charcoal production 
and to study the influence of pyrolysis temperatures on charcoal properties. Charcoal was produced at 
different temperatures: 300, 400 and 500 °C, and their properties were determined by proximate analysis, 
higher heating value and thermogravimetric analysis. It was observed that higher pyrolysis temperature 
resulted in increase of the fixed carbon content and higher heating value.  In the thermogravimetry 
and derivative thermogravimetry curves it was possible to determine the differences in the thermal 
stability of charcoal produced. It can be concluded that the eucalyptus bark charcoal is an alternative 
for the energy reutilization of this waste and also can be used as charcoal for heating.
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1. Introduction

Fossil fuels are the source of pollutants and greenhouse 
gases. Energy from non-renewable fuels can be partially, 
if not totally, replaced by renewable sources. This matrix 
exchange is the objective of several industrial sectors, as it 
entails financial and ecological gains. For example, the use 
of charcoal instead of coal in the iron and steel industry. 
Also, the use of biomass instead of gas or oil in boilers1.

Biomass is any organic matter that can be transformed 
into energy, either thermal, electrical or mechanical. The 
biomass origin can be urban, industrial, agricultural or 
forestry. All the forms in which biomass is obtained are seen 
as promising energy sources with potential for growth in the 
domestic and oversea market2.

Forest waste is a promising energy source for Brazil 
due to the large amount of forest plantations (7.8 million 
hectares)3. Canopies, branches, and bark of trees are forest 
exploitation wastes4. The use of eucalyptus and its residues 
for charcoal production have been studied5-6. Coal partial 
substitution by biomass is an attractive route to mitigate CO2 

emissions in the ironmaking process7. Compared to coal, 
biomass presents advantages, such as lower ash and Sulfur 
contents8. In addition, the thermal treatments like torrefaction 
and carbonization can adjust the biomass volatile matter yield 
varying the maximum process temperature9. Thus, biomass 
research has received growing interest.  

The objective of this study was to analyze the pyrolysis 
influence on charcoal properties, produced from eucalyptus 
bark at different temperatures.

2. Material and Methods 

2.1 Materials preparation and charcoal production

The material used was Eucalyptus sp. bark, collected at 
a wood panel industry in the city of Salto, SP. The material 
after collection was weighed and dried using a Marconi 
MA 35 air circulation oven. A 100 g sample of dry material 
was milled using Marconi MA-340 Willey Knife Mill and 
separated for proximate analysis.

On the other hand, the dry bark was cut manually in 
1x4 cm sizes for the charcoal production (Figure 1B). 
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Three pyrolysis temperatures were used: 300 ºC, 400 ºC 
and 500 ºC. Approximately 20 g of the chopped bark was 
placed in a covered metal container. For the carbonization, 
a muffle furnace was used (Jung brand model 0212) at a 
heating rate of 20 °C.min-1. The pyrolysis temperature was 
maintained for 3 hours under inert atmosphere (reduced 
oxygen atmosphere)10-11. 

2.2 Materials characterization.  

2.2.1 Proximate analysis and higher heating value 

All analyzes for bark and charcoal (volatile matter, 
ash content and fixed carbon) were performed in triplicate. 
Approximately 1 g of the milled bark samples were placed 
in calcined crucibles. Then, they were heated in a muffle 
furnace (Jung brand, model 0212) at 950 ± 25 °C for 7 
minutes. After heating, the crucibles were cooled in a 
desiccator with silica gel for 1 h and weighed to determine 
the volatile matter. After weighing, the crucibles were taken 
back to the furnace for 6 h at 600 ± 25°C, cooled again in 
the desiccator, and reweighed to determine the ash content. 

The same analyses (volatile matter, ash content and 
fixed carbon) were performed for the produced charcoal. 
The crucibles with approximately 1 g of dry charcoal sample 
were used. It was positioned at the edge of the preheated 
muffle at 950 ± 25 °C, remaining in this position for 3 minutes 
(around 500 °C), and then placed inside the muffle for 6 
minutes with the door closed. After that, the crucibles were 
cooled in desiccator with silica gel for 1 h and weighed to 
determine the volatile matter. The same crucibles used for 
the volatile matter determination (with sample) were placed 
in the muffle furnace at 750°C for 6 h. The crucibles were 
cooled in a desiccator for 1 h and weighed to determine the 
ash content. Fixed carbon is a value resulting from the sum 
of the ash content and volatile matter percentages subtracted 
from 100%.

The higher heating value was determined for bark and 
charcoal sample in the bomb calorimeter brand IKA model 
C200.

All analyzes were conducted complying with the standards 
of the American Society for Testing and Materials12-16.

2.2.2 Thermogravimetric analysis (TGA)

Thermogravimetry (TG) and derivative thermogravimetry 
(DTG) were performed in the Perkin Elmer equipment, 
Pyris TGA 1 model. Approximately 21 mg of the sample 
were used in a platinum pan under a high purity (99.999%) 
nitrogen atmosphere with a flow rate of 20 ml.min-1. The 
heating rate was 20 °C.min-1, temperature from 50 to 700 °C.

2.3 Statistical analyses 

The effects of experimental treatments were analyzed 
using software R version 2.11.1, by analysis of variance 
(ANOVA) and Tukey’s multiple range tests (5% of probability). 

3. Results and Discussion

3.1 Proximate analysis and higher heating value 

Figure 1 shows the physical aspects of the eucalyptus 
bark samples and the respective charcoal. The samples 
were chopped and dried to make it possible the charcoal 
production in laboratory scale.

Table 1 shows the results of the proximate analysis 
and higher heating value (HHV) of eucalyptus bark and 
produced charcoal.  Using biomass for energy purpose has 
some disadvantages such as high volatile matter and low 
fixed carbon content which were identified in the results of 
this study. The burning speed of pulverized biomass fuels is 
considerably higher than that of charcoal, and this behavior 
can be explained because the biomass has higher volatile 
matter compared to charcoal17.

The ash content of a charcoal and biomass fuels is also 
important. Generally, it varies from 0.5% to more than 5% 
depending on the species, the amount of bark and the presence 
of soil and sand in the sample. High levels of ash represent 
a decrease in energy potential and can cause corrosion in 
metal equipment. A good quality charcoal must have an ash 
content of less than 3%18.

It can be seen in Table 1, that the ash content in the produced 
charcoal was higher than 3%. This can be explained by a possible 
contamination of the bark (soil adhered) during harvesting19. 

Figure 1. Investigated sample (A) eucalyptus bark (B) chopped bark (C) charcoal bark samples EB300.
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Figure 2. TG curves for eucalyptus bark and charcoal produced in 
nitrogen atmosphere and heating rate of 20 °C.min-1.

Figure 3.  DTG curves for eucalyptus bark and charcoal produced.

Table 1. Proximate analysis and HHV (dry basis). 

Material Volatile matter (%) Ash (%) Fixed carbon (%) HHV (MJ/kg)

eucalyptus Bark 72.07 ± 1.76 a 5.44 ± 0,52 a 22.49 ± 1.77 a 18.23 ± 0.13 a

EB300 44.79 ± 0.79 b 11.27 ± 0,24 b 43.94 ± 1.03 b 20.88 ± 0.02 b

EB400 34.83 ± 0.77 c 17.76 ± 0,26 c 47.41 ± 0.63 c 20.22 ± 0.09 c

EB500 24.07 ± 0.21 d 17.68 ± 0,04 c 58.25 ± 0.22 d 22.94 ± 0.11 d
Means followed by the same letter in the column are not statistically different by the test of Tukey at 5% level of probability

The optimum volatile matter of a “good-quality” 
charcoal depends on its use. For example, metallurgical 
grade charcoal should have a fixed-carbon content of 85-
90%, whereas charcoal intended for domestic cooking 
should have a minimum volatile matter content of 20-30%, 
and a maximum of 40%20. Although the charcoal produced 
in the three treatments (300, 400 and 500 °C) did not meet 
the qualities of charcoal for metallurgy, they presented the 
necessary characteristics for domestic use. 

The eucalyptus charcoal produced in the Sao Paulo state 
can be considered of good quality, with volatile matter, ash 
content, fixed carbon and HHV of 16.9%; 1.20%; 81.9% 
and 32.65 MJ/kg, respectively21.  The HHV of EB500 
(22.94 MJ/kg) represents 72.2% when compared to the 
HHV of commercial eucalyptus charcoal (32.65 MJ/kg). 
Thus, bark charcoal (EB500) produced at a temperature of 
500 °C exhibits potential for residential use.

3.2 Thermogravimetric analysis (TGA)

Biomass is composed mostly of cellulose, a polymer 
of glucose; hemicellulose, a complex polymer of which the 
main chain consists primarily of xylans or glucomannans; 
and lignin, a complex phenolic polymer, in addition to the 
main constituents, other non-structural (extractive) materials 
are present in fewer amounts22-24. Pyrolysis causes thermal 
degradation of these compounds and as a result, the biomass 
properties change significantly. Thermal degradation occurs 
in the order of hemicellulose> cellulose> lignin23. Figure 2 
presents the TG curves in (wt %) for the materials.

In Figure 2, the difference in the thermal degradation 
between the eucalyptus bark and charcoal produced can be 
observed. Comparing the thermogravimetric curves it is 
observed that the pyrolysis process improves the thermal 
stability of the charcoal. As expected, the hemicelluloses were 
completely degraded in the charcoal, which can be proved 
by the absence of hemicelluloses peak in charcoal curves. 
According to Yang et al. 25, the hemicelluloses decompose 
in the range from 220 to 315 °C25. Also, it is possible to 
observe that the higher pyrolysis temperature, the lower the 
percentage of mass loss in an inert atmosphere. For example, 
at 700 °C the curves of charcoal showed low percentage of 
mass loss 35.9%, 26.6% and 11.8% for charcoal produced 
EB300, EB400 and EB500 respectively, when compared to 
eucalyptus bark 78.1%. The curves showed that at 700 ºC 
remained material are fixed carbon and ashes (same results 
of proximate analysis). Among the treatments (300, 400 
and 500 °C), it was found that EB500 was thermally more 
stable charcoal.

In Figure 3 the DTG curves (wt. % /min) of the materials 
are shown. It is possible to observe the temperature with the 
peaks of the major mass losses and the maximum degradation 
rates of the materials. Table 2 presents the percentages of 
mass loss for the samples with the respective temperature 
and obtained residues (charcoal).

In the DTG curves the initial mass loss at about 100°C 
was due to the water evaporation26. It was observed for 
EB300 and EB400 treatments another mass loss peak at 
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197°C. It must be due to a dehydration process involving the 
splitting off of a hydroxyl group and of a hydrogen between 
two hydroxyl groups to form water27. 

The shoulder in the range from 230 to 360°C for eucalyptus 
bark DTG curves is due to the hemicellulose degradation. 
Another step was observed in the range from 360 to 430°C, 
with the maximum mass loss rate (16.9 %.min-1) at 395 °C, 
attributed to the cellulose degradation and part of the lignin. 
Finally, a slight loss of mass occurred in the range from 
430 to 570°C, with a maximum rate 0.7%/min-1 at 541 °C. 
The eucalyptus bark degradation after maximum mass loss 
rate at 395 °C indicates gradual lignin degradation into a 
carbon-rich residual solid, until it reaches approximately 
21.9% weight at 700 °C23. 27, 28.

The pyrolysis temperature influenced the charcoal 
properties. DTG curves also showed that for charcoals the 
hemicellulose peaks disappeared, and the cellulose peak 
decreased dramatically, indicating thermal degradation of 
the hemicellulose and part of the cellulose during pyrolysis. 
When the pyrolysis temperature increased from 300 to 
400°C, the cellulose peak disappeared, which indicates that 
the cellulose was also degraded in EB400. In the treatment 
EB500 all the peaks almost disappeared indicating that 
the pyrolysis temperature used (500°C) was sufficient to 
completely degrade the major biomass components.

 The solid residues increased with the temperature charcoal 
production, for EB300, EB400 and EB500 treatments it was 
64.1%, 73.4% and 88.2% respectively at 700 °C. Comparing 
to proximate analysis, it was observed that higher pyrolysis 
temperature also resulted in increase of the fixed carbon 
content and HHV. Therefore, the difference between charcoals 
produced in different temperatures could be due to thermal 
degradation biomass components during pyrolysis, resulting 
in carbon-rich residual solid. 

4. Conclusion

It is concluded that the eucalyptus bark can be used as a 
source of raw material for the charcoal production. Charcoal 
obtained from eucalyptus bark has enough quality to be 
applied for heating or domestic use. The DTG curve showed 

that pyrolysis temperature causes thermal degradation of the 
biomass components (hemicellulose, cellulose and lignin) 
resulting in properties changes as increase of the fixed carbon 
content and HHV. 
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